Let
![$X$](img2.png)
be a submanifold of dimension
![$n$](img3.png)
of the complex projective space
![$\mathbb P^N$](img4.png)
(
![$n<N$](img5.png)
), and let
![$E$](img6.png)
be a vector bundle of rank two on
![$X$](img2.png)
. If
![$n\geq\frac{N+3}{2}\geq 4$](img7.png)
we prove a geometric criterion for the existence of an
extension of
![$E$](img6.png)
to a vector bundle on the first order infinitesimal
neighborhood of
![$X$](img2.png)
in
![$\mathbb P^N$](img4.png)
in terms of the splitting of the
normal bundle sequence of
![$Y\subset X\subset\mathbb P^N$](img8.png)
, where
![$Y$](img9.png)
is the zero locus of a general section of a high twist of
![$E$](img6.png)
. In the last section we show that
the universal quotient vector bundle on the Grassmann
variety
![$\mathbb G(k,m)$](img10.png)
of
![$k$](img11.png)
-dimensional linear subspaces of
![$\mathbb P^m$](img12.png)
, with
![$m\geq 3$](img13.png)
and
![$1\leq k\leq m-2$](img14.png)
(i.e. with
![$\mathbb G(k,m)$](img10.png)
not a projective space), embedded in any projective
space
![$\mathbb P^N$](img4.png)
, does not extend to the first infinitesimal neighborhood of
![$\mathbb G(k,m)$](img10.png)
in
![$\bP^N$](img4.png)
as a vector bundle.