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THE 2ND ROMANIAN MASTER OF MATHEMATICS
COMPETITION

Bucharest 2009

presented by Dan Schwarz
1)

The second Romanian Mathematical Master in Mathematics took place
in the period February 26th - March 1st 2009. The organizer and the host of
the competition was ,,T. Vianu“ High School, from Bucharest. This was an
international competition in mathematics, where teams with high scores in
the IMO’s were invited.

This year the following teams accepted the invitation and participated
officially (each team consisted of up to 6 students, one leader and one deputy
leader): Bulgaria, China, Italy, Russia, Serbia, The United Kingdom, The
United States of America and three Romanian teams: Romania A, Romania
B, and Vianu, the last one representing the host school.

The problems were selected by a Romanian committee and were dis-
cussed in the Jury formed by all leaders, where each problem was voted as
suitable.

In the sequel we shall present the given problems and their solutions.
Also, some comments will be made.

Problem 1. For any positive integers a1, . . . , ak, let n = a1 + . . .+ ak,
and consider the multinomial coefficient(

n

a1, . . . , ak

)
=

n!
k∏

i=1

(ai!)

.

Let d = gcd(a1, . . . , ak) denote the greatest common divisor of a1, . . . , ak.

Prove that
d

n

(
n

a1, . . . , ak

)
is an integer.

Romania, Dan Schwarz2)

Solution. The key idea is the fact that the greatest common divisor is
a linear combination with integer coefficients of the numbers involved, i.e.

there exist ui ∈ Z such that d =
k∑

i=1

uiai. But

(
n

a1, . . . , ak

)
=
n

ai

(
n− 1

a1, . . . , ai−1, ai − 1, ai+1, . . . , ak

)
,

1) Profesor, Liceul Internaţional de Informatică, Bucureşti.
2) Based on a property of quasi-Catalan numbers of J. Conway, see [Guy, R.K., Unsolved

Problems in Number Theory ].
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so

d

n

(
n

a1, . . . , ak

)
=

k∑
i=1

ui

(
n− 1

a1, . . . , ai−1, ai − 1, ai+1, . . . , ak

)
,

which clearly is an integer, since multinomial coefficients are known to be
integer.

Problem 2. A set S of points in space satisfies the property that all
pairwise distances between points in S are distinct. Given that all points
in S have integer coordinates (x, y, z), where 1 ≤ x, y, z ≤ n, show that the

number of points in S is less than min
(

(n + 2)
√
n

3
, n
√

6
)

.

Romania, Dan Schwarz

Solution. The critical idea is to estimate the total number possible T of
distinct distances realized by pairs of points (x, y, z), of integer coordinates
1 ≤ x, y, z ≤ n. However, any such distance is also realized by a pair anchored
at (1, 1, 1), from symmetry considerations.

But the number of distinct distances to points with no coordinates

x, y, z equal is at most
(
n

3

)
=

1
6
n(n − 1)(n − 2), the number of distinct

distances to points with two of the three coordinates x, y, z equal is at most

2
(
n

2

)
= n(n − 1), while the number of distinct distances to points with all

three coordinates x, y, z equal is n− 1, hence

T ≤ 1
6
n(n− 1)(n− 2) + n(n− 1) + (n− 1) <

1
6
(n3 + 3n2 + 2n).

On the other hand, the total number of distinct distances between the

N points in S is
(
N

2

)
=

1
2
N(N − 1) ≤ T , yielding

(2N − 1)2 <
1
3
(4n3 + 12n2 + 8n) + 1 ≤ 1

3
(2n
√
n+ 3

√
n)2,

hence N <
1
2

(
(2n + 3)

√
n

3
+ 1
)
≤ (n + 2)

√
n

3
for n ≥ 3. One can easily

check that the inequality is true for n = 2 also, since then T = 3.
On the other hand, since the squares of the distances can only take

the integer values between 1 and the trivial upper bound 3(n − 1)2 (for the
diagonal of the cube), it follows that T ≤ 3(n− 1)2, yielding N < n

√
6.

