GAZETA MATEMATICĂ

SERIA B
PUBLICAȚIE LUNARĂ PENTRU TINERET
Fondată în anul 1895
Anul CXXVII nr. 2
februarie 2022

ARTICOLE ŞI NOTE MATEMATICE AN AREA LOWER BOUND FOR CONVEX POLYGONS WITH LARGE PERIPHERAL TRIANGLES

David Andrei Anghel ${ }^{1)}$

Abstract

This note gives a lower bound for the area of a convex polygon whose 'frontier' triangles (triangles spanned by three consecutive vertices) have area at least 1. Keywords: convex polygon, area, lower bound MSC : 51M25

Question 4 of the 2021 Stars of Mathematics Competition, Senior Grade, asked one to show that, if every three consecutive vertices of a convex n-gon span a triangle of area at least 1 , then the area of the n-gon is (strictly) greater than $\frac{1}{4} n \log _{2} n-\frac{1}{2}$.

Our purpose here is to improve this order $n \log _{2} n$ area lower bound to one of order $n^{\log _{3} 4}$ for all but finitely many positive integers n.

For convenience, a convex n-gon every three consecutive vertices of which span a triangle of area at least 1 will be referred to as a suitable n-gon. This area condition is vacuously true if $n=2$, so segments are suitable 2 -gons of area zero.

Claim. The area of a suitable n-gon is greater than

$$
\frac{5}{32} n^{\log _{3} 4}
$$

for all but finitely many positive integers n.
Moreover, the lower bound

$$
\frac{1}{8}\left(n-\frac{3}{2}\right)^{\log _{3} 4}
$$

holds for all integers $n \geqslant 3$.

[^0]The argument hinges on the lemma below.
Lemma. For any non-negative integer k, the area of a suitable n-gon is at least

$$
\left(\frac{4}{3}\right)^{k}\left(n-\frac{3^{k}+3}{2}\right) .
$$

Remark. Only finitely many of these area lower bounds are nonnegative, namely, those in the range of non-negative integers $k \leqslant \log _{3}(2 n-3)$; to be non-empty, this requires $n \geqslant 2$. Furthermore, an inspection of the derivative shows that these area lower bounds increase in the range of nonnegative integers $k \leqslant \log _{3}(2 n-3)-2$; to be non-empty, this requires $n \geqslant 6$.

Assume the lemma for the moment to prove the claim. To deal with the first statement in the claim, write $\alpha=\log _{3} 4$ and $c_{0}=\frac{1}{8}\left(\frac{2}{\alpha}\right)^{\alpha}(\alpha-1)^{\alpha-1}$.

We first show that, given any positive real constant $c<c_{0}$, the area of a suitable n-gon is (strictly) greater than $c n^{\alpha}$ for all but finitely many positive integers n. Then we show that $c=\frac{5}{32}<c_{0}$ and the conclusion follows.

Consider a positive real number $a<2$, to be chosen later on, and a positive real number $c<\frac{1}{8} a^{\alpha-1}(2-a)$. Consider further an integer $n \geqslant$ $\max \left(3, \frac{1}{a}\right)$, satisfying $\left\lfloor\log _{3}(a n)\right\rfloor \geqslant 1-\log _{3}\left(\frac{2}{a}-1-\frac{8 c}{a^{\alpha}}\right)$. Notice that $k=:$ $\left\lfloor\log _{3}(a n)\right\rfloor \geqslant 0$ and $\frac{1}{3^{k-1}} \leqslant \frac{2}{a}-1-\frac{8 c}{a^{\alpha}}$. By the lemma, the area of a suitable n-gon is then at least

$$
\begin{gathered}
\left(\frac{4}{3}\right)^{k}\left(n-\frac{3^{k}+3}{2}\right)=4^{k}\left(\frac{n}{3^{k}}-\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{3^{k-1}}\right) \\
\geqslant 4^{k}\left(\frac{1}{a}-\frac{1}{2}-\frac{1}{2}\left(\frac{2}{a}-1-\frac{8 c}{a^{\alpha}}\right)\right)=4^{k+1} \frac{c}{a^{\alpha}}=3^{(k+1) \alpha} \frac{c}{a^{\alpha}}>(a n)^{\alpha} \frac{c}{a^{\alpha}}=c n^{\alpha} .
\end{gathered}
$$

To choose a, maximise $f(a)=\frac{1}{8} a^{\alpha-1}(2-a)$ over the open interval $(0,2)$. It is easily seen that f is maximised at $a_{0}=2\left(1-\frac{1}{\alpha}\right)$ alone, where it achieves the value c_{0}.

