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Abstract. This note gives a lower bound for the area of a convex polygon
whose ’frontier’ triangles (triangles spanned by three consecutive vertices)
have area at least 1.
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Question 4 of the 2021 Stars of Mathematics Competition, Senior Grade,
asked one to show that, if every three consecutive vertices of a convex n-gon
span a triangle of area at least 1, then the area of the n-gon is (strictly)
greater than 1

4n log2 n− 1
2 .

Our purpose here is to improve this order n log2 n area lower bound to
one of order nlog3 4 for all but finitely many positive integers n.

For convenience, a convex n-gon every three consecutive vertices of
which span a triangle of area at least 1 will be referred to as a suitable n-gon.
This area condition is vacuously true if n = 2, so segments are suitable 2-gons
of area zero.

Claim. The area of a suitable n-gon is greater than

5

32
nlog3 4

for all but finitely many positive integers n.
Moreover, the lower bound

1

8

(
n− 3

2

)log3 4

holds for all integers n � 3.

1)Elev, Liceul Teoretic Internat,ional de Informatică Bucures,ti
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The argument hinges on the lemma below.

Lemma. For any non-negative integer k, the area of a suitable n-gon
is at least (

4

3

)k (
n− 3k + 3

2

)
.

Remark. Only finitely many of these area lower bounds are non-
negative, namely, those in the range of non-negative integers k � log3(2n−3);
to be non-empty, this requires n � 2. Furthermore, an inspection of the
derivative shows that these area lower bounds increase in the range of non-
negative integers k � log3(2n− 3)− 2; to be non-empty, this requires n � 6.

Assume the lemma for the moment to prove the claim. To deal with
the first statement in the claim, write α = log3 4 and c0 =

1
8

(
2
α

)α
(α−1)α−1.

We first show that, given any positive real constant c < c0, the area of a
suitable n-gon is (strictly) greater than cnα for all but finitely many positive
integers n. Then we show that c = 5

32 < c0 and the conclusion follows.
Consider a positive real number a < 2, to be chosen later on, and a

positive real number c < 1
8a

α−1(2 − a). Consider further an integer n �
max

(
3, 1a

)
, satisfying �log3(an)� � 1 − log3

(
2
a − 1− 8c

aα

)
. Notice that k =:

�log3(an)� � 0 and 1
3k−1 � 2

a − 1− 8c
aα . By the lemma, the area of a suitable

n-gon is then at least(
4

3

)k (
n− 3k + 3

2

)
= 4k

( n

3k
− 1

2
− 1

2
· 1

3k−1

)

� 4k
(
1

a
− 1

2
− 1

2

(2
a
− 1− 8c

aα

))
= 4k+1 c

aα
= 3(k+1)α c

aα
> (an)α

c

aα
= cnα.

To choose a, maximise f(a) = 1
8a

α−1(2−a) over the open interval (0, 2).

It is easily seen that f is maximised at a0 = 2
(
1− 1

α

)
alone, where it achieves

the value c0.
Consequently, given any positive real constant c < c0, the area of a

suitable n-gon is (strictly) greater than cnα for all but finitely many pos-

itive integers n, namely, for all integers n � max
(
3, 1

a0

)
= 3 satisfying

�log3(a0n)� � 1− log3
8(c0−c)

aα0
.

To show that c = 5
32 < c0, notice that f is strictly increasing on the

half-open interval (0, a0]. Since a0 > 1
3 , it follows that c = 5

32 = f
(
1
3

)
<

f(a0) = c0. This establishes the first statement in the claim.

To prove the second, consider an integer n � 3 and define the number
k =

⌊
log3

(
n− 3

2

) ⌋
; clearly, k is a non-negative integer. With reference again

to the lemma, the area of a suitable n-gon is at least
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(
4

3

)k (
n− 3k + 3

2

)
= 4k

( 1

3k

(
n− 3

2

)
− 1

2

)
� 4k

(
1− 1

2

)

=
1

8
· 4k+1 =

1

8
·
(
3k+1

)log3 4
>

1

8

(
n− 3

2

)log3 4

.

This establishes the second statement and concludes the proof of the
claim.

We now turn to prove the lemma. The area of a polygon K will be
denoted by [K]. Before proceeding to the proof proper, notice that, if a and
b are consecutive vertices of a suitable polygon, and c is any other vertex,
then [abc] � 1. Indeed, if x and y are the other boundary neighbours of a
and b, respectively, then [abc] � min([abx], [aby]) � 1, by convexity.

Consequently, any diagonal splits a suitable polygon into suitable poly-
gons. (It then also follows that any three vertices of a suitable polygon span
an area of at least 1, but this will not be needed in the sequel.)

For convenience, write ak =
(
4
3

)k
and bk = 1

2(3
k + 3), so ak+1 = 4

3ak
and bk+1 = 3bk − 3.

Let K be a suitable n-gon. We are to show that [K] � ak(n− bk) for all
non-negative integers k. Induct on k. The base case, k = 0, follows by the
preceding: The n− 3 diagonals from some vertex tile K by n− 2 triangles of
area at least 1 each, so [K] � n− 2 = a0(n− b0).

To perform the induction step, consider three vertices of K spanning a
triangle Δ of maximal area. Through each vertex of Δ draw a parallel to the
opposite side to form a triangle ∇ of area [∇] = 4[Δ]. By maximality of [Δ],
no vertex of K lies outside ∇, so ∇ covers K, and hence [K] � [∇] = 4[Δ].

N
�

L

M

�

Notice further thatK is tiled by Δ and three other (possibly degenerate)
polygons, say, a p-gon L, a q-gon M and an r-gon N , where p, q and r are
all at least 2 and p + q + r = n + 3. Then [K] = [Δ] + [L] + [M ] + [N ] �
1
4 [K] + [L] + [M ] + [N ], so [K] � 4

3([L] + [M ] + [N ]).
Finally, by the remark preceding the proof proper, L, M and N are all

suitable, so

� 4

3
([L] + [M ] + [N ]) � 4

3

(
ak(p− bk) + ak(q − bk) + ak(r − bk)

)
=

4

3
ak(p+ q + r − 3bk) =

4

3
ak(n+ 3− 3bk) = ak+1(n− bk+1).

This completes the induction and concludes the proof of the lemma.


