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Abstract. In this paper we give a new proof of the following remarkable
series formula ∞∑

n=1

(
Hn

n

)2

=
17

4
ζ(4),

where Hn = 1+ 1
2
+ · · ·+ 1

n
denotes the nth harmonic number. The proof

is based on evaluating a special harmonic series by two different methods.
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1. Introduction and the main results

In this paper we give a new proof of the following remarkable series
formula ∞∑

n=1

(
Hn

n

)2

=
17

4
ζ(4), (1)

where Hn = 1 + 1
2 + · · · + 1

n denotes the nth harmonic number.
This formula has an interesting history. It was discovered numerically

by Enrico Au-Yeung, an undergraduate student in the Faculty of Mathe-
matics in Waterloo, and proved rigorously by David Borwein and Jonathan
Borwein in [2], who used Parseval’s theorem to prove it. Formula (1) was re-
discovered by Freitas as Proposition A.1 in the appendix section of [3]. Freitas
proved it by calculating a double integral involving a logarithmic function.
This formula is revived and brought into light by Vălean and Furdui [5], who
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proved it by calculating a special integral involving a quadratic logarithmic
function. The series also appears as a problem in [4, Problem 3.70, p. 150]
and [7, Problem 2.6.1. p. 110]. It is clear that this remarkable quadratic
harmonic series has attracted lots of attention lately and has become a classic
in the theory of nonlinear harmonic series.

In this paper we prove formula (1) by calculating the series

∞∑
n=1

1

n

(
2ζ(3)− H1

12
− H2

22
− · · · − Hn

n2

)
=
π4

30

in two different ways. Our method is new and as elementary as possible. We
record the results we prove in the next theorem.

Theorem 1. (a) A special harmonic sum.
The following identity holds

∞∑
n=1

1

n

(
2ζ(3)− H1

12
− H2

22
− · · · − Hn

n2

)
=
π4

30
.

(b) The quadratic series of Au–Yeung.
The following identity holds

∞∑
n=1

(
Hn

n

)2

=
17

4
ζ(4).

Proof. (a) We have, since

∞∑
n=1

Hn

n2
= 2ζ(3) ([4, Problem 3.55, p. 148]), that

E :=
∞∑
n=1

1

n

(
2ζ(3) − H1

12
− H2

22
− · · · − Hn

n2

)
=

∞∑
n=1

∞∑
m=1

Hn+m

n(n+m)2
.

It follows, based on symmetry reasons, that
∞∑
n=1

∞∑
m=1

Hn+m

n(n+m)2
=

∞∑
n=1

∞∑
m=1

Hn+m

m(n+m)2
,

which implies
∞∑
n=1

∞∑
m=1

Hn+m

n(n+m)2
=

1

2

∞∑
n=1

∞∑
m=1

(
Hn+m

m(n+m)2
+

Hn+m

n(n+m)2

)

=
1

2

∞∑
n=1

∞∑
m=1

Hn+m

nm(n+m)
.

Therefore
∞∑
n=1

1

n

(
2ζ(3) − H1

12
− H2

22
− · · · − Hn

n2

)
=

1

2

∞∑
n=1

∞∑
m=1

Hn+m

nm(n+m)
. (2)
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One may check, by using partial fractions, that the following identity holds

∞∑
k=1

1

k(k + n)
=
Hn

n
. (3)

Combining (2) and (3) we have that

E =
1

2

∞∑
n=1

∞∑
m=1

∞∑
k=1

1

nmk(k + n+m)

=
1

2

∞∑
n=1

∞∑
m=1

∞∑
k=1

1

nmk

∫ 1

0
xn+m+k−1dx

=
1

2

∫ 1

0

( ∞∑
k=1

xk−1

k

∞∑
n=1

xn

n

∞∑
m=1

xm

m

)
dx

= −1

2

∫ 1

0

ln3(1− x)

x
dx

= −1

2

∫ 1

0

ln3 x

1− x
dx

= −1

2

∫ 1

0
ln3 x

( ∞∑
i=0

xi

)
dx

= −1

2

∞∑
i=0

∫ 1

0
xi ln3 xdx

= 3

∞∑
i=0

1

(i+ 1)4

=
π4

30
,

and part (a) of the theorem is proved.
(b) Before we prove this part of the theorem we collect a formula that

we need in our analysis. Recall that Abel’s summation by parts formula
([1, p. 55], [4, Lemma A.1, p. 258]) states that if (an)n≥1 and (bn)n≥1 are

two sequences of real numbers and An =
n∑

k=1

ak, then
n∑

k=1

akbk = Anbn+1 +

n∑
k=1

Ak(bk − bk+1). We will be using the infinite version of this formula

∞∑
k=1

akbk = lim
n→∞(Anbn+1) +

∞∑
k=1

Ak(bk − bk+1). (4)
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We calculate the series in part (a) by using formula (4), with

