Ximin Liu, Wenjie Wang: Locally ɸ-symmetric almost coKähler $ 3$-manifolds, 427-438

Abstract:

In this paper, we prove that an almost coKähler $ 3$-$ h$-manifold is locally $ \phi$-symmetric with scalar curvature invariant along the contact distribution if and only if it is locally isometric to the Euclidean $ 3$-space $ \mathbb{R}^3$ or the Riemannian product $ \mathbb{R}\times N^2(c)$, where $ N^2(c)$ denotes a Kähler surface of constant curvature $ c\neq0$, or the unimodular Lie group $ E(1,1)$ of rigid motions of the Minkowski $ 2$-space equipped with a left invariant strictly almost coKähler structure.

Key Words: Almost coKähler 3-manifold, local $ \phi$-symmetry, Lie group.

2010 Mathematics Subject Classification: Primary 53D15, 53C25.