Zhanmin Zhu: Rings related to 𝒮-projective modules, 439-449

Abstract:

Let $ R$ be a ring and $ \mathcal {S}$ be a class of some finitely generated left $ R$-modules. Then a left $ R$-module $ M$ is called $ \mathcal {S}$-projective if for every homomorphism $ f : S \rightarrow M$, where $ S\in \mathcal {S}$ , there exist homomorphisms $ g : S\rightarrow F$ and $ h : F\rightarrow M$ such that $ f = hg$, where $ F$ is a free module . In this paper, we give some characterizations of the following four classes of rings: (1). every injective left $ R$-module is $ \mathcal {S}$-projective; (2). every left $ R$-module has a monic $ \mathcal {S}$-projective preenvelope; (3). every submodule of a projective left $ R$-module is $ \mathcal {S}$-projective; (4). every left $ R$-module has an epic $ \mathcal {S}$-projective envelope. Some applications are given.

Key Words: $ \mathcal {S}$-projective modules, $ \mathcal {S}$-$ \Pi$-coherent rings, $ \mathcal {S}$-F rings, $ \mathcal {S}$-semihereditary rings.

2010 Mathematics Subject Classification: Primary 16D40; Secondary 16P70.