Remark. As a matter of fact, the trivial upper bound 3n2 for T is
better from n ≥ 15, offering an asymptotic of n

√
6. The true asymptotic

is probably unknown, since it is not known even for the 2-dimensional case
(reported in [Guy, R.K. – Unsolved Problems in Number Theory]).
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Problem 3. Given four points A1, A2, A3, A4 in the plane, no three
collinear, such that A1A2 · A3A4 = A1A3 · A2A4 = A1A4 · A2A3, denote by
Oi the circumcenter of ∆AjAkA�, with {i, j, k, :} = {1, 2, 3, 4}.

Assuming Ai �= Oi for all indices i, prove that the four lines AiOi are
concurrent or parallel.

Bulgaria, Nikolai Ivanov Beluhov

Solution. The given triple equality being invariated by any permutation
in S4, it is enough to prove that the lines AiOi for 2 ≤ i ≤ 4 are concurrent
or parallel. The relations can then be written

A1A2

A1A3
=
A4A2

A4A3
,
A1A3

A1A4
=
A2A3

A2A4
,

A1A4

A1A2
=
A3A4

A3A2
.

Consider the Apollonius circles Γk of centers ωk ∈ AiAj , for {i, j, k} =
= {2, 3, 4}, determined by the point A1, which therefore lies on all three,
while the points Ak lie on Γk. Moreover, the points ωk are collinear, since
the point A′

k which is the other meeting point (than A1, if any) of Γi and Γj

fulfills

A′
kAj

A′
kAk

=
AiAj

AiAk
and

A′
kAi

A′
kAk

=
AjAi

AjAk
, thus

A′
kAi

A′
kAj

=
AkAi

AkAj
,

therefore A′
k also lies on Γk, hence all three circles Γk share the same meeting

point(s), thus their centers are collinear.
Now, the circumcenters Oi and Oj , as well as the point ωk, lie on the

perpendicular bisector of the segment A1Ak, for {i, j, k} = {2, 3, 4}. It follows
that the pairs of lines AiAj , OiOj meet at the collinear points ωk. Finally,
Desargues’ theorem for the perspective triangles ∆AiAjAk and ∆OiOjOk

yields the claim.

Remark. There exists a particular (degenerate) case, when the points
are the vertices of a kite of

π

6
equal angles, hence one of the associated ratios

is 1, so a corresponding Apollonius circle degenerates to the perpendicular
bisector.

Problem 4. For a finite set X of positive integers, let

Σ(X) =
∑
x∈X

arctan
1
x
.

Given a finite set S of positive integers for which Σ(S) <
π

2
, show that there

exists a finite set T of positive integers for which S ⊂ T and Σ(T ) =
π

2
.

United Kingdom, Kevin Buzzard

Solution. (D. Schwarz ) We will step-by-step augment the set S with
positive integers tn, by taking each time tn as the least positive integer larger
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than max(S), and not already used, such that Σ(S ∪{t1, t2, . . . , tn}) remains

at most
π

2
(this is possible since arctan

1
t
→ 0 when t→∞).

If, at some point, we get exactly
π

2
we are through, since we have aug-

mented S to a set T as required, so assume the process continues indefinitely.
Clearly the sequence (tn)n≥1 is built strictly increasing, so for all n ≥ 1

we have tn+1 > tn > max(S).
We will make some useful notations. Take S0 = S, Sn+1 = Sn∪{tn+1},

for n ∈ N. Also take xn = tan
(π

2
− Σ(Sn)

)
. One can easily prove by simple

induction that a lesser than
π

2
sum of arcs of rational tangents is as well an arc

of rational tangent, therefore xn =
pn

qn
, with pn, qn ∈ N∗, (pn, qn) = 1. Since

arctan is increasing, we need take tn+1 ≥
⌈

1
xn

⌉
, in order that Σ(Sn+1) ≤ π2 .