an =
1

n
and bn = 2ζ(3)− H1

12
− H2

22
− · · · − Hn

n2
,

and we have that

E = lim
n→∞Hn

(
2ζ(3)− H1

12
− H2

22
− · · · − Hn+1

(n+ 1)2

)
+

∞∑
n=1

Hn
Hn+1

(n+ 1)2

=

∞∑
n=1

(
Hn+1 − 1

n+1

)
Hn+1

(n+ 1)2

=

∞∑
n=1

(
Hn+1

n+ 1

)2

−
∞∑
n=1

Hn+1

(n+ 1)3

=
∞∑
n=1

(
Hn

n

)2

−
∞∑
n=1

Hn

n3

=

∞∑
n=1

(
Hn

n

)2

− π4

72
,

since lim
n→∞Hn

(
2ζ(3) − H1

12
− H2

22
− · · · − Hn+1

(n+ 1)2

)
= 0 and

∞∑
n=1

Hn

n3
=
π4

72
.

It follows that

∞∑
n=1

(
Hn

n

)2

=
π4

30
+
π4

72
=

17

4
ζ(4),

and the theorem is proved.

A proof of the series

∞∑
n=1

Hn

n3
=
π4

72
, which is a special linear Euler sum,

is given in [4, Problem 3.58, pp. 207–208] and it also appears in literature
as a problem proposed by M.S. Klamkin [6]. Another proof of the same
series formula is also given in [8, Chapter 3, pp. 81–82]. For the sake of
completeness we give below an elementary proof of this formula.

We have

S =
∞∑
n=1

Hn

n3
=

∞∑
n=1

1

n2

∞∑
k=1

1

k(n+ k)
=

∞∑
n=1

∞∑
k=1

1

n2k(n+ k)
.
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We also have, based on symmetry reasons, that S =
∞∑
n=1

∞∑
k=1

1

nk2(n+ k)
and

it follows that

2S =
∞∑
n=1

∞∑
k=1

(
1

n2k(n+ k)
+

1

nk2(n+ k)

)
=

∞∑
n=1

∞∑
k=1

1

n2k2

=
∞∑
n=1

1

n2

∞∑
k=1

1

k2
=
π4

36
,

and the series is calculated. �
Corollary 2. The following equality holds

∞∑
n=1

Hn

(
π4

72
− H1

13
− H2

23
− · · · − Hn

n3

)
=

17

4
ζ(4)− 2ζ(3). (5)

Proof. We apply Abel’s summation formula (4), with an = Hn and bn =

π4

72
−H1

13
−H2

23
−· · ·−Hn

n3
and we have, since

n∑
k=1

Hk = (n+1)Hn+1− (n+1),

that
∞∑
n=1

Hn

(
π4

72
− H1

13
− H2

23
− · · · − Hn

n3

)
= lim

n→∞ [(n+ 1)Hn+1 − (n+ 1)]

(
π4

72
− H1

13
− H2

23
− · · · − Hn+1

(n+ 1)3

)
+

∞∑
n=1

[(n+ 1)Hn+1 − (n+ 1)]
Hn+1

(n+ 1)3

=

∞∑
n=1

[
H2

n+1

(n+ 1)2
− Hn+1

(n+ 1)2

]
=

17

4
ζ(4)− 2ζ(3).

The corollary is proved. �
We leave to the interested reader, as an open problem, the calculation

of the following series of which the second is the alternating version of the
series (5).

Open problem. Calculate:

(a)

∞∑
n=1

(−1)nHn

(
2ζ(3) − H1

12
− H2

22
− · · · − Hn

n2

)
;

(b)

∞∑
n=1

(−1)nHn

(
π4

72
− H1

13
− H2

23
− · · · − Hn

n3

)
.
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The asymptotic evaluation of the sum
n∑

k=1

f
(

n
√
k
)

Dumitru Popa
1)

Abstract. Let η > 0 and f : (1− η, 1 + η) → R be a function. We prove
the following asymptotic evaluations:
n∑

k=1

f
(

n
√
k
)
= f (1)n+ o (n) for f continuous;

n∑
k=1

f
(

n
√
k
)
= f (1)n+ f ′ (1) lnn+ o (lnn) for f differentiable, and

n∑
k=1

f
(

n
√
k
)
= f (1)n+f ′ (1) lnn−f ′ (1)+

f ′ (1) + f ′′ (1)
2

· ln
2 n

n
+o

(
ln2 n

n

)

for f twice differentiable.
Some applications are given.

Keywords: Convergence and divergence of series and sequences, the
Euler-Maclaurin summation formula, orders of infinity.

MSC: Primary 26A12. Secondary 40A05, 40A25.