Consequently, given any positive real constant $c<c_{0}$, the area of a suitable n-gon is (strictly) greater than cn^{α} for all but finitely many positive integers n, namely, for all integers $n \geqslant \max \left(3, \frac{1}{a_{0}}\right)=3$ satisfying $\left\lfloor\log _{3}\left(a_{0} n\right)\right\rfloor \geqslant 1-\log _{3} \frac{8\left(c_{0}-c\right)}{a_{0}^{\alpha}}$.

To show that $c=\frac{5}{32}<c_{0}$, notice that f is strictly increasing on the half-open interval $\left(0, a_{0}\right]$. Since $a_{0}>\frac{1}{3}$, it follows that $c=\frac{5}{32}=f\left(\frac{1}{3}\right)<$ $f\left(a_{0}\right)=c_{0}$. This establishes the first statement in the claim.

To prove the second, consider an integer $n \geqslant 3$ and define the number $k=\left\lfloor\log _{3}\left(n-\frac{3}{2}\right)\right\rfloor$; clearly, k is a non-negative integer. With reference again to the lemma, the area of a suitable n-gon is at least

$$
\begin{aligned}
\left(\frac{4}{3}\right)^{k}\left(n-\frac{3^{k}+3}{2}\right) & =4^{k}\left(\frac{1}{3^{k}}\left(n-\frac{3}{2}\right)-\frac{1}{2}\right) \geqslant 4^{k}\left(1-\frac{1}{2}\right) \\
& =\frac{1}{8} \cdot 4^{k+1}=\frac{1}{8} \cdot\left(3^{k+1}\right)^{\log _{3} 4}>\frac{1}{8}\left(n-\frac{3}{2}\right)^{\log _{3} 4}
\end{aligned}
$$

This establishes the second statement and concludes the proof of the claim.

We now turn to prove the lemma. The area of a polygon K will be denoted by $[K]$. Before proceeding to the proof proper, notice that, if a and b are consecutive vertices of a suitable polygon, and c is any other vertex, then $[a b c] \geqslant 1$. Indeed, if x and y are the other boundary neighbours of a and b, respectively, then $[a b c] \geqslant \min ([a b x],[a b y]) \geqslant 1$, by convexity.

Consequently, any diagonal splits a suitable polygon into suitable polygons. (It then also follows that any three vertices of a suitable polygon span an area of at least 1, but this will not be needed in the sequel.)

For convenience, write $a_{k}=\left(\frac{4}{3}\right)^{k}$ and $b_{k}=\frac{1}{2}\left(3^{k}+3\right)$, so $a_{k+1}=\frac{4}{3} a_{k}$ and $b_{k+1}=3 b_{k}-3$.

Let K be a suitable n-gon. We are to show that $[K] \geqslant a_{k}\left(n-b_{k}\right)$ for all non-negative integers k. Induct on k. The base case, $k=0$, follows by the preceding: The $n-3$ diagonals from some vertex tile K by $n-2$ triangles of area at least 1 each, so $[K] \geqslant n-2=a_{0}\left(n-b_{0}\right)$.

To perform the induction step, consider three vertices of K spanning a triangle Δ of maximal area. Through each vertex of Δ draw a parallel to the opposite side to form a triangle ∇ of area $[\nabla]=4[\Delta]$. By maximality of $[\Delta]$, no vertex of K lies outside ∇, so ∇ covers K, and hence $[K] \leqslant[\nabla]=4[\Delta]$.

Notice further that K is tiled by Δ and three other (possibly degenerate) polygons, say, a p-gon L, a q-gon M and an r-gon N, where p, q and r are all at least 2 and $p+q+r=n+3$. Then $[K]=[\Delta]+[L]+[M]+[N] \geqslant$ $\frac{1}{4}[K]+[L]+[M]+[N]$, so $[K] \geqslant \frac{4}{3}([L]+[M]+[N])$.

Finally, by the remark preceding the proof proper, L, M and N are all suitable, so

$$
\begin{aligned}
& \geqslant \frac{4}{3}([L]+[M]+[N]) \geqslant \frac{4}{3}\left(a_{k}\left(p-b_{k}\right)+a_{k}\left(q-b_{k}\right)+a_{k}\left(r-b_{k}\right)\right) \\
& =\frac{4}{3} a_{k}\left(p+q+r-3 b_{k}\right)=\frac{4}{3} a_{k}\left(n+3-3 b_{k}\right)=a_{k+1}\left(n-b_{k+1}\right) .
\end{aligned}
$$

This completes the induction and concludes the proof of the lemma.

[^0]: ${ }^{1)}$ Elev, Liceul Teoretic Internațional de Informatică București