Assume that for all n ≥ 1 we have
1
xn

≤ tn. Since we need both

tn+1 ≥
⌈

1
xn

⌉
and tn+1 > tn ≥ 1

xn
, it follows that tn+1 = tn + 1 (the least

available value), so tk+1 = t1 + k for all k ≥ 0. But then

π

2
> Σ({t1, t2, . . . , tn}) =

n−1∑
k=0

arctan
1

t1 + k
>

1
2

n−1∑
k=0

1
t1 + k

→∞

when n→∞, absurd (see Lemma).

Therefore there exists some N ≥ 1 for which
1
xN

> tN , so
⌈

1
xN

⌉
is

available for tN+1.

Moreover, for any n ≥ N with tn+1 =
⌈

1
xn

⌉
, we have

xn+1 =
xn − 1

tn+1

1 + xn
1
tn+1

=
xntn+1 − 1
tn+1 + xn

<
xn

tn+1 + xn
<

1
tn+1

,

since tn+1 =
⌈

1
xn

⌉
implies xntn+1−1 < xn; and so we can take tn+1 =

⌈
1
xn

⌉
indefinitely for n ≥ N . Now we use the fact that xn =

pn

qn
. Then

pn+1

qn+1
=

pn

qn
− 1
tn+1

1 +
pn

qn

1
tn+1

=
pntn+1 − qn
qntn+1 + pn

,
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hence pn+1 ≤ pntn+1 − qn < pn, since tn+1 =
⌈
qn
pn

⌉
, and so tn+1 <

qn
pn

+ 1.

Therefore the sequence (pn)n≥1 of the numerators of xn eventually be-
comes strictly decreasing, absurd for any sequence of positive integers.

Lemma. For x ∈
(
0,
π

2

)
one has arctan x >

x

2
.

Proof. We start by proving that under given condition one has sinx >

tan
x

2
, in turn equivalent to 2 sin

x

2
cos

x

2
>

sin
x

2
cos

x

2

, 2 cos2
x

2
− 1 > 0, and

finally cos x > 0, patently true.
Now, arctan is increasing, hence applied to the above, together with

the well-known inequality x > sinx, true for all x > 0, yields arctan x >
arctan sinx > arctan tan

x

2
=
x

2
.

PROBLEME

REZOLVAREA PROBLEMELOR DIN GAZETA MATEMATICĂ
Nr.9/2008

PROBLEME PENTRU GIMNAZIU

Clasa a V-a

E:13695. Aflaţi restul ı̂mpărţirii numărului A = 1 · 2 · 3 · 4 · ... · 2008− 3 la 8.
Alfred Eckstein şi Viorel Tudoran, Arad

Soluţie. Avem A = 1 · 2 · 3 · 4 · 5 · ... ·2008−8+5 = 8 · (1 · 3 · 5 · ... · 2008−1)+5.
În concluzie, restul ı̂mpărţirii lui A la 8 este 5.

E:13696. Determinaţi numerele naturale a, b, c ştiind că a · b = 18, a · c = 30,
iar 5b+ 2c = 75.

E. Blăjuţ, Bacău

Soluţie. Din 5b+ 2c = 75, deoarece 5b şi 75 sunt multipli de 5 deducem că 2c
este multiplu de 5, deci c este multiplu de 5. Din a · c = 30 rezultă c ≤ 30. Pentru
c = 5, din a · c = 30 găsim a = 6, iar din a · b = 18 găsim b = 3. Soluţia găsită nu
convine pentru că nu verifică relaţia 5b+ 2c = 75. Procedând analog pentru c = 10,
c = 15, c = 20, c = 25 şi c = 30 constatăm că singura soluţie convenabilă este
c = 15, a = 2 şi b = 9.

E:13697. Aflaţi numărul maxim de pagini ale unei cărţi, ştiind că cifra 3 s-a
folosit la numerotarea paginilor sale de 71 de ori.

∗ ∗ ∗
Soluţie. De la 1 la 100, cifra 3 s-a folosit de 20 de ori: câte o dată la fiecare

din cele 10 zeci pe locul unităţilor şi de 10 ori pe locul zecilor de la 30 până la 39.
De ı̂ncă 20 de ori apare 3 de la 101 la 200 şi de 20 de ori de la 201 la 299. Până