1. Introduction

One of the central problems in mathematical analysis is to find the
asymptotic evaluation of various sums. Let us mention here only the Euler
result 1+ 1

2+···+ 1
n = lnn+γ+ 1

2n+o
(
1
n

)
, see [1, 2]. The main purpose of this

paper is to find the asymptotic evaluations for the sum
n∑

k=1

f
(

n
√
k
)
for the

1)Faculty of Mathematics and Informatics, Ovidius University, Constanţa, Romania,
dpopa@univ-ovidius.ro
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n∑
k=1

f
(

n
√
k
)

7

case when f is continuous, Proposition 1, f is differentiable, Proposition 3
and f is twice differentiable, Proposition 5. For various different asymptotic
evaluations we recommend the reader the book [4]. Our notation and notion
are standard. We recall that, if (bn)n∈N is a sequence of real numbers such
that there exists n0 ∈ N with bn �= 0, ∀n ≥ n0, and (an)n∈N is another
sequence of real numbers, the notation an = o (bn) means lim

n→∞
an
bn

= 0; if

c ∈ R∗ the notation an � cbn means that lim
n→∞

an
bn

= c; in particular, an � bn

means lim
n→∞

an
bn

= 1. Also the notation xn = an+o (bn) means xn−an = o (bn);

in particular, an � bn is equivalent to an = bn + o (bn).

2. The main results

We begin by proving the evaluation for continuous functions.

Proposition 1. Let η > 0 and f : (1− η, 1 + η) → R be a continuous
function. Then

f
(

n
√
1
)
+ f

(
n
√
2
)
+ · · ·+ f

(
n
√
n
)
= f (1)n+ o (n) .

Proof. Let ε > 0. Since f is continuous at 1, there exists δε > 0 such
that ∀x ∈ (1− η, 1 + η) with |x− 1| < δε it follows that |f (x)− f (1)| < ε.
From lim

n→∞
n
√
n = 1, for νε = min (η, δε) > 0, there exists nε ∈ N such that

∀n ≥ nε we have n
√
n− 1 < νε. Let n ≥ nε. For every k = 1, . . . , n we have

0 ≤ n
√
k − 1 ≤ n

√
n− 1 < νε and thus

∣∣∣f ( n
√
k
)
− f (1)

∣∣∣ ≤ ε. Then∣∣∣∣∣
n∑

k=1

f
(

n
√
k
)
− f (1)n

∣∣∣∣∣ ≤
n∑

k=1

∣∣∣f ( n
√
k
)
− f (1)

∣∣∣ ≤ εn,

or

∣∣∣∣∣∣
n∑

k=1

f( n√k)

n − f (1)

∣∣∣∣∣∣ ≤ ε, which ends the proof. �
To obtain the asymptotic evaluation for differentiable and twice differ-

entiable functions we need the next result.

Proposition 2. For every α > 0 we have lim
n→∞

n∑
k=1

( n√k−1)
α

(lnn)α

nα−1

= 1.

Proof. Let ε > 0. Since α > 0, lim
x→0,x>0

(
ex−1
x

)α
= 1. It follows that ∃δε > 0

such that ∀ 0 < x < δε we have
∣∣∣ (ex−1)α

xα − 1
∣∣∣ < ε, or

|(ex − 1)α − xα| ≤ εxα, ∀0 ≤ x < δε. (1)

Since lim
n→∞

lnn
n = 0, for δε > 0 there exists nε ∈ N such that ∀n ≥ nε we have

0 < lnn
n < δε. Let n ≥ nε. For every k = 1, . . . , n we have 0 ≤ ln k

n ≤ lnn
n < δε
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and by (1) we deduce
∣∣∣(e ln k

n − 1
)α − ( ln k

n

)α∣∣∣ ≤ ε
(
lnk
n

)α
. Then∣∣∣∣∣

n∑
k=1

(
n
√
k − 1

)α
−

n∑
k=1

(
ln k

n

)α
∣∣∣∣∣ ≤

n∑
k=1

∣∣∣∣( n
√
k − 1

)α
−
(
ln k

n

)α∣∣∣∣
≤ ε

n∑
k=1

(
ln k

n

)α

or equivalently

∣∣∣∣∣∣
n∑

k=1
( n√k−1)

α

n∑
k=1

( lnk
n )

α
− 1

∣∣∣∣∣∣ ≤ ε. Thus, lim
n→∞

n∑
k=1

( n√k−1)
α

n∑
k=1

( ln k
n )

α
= 1, i.e.,

n∑
k=1

(
n
√
k − 1

)α
�

n∑
k=1

(
ln k
n

)α
. Since, by the Stolz-Cesàro lemma, the case[

∞
]
, or [3], [4, Capitolul V], it holds

n∑
k=1

(ln k)α � n (lnn)α, it follows that

n∑
k=1

(
ln k
n

)α � (lnn)α

nα−1 , and hence
n∑

k=1

( n
√
n− 1)

α � (lnn)α

nα−1 , which ends the proof

of the proposition. �
Proposition 3. Let η > 0 and f : (1− η, 1 + η) → R be a differentiable
function. Then

f
(

n
√
1
)
+ f

(
n
√
2
)
+ · · ·+ f

(
n
√
n
)
= f (1)n+ f ′ (1) lnn+ o (lnn) .

