GAZETA MATEMATICĂ

SERIA B

PUBLICAȚIE LUNARĂ PENTRU TINERET Fondată în anul 1895

rondutu in unu

Anul CXVIII nr. 11

noiembrie 2013

ARTICOLE ȘI NOTE MATEMATICE

SQUARE ROOTS OF REAL 2×2 MATRICES

NICOLAE ANGHEL¹⁾

Abstract. In this note we investigate the real 2 × 2 matrices which admit real square roots.
Keywords: Matrix, Square Root
MSC : Primary: 15A23. Secondary: 11C20.

Only non-negative real numbers admit real square roots. Thinking of a real number as the simplest square matrix, a 1×1 matrix, an interesting question emerges. Which real $n \times n$ matrices, $n \geq 1$, admit real square roots? In other words, for which $A \in \mathcal{M}_n(\mathbb{R})$ is there an $S \in \mathcal{M}_n(\mathbb{R})$ such that $S^2 = A$?

In this short note we will give a complete answer to the above question in the case n = 2. As a corollary, we will also establish how many distinct real square roots a given 2×2 matrix has, and then proceed to describe them exactly.

Theorem. For a given matrix $A \in \mathcal{M}_2(\mathbb{R})$ there are matrices $S \in \mathcal{M}_2(\mathbb{R})$ such that $S^2 = A$ if and only if det $A \ge 0$ and, either $A = -\sqrt{\det A}I$ or $\operatorname{tr} A + 2\sqrt{\det A} > 0$, where I is the 2×2 identity matrix. Obviously, in the latter case, $\operatorname{tr} A + 2\sqrt{\det A} = 0$.

Proof. Necessity. Assume that S is a real square root of A. From $S^2 = A$ we conclude that $(\det S)^2 = \det A$, so we must have $\det A \ge 0$. Any matrix $M \in \mathcal{M}_2(\mathbb{R})$ satisfies the Cayley-Hamilton equation, namely $M^2 - (\operatorname{tr} M)M + (\det M)I = 0$. In particular, $S^2 - (\operatorname{tr} S)S + (\det S)I = 0$ implies $A - (\operatorname{tr} S)S + (\det S)I = 0$. There are two cases to consider:

¹⁾Professor, University of North Texas, Denton, TX

(1) $\operatorname{tr} S \neq 0$. Since for a matrix $M \in \mathcal{M}_2(\mathbb{R})$ we have $\operatorname{tr}(M^2) = (\operatorname{tr} M)^2 - 2 \det M$, by taking M = S we have $\operatorname{tr} A + 2 \det S = (\operatorname{tr} S)^2 > 0$. However, $\operatorname{tr} A + 2 |\det S| \geq \operatorname{tr} A + 2 \det S$, and so we get $\operatorname{tr} A + 2 |\det S| > 0$. Now $(\det S)^2 = \det A$ is equivalent to $|\det S| = \sqrt{\det A}$. In conclusion, $\operatorname{tr} A + 2\sqrt{\det A} > 0$.

(2) $\operatorname{tr} S = 0$. In this case, $A - (\operatorname{tr} S)S + (\det S)I = 0$ becomes $A = -(\det S)I$. If $\det S < 0$, $\operatorname{tr} A + 2\sqrt{\det A} = -4 \det S > 0$, and there is nothing to prove. If $\det S \ge 0$, we have $\det S = \sqrt{\det A}$, and so $A = -\sqrt{\det A}I$. Clearly, then $\operatorname{tr} A + 2\sqrt{\det A} = 0$. Therefore, there are no matrices A with $\operatorname{tr} A + 2\sqrt{\det A} < 0$, which admit real square roots.

Sufficiency. If det $A \ge 0$ and tr $A + 2\sqrt{\det A} > 0$, a direct calculation taking into account that $A^2 = (\operatorname{tr} A)A - (\det A)I$ shows that

$$S := \frac{1}{\sqrt{\mathrm{tr}A + 2\sqrt{\mathrm{det}\,A}}} (A + \sqrt{\mathrm{det}\,A}I)$$

is a real square root of A. Suitable equations, found in the necessity part of the proof, show that this is the only possible real square root of A with positive trace and non-negative determinant.

