13. Determinați cel mai mic și cel mai mare element al mulțimii

$$M = \left\{ n + [\frac{2022}{n}] \middle| n \in \{1, 2, \dots, 2022\} \right\}.$$

14. a) Arătați că, dacă numerele reale x,y au proprietatea că $|x-y| \leq \frac{1}{2}$ pentru orice $n \in \mathbb{N}^*$, atunci x = y.

b) Arătați că, dacă numerele reale a, b, c, d au proprietatea că [na] + [nb] =[nc] + [nd], pentru orice $n \in \mathbb{N}^*$, atunci a + b = c + d.

15. Rezolvați ecuația $\frac{6x^2+7x}{6}+\frac{42}{6x^2+7x+18}=5.$

16. a) Arătați că în orice triunghi ABC avem relația lui Sylvester: $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$

b) Fie ABCD un patrulater înscris în cercul de centru O. Dacă H_1 și H_2 sunt ortocentrele triunghiurilor ACD, respectiv ABC, arătați că $\overrightarrow{BH_2} = \overrightarrow{DH_1}$.

 $\overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$, unde O este centrul cercului circumscris triunghiului.

18. Fie ABC un triunghi de laturi a, b, c, G centrul său de greutate și Icentrul cercului înscris. Arățați că

cului înscris. Arătați că
$$3(a \cdot \overrightarrow{AG} + b \cdot \overrightarrow{BG} + c \cdot \overrightarrow{CG}) = (a + b + c) \cdot (\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC}).$$

Clasa a X-a

19. Rezolvați în mulțimea numerelor complexe ecuațiile:

a)
$$z \cdot \bar{z} + 3(z - \bar{z}) = 13 + 18i$$
; b) $z^2 - 2\bar{z} + 1 = 0$; c) $|z| = \left|\frac{1}{z}\right| = |z - 1|$.

20. Știind că z este un număr complex cu modulul egal cu 1, determinați numărul soluțiilor ecuației $\left|\frac{z}{z} + \frac{z}{z}\right| = 1$.

21. Fie $z_1,z_2,z_3\in\mathbb{C}$, cu $|z_k|=1,\,k\in\{1,2,3\}$ și $z_1+z_2+z_3\neq 0$. Arătați

c) Calculați modulul numărului $P = \prod^{2022} (1 + \varepsilon^k)$.

 $x = \frac{z}{1+z^2} + \frac{z^2}{1+z^4} + \frac{z^3}{1+z^6}$ este întreg.

 $i(z^2-1)-mz=0$ are cel putin o soluție reală.

23. Arătați că, dacă z este o rădăcină de ordin 7 a unității, atunci numărul

24. Determinați valorile parametrului real nenul m pentru care ecuația z^3 –

b) Arătați că $a^3+b^3+c^3-3abc=(a+b+c)(a+b\varepsilon+c\varepsilon^2)(a+b\varepsilon^2+c\varepsilon)$.

a) Arătati că $a^3 + b^3 = (a+b)(a+b\varepsilon)(a+b\varepsilon^2)$.

22. Fie $a, b, c \in \mathbb{R}$ și $\varepsilon \in \mathbb{C}$ o soluție a ecuației $z^2 + z + 1 = 0$.

 $\operatorname{c\check{a}}\left|\frac{z_1z_2 + z_2z_3 + z_3z_1}{z_1 + z_2 + z_2}\right| = 1.$