Proof. Let ε > 0. Since f is differentiable at 1, lim
x→1

f(x)−f(1)
x−1 = f ′ (1), thus

there exists δε > 0 such that ∀x ∈ (1− η, 1 + η) with the property that

|x− 1| < δε, x �= 1, it follows that
∣∣∣ f(x)−f(1)

x−1 − f ′ (1)
∣∣∣ < ε, or∣∣f (x)− f (1)− f ′ (1) (x− 1)

∣∣ ≤ ε |x− 1| , ∀ |x− 1| < δε. (2)

Since lim
n→∞

n
√
n = 1, for νε = min (η, δε) > 0 there exists nε ∈ N such that

∀n ≥ nε we have n
√
n− 1 < νε. Let n ≥ nε. For every k = 1, . . . , n we have

0 ≤ n
√
k − 1 ≤ n

√
n− 1 < νε and, by (2),∣∣∣f ( n
√
k
)
− f (1)− f ′ (1)

(
n
√
k − 1

)∣∣∣ ≤ ε
(

n
√
k − 1

)
.

Then we have∣∣∣∣∣
n∑

k=1

f
(

n
√
k
)
− f (1)n− f ′ (1)

n∑
k=1

(
n
√
k − 1

)∣∣∣∣∣
≤

n∑
k=1

∣∣∣f ( n
√
k
)
− f (1)− f ′ (1)

(
n
√
k − 1

)∣∣∣ ≤ ε
n∑

k=1

(
n
√
k − 1

)
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n∑
k=1

f
(

n
√
k
)

9

or

∣∣∣∣∣∣
n∑

k=1
f( n√

k)−f(1)n

n∑
k=1

( n√k−1)
− f ′ (1)

∣∣∣∣∣∣ ≤ ε. Thus lim
n→∞

n∑
k=1

f( n√
k)−f(1)n

n∑
k=1

( n√k−1)
= f ′ (1) and, by

Proposition 2, we obtain

lim
n→∞

f
(

n
√
1
)
+ f

(
n
√
2
)
+ · · ·+ f ( n

√
n)− f (1)n

lnn
= f ′ (1) .

�
To prove the evaluation for twice differentiable function we need the

next result which uses the Stirling formula.

Proposition 4.
n∑

k=1

(
n
√
k − 1

)
= lnn− 1 + ln2 n

2n + o
(
ln2 n
n

)
.

Proof. Let ε > 0. Since lim
x→0

ex−1−x
x2 = 1

2 , it follows that there exists δε > 0

such that ∀ 0 < x < δε we have
∣∣ex−1−x

x2 − 1
2

∣∣ < ε, or∣∣∣∣ex − 1− x− x2

2

∣∣∣∣ ≤ εx2, ∀ 0 ≤ x < δε. (3)

Since lim
n→∞

lnn
n = 0, for δε > 0 there exists nε ∈ N such that ∀n ≥ nε we have

0 < lnn
n < δε. Let n ≥ nε. For every k = 1, . . . , n we have 0 ≤ ln k

n ≤ lnn
n < δε

and, by (3),
∣∣∣e ln k

n − 1− lnk
n − ln2 k

2n2

∣∣∣ ≤ ε ln2 k
n2 , or∣∣∣∣ n

√
k − 1− ln k

n
− ln2 k

2n2

∣∣∣∣ ≤ ε ln2 k

n2
.

We deduce that∣∣∣∣∣
n∑

k=1

(
n
√
k − 1

)
− 1

n

n∑
k=1

ln k − 1

2n2

n∑
k=1

ln2 k

∣∣∣∣∣ ≤
n∑

k=1

∣∣∣∣ n
√
k − 1− ln k

n
− ln2 k

2n2

∣∣∣∣
≤ ε

n2

n∑
k=1

ln2 k

or

∣∣∣∣∣∣
n∑

k=1
( n√k−1)− 1

n

n∑
k=1

ln k

1
n2

n∑
k=1

ln2 k
− 1

2

∣∣∣∣∣∣ ≤ ε. Hence, lim
n→∞

n∑
k=1

( n√k−1)− 1
n

n∑
k=1

ln k

1
n2

n∑
k=1

ln2 k
= 1

2 . Since

by the Stolz-Cesàro lemma, the case
[
∞
]
, it holds

n∑
k=1

ln2 k � n ln2 n, we

obtain lim
n→∞

n∑
k=1

( n√
k−1)− 1

n

n∑
k=1

ln k

ln2 n
n

= 1
2 , that is

n∑
k=1

(
n
√
k − 1

)
=

1

n

n∑
k=1

ln k +
ln2 n

2n
+ o

(
ln2 n

n

)
.
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Since, by Stirling’s evaluation,
n∑

k=1

ln k = n lnn−n+ lnn
2 +ln

√
2π+ 1

12n+o
(
1
n

)
,

(see [1, 2, 5]), we deduce

n∑
k=1

(
n
√
k − 1

)
= lnn− 1 +

lnn

2n
+

ln
√
2π

n
+

1

12n2
+ o

(
1

n2

)
+

ln2 n

2n

+o

(
ln2 n

n

)
= lnn− 1 +

ln2 n

2n
+ o

(
ln2 n

n

)
,

because lnn
2n ,

1
n ,

1
n2 = o

(
ln2 n
n

)
. �

Now we prove the evaluation for the case of twice differentiable func-
tions.