If det $A \ge 0$ and $A = -\sqrt{\det A}I$, then it is easily seen that

$$S := \left(\begin{array}{cc} 0 & 1\\ -\sqrt{\det A} & 0 \end{array}\right)$$

is a square root of A.

Corollary. As the existence of real square roots goes, the following is true about any matrix $A \in \mathcal{M}_2(\mathbb{R})$:

(1) If $A \neq aI$, $a \in \mathbb{R}$, then A admits only finitely many real square roots, as follows:

(a) If det A > 0 and tr $A - 2\sqrt{\det A} > 0$, there are exactly four distinct square roots, given by

$$S = \pm \frac{1}{\sqrt{\mathrm{tr}A + 2\sqrt{\mathrm{det}\,A}}} (A + \sqrt{\mathrm{det}\,A}I)$$

or

$$S = \pm \frac{1}{\sqrt{\mathrm{tr}A - 2\sqrt{\mathrm{det}\,A}}} (A - \sqrt{\mathrm{det}\,A}I).$$

(b) If det A < 0, or det $A \ge 0$ and tr $A + 2\sqrt{\det A} \le 0$, there are no real square roots.

(c) Otherwise, there are exactly two distinct real square roots, given by $S = \pm \frac{1}{\sqrt{\operatorname{tr} A + 2\sqrt{\det A}}} (A + \sqrt{\det A}I).$

(2) If A = aI, $a \in \mathbb{R}$, then A admits infinitely many real square roots. Regardless of a, the doubly infinite family $S = \begin{pmatrix} s & t \\ \frac{a-s^2}{t} & -s \end{pmatrix}$, $s, t \in \mathbb{R}$, $t \neq 0$, is in. If a = 0 we add to the above family the matrices $S = \begin{pmatrix} 0 & 0 \\ s & 0 \end{pmatrix}$, $s \in \mathbb{R}$, while if a > 0 we add the family $S = \begin{pmatrix} \pm \sqrt{a} & 0 \\ s & \mp \sqrt{a} \end{pmatrix}$, $s \in \mathbb{R}$, plus the two more matrices given by $S = \begin{pmatrix} \pm \sqrt{a} & 0 \\ 0 & \pm \sqrt{a} \end{pmatrix}$ (the signs correspond).

Proof. If we are in case (1)(a), a direct calculation, similar to that in the sufficiency part of the Theorem, shows that indeed the four proposed matrices are real square roots of A. Conversely, let S be a real square root of A. As in the proof of the Theorem, we then have $(\det S)^2 = \det A$, $(\operatorname{tr} S)^2 = \operatorname{tr} A + 2 \det S$, and $A - (\operatorname{tr} S)S + (\det S)I = 0$.

If det $S = \sqrt{\det A}$, then $\operatorname{tr} S = \pm \sqrt{\operatorname{tr} A + 2\sqrt{\det A}}$, and so

$$S = \pm \frac{1}{\sqrt{\mathrm{tr}A + 2\sqrt{\mathrm{det}A}}} (A + \sqrt{\mathrm{det}A}I).$$

Similarly, if det $S = -\sqrt{\det A}$ we get the other two matrices in the family of square roots.

The four matrices are distinct because, for instance, their traces are distinct:

$$\sqrt{\operatorname{tr} A + 2\sqrt{\det A}} > \sqrt{\operatorname{tr} A - 2\sqrt{\det A}} > -\sqrt{\operatorname{tr} A - 2\sqrt{\det A}} > -\sqrt{\operatorname{tr} A + 2\sqrt{\det A}}$$

The case (1)(b) follows immediately from the Theorem, by negation, since $A \neq aI, a \in \mathbb{R}$.

In case (1)(c) "otherwise" means after some "detective work", $A \neq aI$, $a \in \mathbb{R}$ and in addition, det A > 0 and $\operatorname{tr} A + 2\sqrt{\det A} > 0$ and $\operatorname{tr} A - 2\sqrt{\det A} \leq \leq 0$, or det A = 0 and $\operatorname{tr} A > 0$. The claimed conclusion can then be reached as in (1)(b).

Finally, the case (2) is an easy 'by hand' calculation, given the simple structure of A.