PROBLEMS FOR COMPETITIONS AND OLYMPIADS

Junior Level

C.O:5115. Let *a*, *b*, *c*, *x*, *y*, *z* be real numbers such that: $a + b + c = x^2 + y^2 + z^2 = 1.$

Prove that:

$$a(x+b) + b(y+c) + c(z+a) \le 1.$$

C.O:5116. Is there a positive integer n such that 7 divides $2^n + 1$?

C.O:5117. Let k be an integer, $k \ge 2$. Show that there exist three distinct integers in the interval $(k^3, (k+1)^3)$ whose product is a perfect cube.

C.O:5118. Let *ABCD* a regular tetrahedron of unit edge and let *P* be a point inside it. Show that the sum of the distances from *P* to all the edges of the tetrahedron is greater than or equal to $\frac{3\sqrt{2}}{2}$.

Senior Level

C.O:5119. Let $F : \mathbb{N}^* \to \mathbb{N}^*$ be a function satisfying the properties: F(mn) = F(m)F(n) for all $m, n \in \mathbb{N}^*$ and $F(p) \ge 2$ for any prime p. Prove that there exists a function $f : \mathbb{N}^* \to \mathbb{N}^*$ such that $F(n) = \sum_{d|n} f(d)$ for all $n \in \mathbb{N}^*$.

Find f when $F = 1_{\mathbb{N}^*}$.

Magdalena Bănescu and Marcel Ţena, Bucharest **C.O:5120.** Consider $f = aX^2 + bX + c \in \mathbb{Z}[X]$ such that f(n) is a square for any $n \in \mathbb{N}^*$. Prove that there exist $g \in \mathbb{Z}[X]$ with $f = g^2$.

C.O:5121. Let ABC be a triangle and let T_a be the area of the triangle with vertices in the tangency points of the excircle corresponding to A with the lines AB, BC, CA. Define similarly T_b and T_c . Let S be the area of the triangle with vertices in the tangency points of the incircle with the sides of the triangle. Show that

$$\frac{1}{T_a} + \frac{1}{T_b} + \frac{1}{T_c} = \frac{1}{S}.$$

* * *

* * *

C.O:5122. Let A be a ring such that for all $x \in A$ there exist $m, n \in \mathbb{N}$, (m, n) = 1 with $x^m, x^n \in Z(A)$. Show that the ring is commutative. (Denote $Z(A) = \{x \in A \mid xy = yx, \forall y \in A\}$.)

Marian Andronache, Bucharest

* * *

* * *

* * *