Proposition 5. Let η > 0 and f : (1− η, 1 + η) → R be a twice differentiable
function. Then

n∑
k=1

f
(

n
√
k
)
= f (1)n+f ′ (1) lnn−f ′ (1)+ f ′ (1) + f ′′ (1)

2
· ln

2 n

n
+o

(
ln2 n

n

)
.

Proof. Let ε > 0. Since f is twice differentiable at 1, we have

lim
x→1

f (x)− f (1)− f ′ (1) (x− 1)

(x− 1)2
=
f ′′ (1)

2
,

thus there exists δε > 0 such that ∀x ∈ (1− η, 1 + η) with |x− 1| < δε, x �= 1,

we have
∣∣∣f(x)−f(1)−f ′(1)(x−1)

(x−1)2
− f ′′(1)

2

∣∣∣ < ε, or ∀x ∈ (1− η, 1 + η), |x− 1| < δε

the following relation holds∣∣∣f (x)− f (1)− α (x− 1)− β (x− 1)2
∣∣∣ ≤ ε (x− 1)2 , (4)

where α = f ′ (1), β = f ′′(1)
2 . Since lim

n→∞
n
√
n = 1, for νε = min (η, δε) > 0

there exists nε ∈ N such that ∀n ≥ nε we have n
√
n − 1 < νε. Let n ≥ nε.

For every k = 1, . . . , n we have 0 ≤ n
√
k − 1 ≤ n

√
n− 1 < νε and by (4),∣∣∣∣f ( n

√
k
)
− f (1)− α

(
n
√
k − 1

)
− β

(
n
√
k − 1

)2∣∣∣∣ ≤ ε
(

n
√
k − 1

)2
.

We have∣∣∣∣∣
n∑

k=1

f
(

n
√
k
)
− f (1)n− α

n∑
k=1

(
n
√
k − 1

)
− β

n∑
k=1

(
n
√
k − 1

)2∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣f (n
√
k
)
− f (1)− α

(
n
√
k − 1

)
− β

(
n
√
k − 1

)2∣∣∣∣ ≤ ε
n∑

k=1

(
n
√
k − 1

)2
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n∑
k=1

f
(

n
√
k
)
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or ∣∣∣∣∣∣∣∣
n∑

k=1

f
(

n
√
k
)
− f (1)n− α

n∑
k=1

(
n
√
k − 1

)
n∑

k=1

(
n
√
k − 1

)2 − β

∣∣∣∣∣∣∣∣ ≤ ε.

Thus

lim
n→∞

n∑
k=1

f
(

n
√
k
)
− f (1)n− α

n∑
k=1

(
n
√
k − 1

)
n∑

k=1

(
n
√
k − 1

)2 = β

and, by Proposition 2, we deduce that

lim
n→∞

n∑
k=1

f
(

n
√
k
)
− f (1)n− α

n∑
k=1

(
n
√
k − 1

)
ln2 n
n

= β.

This is equivalent to
n∑

k=1

f
(

n
√
k
)
= f (1)n+ α

n∑
k=1

(
n
√
k − 1

)
+
β ln2 n

n
+ o

(
ln2 n

n

)
,

which by Proposition 4 gives us
n∑

k=1

f
(

n
√
k
)
= f (1)n+ α lnn− α+

(α
2
+ β
) ln2 n

n
+ o

(
ln2 n

n

)

= f (1)n+ f ′ (1) lnn− f ′ (1) +
f ′ (1) + f ′′ (1)

2
· ln

2 n

n
+ o

(
ln2 n

n

)
.

�
Now we give some examples.

Corollary 6. Let a > 0 and ϕ : (0, 1 + a) → R be a twice differentiable
function. Then for every natural number p

ϕ
(

pn
√
1
)
+ ϕ

(
pn
√
2
)
+ · · ·+ ϕ

(
pn
√
n
)
= nϕ (1) +

ϕ′ (1)
p

· lnn− ϕ′ (1)
p

+
ϕ′ (1) + ϕ′′ (1)

2p2
· ln

2 n

n
+ o

(
ln2 n

n

)
.

Proof. In Proposition 5 we take f : (0, 1 + a) → R, f (x) = ϕ ( p
√
x). We have

f ′ (x) = x
1
p−1

ϕ′( p√x)
p , f ′′ (x) = 1

p

(
x

2
p−2

ϕ′′( p√x)
p +

(
1
p − 1

)
x

1
p
−2ϕ′ ( p

√
x)

)
and

thus f ′ (1) + f ′′ (1) = ϕ′′(1)+ϕ′(1)
p2

. �
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Corollary 7. (i) Let p be a natural number and α ≥ 0. Then

n∑
k=1

1
pn
√
k + α

=
n

α+ 1
− lnn

p (α+ 1)2
+

1

p (α+ 1)2

+
1− α

2p2 (α+ 1)3
· ln

2 n

n
+ o

(
ln2 n

n

)
.

