For a graph
, a labeling
is called an edge irregular total
-labeling of
if the weights of any two different edges are
distinct, where the weight of the edge
under
is
defined to be
. The
total edge irregularity strength
of
is the
minimum
for which
has an edge irregular total
-labeling.
Al-Mushayt et al. “prove" that
for the hexagonal grid graph
, but the labeling they
constructed is actually not a total
-labeling. In this
paper, we first describe a correct edge irregular total
-labeling of
for any
, and so show that
.
Moreover, we determine the exact value of the total edge
irregularity strength for a more general hexagonal grid graph
by giving an edge irregular total
tes-labeling, where
consists of
columns of hexagons and
has
hexagons in the
-th column,
, and
.