(ii) Let p be a natural number and α ∈ R∗. Then

eα
pn√1 + eα

pn√2 + · · ·+ eα
pn
√
n =neα +

αeα

p
lnn− αeα

p

+
α (α+ 1)

2p2
· eα · ln

2 n

n
+ o

(
ln2 n

n

)
.

Proof. (i) We take in Corollary 6, ϕ : (0, 2) → R, ϕ (x) = 1
x+α , so that

ϕ′ (x) = − 1
(x+α)2

, ϕ′′ (x) = 2
(x+α)3

.

(ii) We take in Corollary 6, ϕ : (0, 2) → R, ϕ (x) = eαx, for which one
computes ϕ′ (x) = αeαx, ϕ′′ (x) = α2eαx. �
Corollary 8. Let η > 0 and f : (1− η, 1 + η) → (0,∞) be a twice differen-
tiable function. Then for every natural number p

n∏
k=1

f
(

pn
√
k
)
� e

− f ′(1)
pf(1) [f (1)]n · n

f ′(1)
pf(1) .

Proof. Let ϕ : (1− η, 1 + η) → R, ϕ (x) = ln f (x). Then f is twice differen-
tiable and by Corollary 6

n∑
k=1

ln f
(

pn
√
k
)
= n ln f (1) +

f ′ (1)
pf (1)

· lnn− f ′ (1)
pf (1)

+ βn,

where βn =
f ′(1)
f(1)

+
f ′′(1)f(1)−[f ′(1)]2

[f(1)]2

2p2
· ln2 n

n + o
(
ln2 n
n

)
→ 0 as n→ ∞. Then

n∏
k=1

f
(

pn
√
k
)

[f (1)]n · n
f ′(1)
pf(1)

= e
− f ′(1)

pf(1) · eβn → e
− f ′(1)

pf(1) as n→ ∞.

�
Corollary 9. Let p be a natural number and a > 0. Then

n∏
k=1

(
1 + a

pn
√
k
)
� e

− a
p(a+1) (1 + a)n · n a

p(a+1)
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and
n∏

k=1

ln
(
1 + a

pn
√
k
)
� e

− a
p(a+1) ln(a+1) lnn (1 + a) · n a

p(a+1) ln(a+1) .

Proof. Take in Corollary 8, f : (0, 2) → (0,∞) , f (x) = 1 + ax (respectively
f (x) = ln (1 + ax)). �
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Density of the space of bounded Lipschitz functions in the
space of continuous functions

Loredana Ioana
1)

Abstract. We provide a proof for the fact that a continuous function
f : T → X, where (T, d) is a compact metric space and X is a Hilbert
space, can be approximated by bounded Lipschitz functions g : T → X.

Keywords: Lipschitz functions, continuous functions, approximation,
density of Lipschitz functions in continuous functions

MSC: 46C05, 46C07, 41A30, 26A16

1. Introduction

The Lipschitz functions form an important class of continuous func-
tions, playing an “intermediate role” between general continuous functions
and differentiable functions. In this respect, we can think at the famous
Rademacher theorem, which asserts that a lipschitzian function is almost
everywhere differentiable.

An important problem in general Functional Analysis is the problem of
approximating elements of a normed space X with elements of a subspace
Y of X, the elements of Y being more “accessible” or easier to handle. It
is the case of X, the space of continuous functions, and its subspace Y , the
subspace of lipschitzian functions.

1)Faculty of Mathematics and Computer Science, University of Piteşti, Romania,
loredana.madalina.ioana@gmail.com
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Within this framework, the problem has been attacked by many mathe-
maticians (see e.g. [1], [3], [4]).

The present paper offers a contribution in this direction.

2. Preliminary facts

Let K be either R or C, N∗ = {1, 2, . . .}, and X a K-vector space
(usually, X is a normed space). For any non empty set T and any normed
space (X, || · ||), we can consider the Banach space

B(T,X) = {f : T → X | f is bounded}
equipped with the norm

f �−→ ‖f‖∞ = sup
{ ‖f(t)‖ ∣∣ t ∈ T

}
(the norm of uniform convergence). We will work in the particular situation
when (T, d) is a compact metric space (T having at least two elements). Then
we have C(T,X) ⊂ B(T,X), where

C(T,X) =
{
f : T → X

∣∣ f is continuous
}

is a Banach space when equipped with the induced norm || · ||∞.
Let (T, d) and (X, ρ) be two metric spaces, T having at least two ele-

ments, and let f : T → X. The Lipschitz constant of f is defined by the
formula

‖f‖L = sup

{
ρ
(
f(x), f(y)

)
d(x, y)

∣∣ x, y ∈ T, x �= y

}
.

In case ‖f‖L < ∞, we say f is a Lipschitz map. In this case, we have
ρ(f(x), f(y)) � ‖f‖L d(x, y) for any x, y ∈ T . The set of all lipschitzian func-
tions f : T → X will be denoted by Lip(T,X). When X is a normed space,
it follows that Lip(T,X) is a seminormed vector space with the seminorm
f �−→ ‖f‖L. When (T, d) is a compact metric space, Lip(T,X) = BL(T,X)
(bounded Lipschitz), Lip(T,X) = BL(T,X) ⊂ C(T,X) ⊂ B(T,X), and
Lip(T,X) is a normed space with the norm

f �−→ ‖f‖BL def
== ‖f‖∞ + ‖f‖L .

Density results similar to the one we present in this paper can be found
in [1], [3], [4], [5].

For general Functional Analysis, see [2].

3. The Result

Theorem 1. Let (T, d) be a compact metric space and X a Hilbert space.
Then BL(T,X) is dense in C(T,X), if C(T,X) is endowed with the natural
norm ||.||∞. In particular, if X is a separable Hilbert space, then C(T,X) is
also separable.
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Proof. First step. The case X = K.
In this case, the proof can be obtained using the Stone-Weierstrass

theorem, as a direct application of the fact that the space BL(T,K) is an
algebra of functions with all the required properties. Moreover, there exists
a sequence (fm)m�1 ⊂ BL(T,K) such that the set

A =
{
fm
∣∣ m ∈ N�

}
is dense in C(T,K). For details, see [5].

Second step. The case X = Kn.
According to the previous step, there exists a countable set

A =
{
gm
∣∣ m ∈ N�

} ⊂ BL(T,K)

that is dense in C(T,K). Then the set An = A×A× . . . ×A︸ ︷︷ ︸
n times

⊂ BL (T,Kn)

is countable and dense in C (T,Kn). Indeed, if f ∈ An let f1, . . . , fn ∈ A be
such that f = (f1, . . . , fn). We have (all norms on Kn are equivalent):∥∥f (t′)−f (t′′)∥∥

Kn �
n∑

j=1

∣∣fj (t′)− fj
(
t′′
)∣∣ � n∑

j=1

‖fj‖BL d
(
t′, t′′

)
,∀ t′, t′′ ∈ T.

Then f ∈ BL (T,Kn), so the inclusion An ⊂ BL (T,Kn) holds. The count-
ability of An is obvious. Finally, let f ∈ C (T,Kn), f = (f1, . . . , fn). As for

every 1 � j � n there exists a sequence
(
gmj

)
m�1

⊂ A such that∥∥gmj − fj
∥∥
BL(T,K)

−−−−→
m→∞ 0,

we get that for gm := (gm1 , . . . , g
m
n ) ∈ An we have

‖gm − f‖BL(T, Kn) �
n∑

j=1

∥∥gmj − fj
∥∥
BL(T, K)

−−−−→
m→∞ 0.

Third step. The case when X is a finite dimensional Hilbert space.
Let dimK X = n ∈ N�. We know that in this case X is isometrically

isomorphic with Kn. Let ϕ : Kn → X be such an isometric isomorphism. We
denote by Φ : C (T, Kn) → C (T,X) the isometric isomorphism of Banach
spaces induced by ϕ. Then Φ (BL (T, Kn)) = BL(T,X) and, as BL (T, Kn)
is dense in C (T, Kn), we deduce that BL(T,X) is dense in C(T,X).

Fourth step. The case when X is a separable Hilbert space.
In this case there exists an orthonormal basis (ei)i∈N∗ forX, hence there

exists a canonical isomorphism ϕ : l2 → X.
Let us denote

Φ : C (T, l2)→ C(T,X)

the isometric isomorphism of Banach spaces induced by ϕ.
As Φ

(BL (T, l2)) = BL(T,X), it will be enough to prove that BL (T, l2)
is dense in C (T, l2).
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For n � 1 we denote by

C(n)
(
T, l2

)
:=
{
f ∈ C (T, l2) ∣∣ 〈f(t), ek〉 = 0, ∀ t ∈ T, ∀ k � n+ 1

}
,

and
BL(n)

(
T, l2

)
= BL (T, l2) ∩ C(n)

(
T, l2

)
.

Also, we will use the notations:

C0
(
T, l2

)
=
⋃
n�1

C(n)
(
T, l2

)
,

BL0
(
T, l2

)
=
⋃
n�1

BL(n)
(
T, l2

)
.

As C(n)
(
T, l2

)
is isometrically isomorphic with C (T,Kn), and BL (T, Kn)

is dense in C (T,Kn), we deduce that (H
||·||∞

is the closure of H ⊂ C(T,X)
for the || · ||∞ norm):

BL(n) (T, l2)
||·||∞ ⊃ C(n)

(
T, l2

)
, ∀n � 1.

Let f ∈ C (T, l2) and ε > 0. We have

f(t) =
∑
k�1

fk(t)ek, ∀ t ∈ T,

where fk(t) := 〈f(t), ek〉. We know that

‖f(t)‖2 =
∑
k�1

|fk(t)|2 , t ∈ T,

the convergence being uniform on T (according to Dini’s theorem).
As a consequence, there exists nε � 1 such that

‖f(t)− fε(t)‖2 =
∞∑

k=nε+1

|fk(t)|2 < ε2

4
, ∀ t ∈ T,

where

fε(t) =

nε∑
k=1

fk(t)ek, t ∈ T.

As we can consider that fε ∈ C (T,Knε), it results that there exists

gε ∈ BL (T,Knε)
(
which can be identified with BL(nε)

(
T, l2

))
such that

‖fε − gε‖∞ <
ε

2
⇐⇒ ‖fε(t)− gε(t)‖l2 <

ε

2
, ∀t ∈ T.

Then

‖f(t)− gε(t)‖2l2 = ‖f(t)− fε(t)‖2l2 + ‖fε(t)− gε(t)‖2l2 <
ε2

4
+
ε2

4
=
ε2

2
, t ∈ T.

As a consequence,

‖f(t)− gε(t)‖l2 <
ε√
2
, ∀t ∈ T =⇒ ‖f − gε‖∞ < ε.
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Then BL0
(
T, l2

)
is dense in C (T, l2). As BL (T, l2) ⊃ BL0

(
T, l2

)
,

we will have even more that BL (T, l2) is dense in C (T, l2).
The space BL0

(
T, l2

)
is separable, because in every topological space

we have the implication:(
An ⊂ Bn and An ⊃ Bn, ∀n ∈ N

)
implies

(⋃
n

An ⊃
⋃
n

Bn

)
.

Then C (T, l2) is separable.
Fifth step. The case when X is a nonseparable Hilbert space.
It means that there exists an orthonormal basis (ei)i∈I for X, with

cardI > ℵ0. Let (tk)k�1 be a sequence in T dense in T . Let f : T → X be a
continuous function.

We know that for every k � 1 ∃ Jk ⊂ I at most countable such that

〈f (tk) , ei〉 = 0, for ∀ i ∈ I \ Jk
and

f (tk) =
∑
i∈Jk

〈f (tk) , ei〉 ei.

If we denote by J =
⋃
k�1

Jk, then J is a countable subset of I and 〈f (tk) , ei〉 =

0, ∀ k � 1, ∀i ∈ I \ J .
The natural conclusion is that 〈f(t), ei〉 = 0, ∀ i ∈ I \ J.
Then f(t) =

∑
i∈J

〈f(t), ei〉 ei, ∀ t ∈ T .

Moreover, if we denote by XJ the closed subspace of X generated by the
countable family (ei)i∈J , we have that f (T ) ⊂ XJ . Let ΠJ : X → XJ be the
orthogonal projection of X onto XJ . Then fJ := ΠJ ◦f ∈ C (T, XJ). As XJ

is a separable Hilbert space, according to the Fourth Step, ∃ g̃ε ∈ BL (T, XJ)
such that

‖fJ − g̃ε‖ < ε ⇐⇒ ‖fJ(t)− g̃ε (t)‖XJ
< ε, ∀ t ∈ T.

If we denote by iJ : XJ → X the canonical embedding of XJ into X,
which is obviously an isometry, and we remark that f = iJ ◦fJ , we infer that

‖f − gε‖∞ < ε, where gε = iJ ◦ g̃ε.
It is clear that gε ∈ BL(T,X). �
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Olimpiada de matematică a studenţilor din sud-estul
Europei, SEEMOUS 20191)

Cornel Băeţica
2), Gabriel Mincu

3), Vasile Pop
4), Mircea Rus

5)

Abstract. The 13th South Eastern European Mathematical Olympiad for
University Students, SEEMOUS 2019, was held on 12–17 March 2019, in
Devin, Bulgaria. We present the competition problems and their solutions
as given by the corresponding authors. Solutions provided by some of the
competing students are also included here.

Keywords: Diagonalizable matrix, rank, trace, change of variable, inte-
grals, series

MSC: Primary 15A03; Secondary 15A21, 26D15.

Introduction

SEEMOUS (South Eastern European Mathematical Olympiad for Uni-
versity Students) este o competiţie anuală de matematică, adresată studen-
ţilor din anii I şi II ai universităţilor din sud-estul Europei. A 13-a ediţie
a acestei competiţii a avut loc ı̂ntre 12 şi 17 martie 2019 şi a fost organi-
zată de către Universitatea de Arhitectură, Inginerie Civilă şi Geodezie din
Sofia, Bulgaria. Concursul s-a desfaşurat ı̂n localitatea Devin din Bulgaria,
la acesta luând parte un număr de 83 de studenţi de la 19 universităţi din
Bulgaria, FYR Macedonia, Grecia, România şi Turkmenistan.

A existat o singură probă de concurs constând din patru probleme iar
pentru rezolvarea lor s-au acordat 5 ore. Acestea au fost selectate de juriu
dintre cele 40 de probleme propuse şi au fost considerate ca având diverse
grade de dificultate: Problema 1 – grad redus de dificultate, Problemele 2, 3
– dificultate medie, Problema 4 – grad ridicat de dificultate.

1)https://www.fte-uacg.bg/seemous2019/
2)Universitatea din Bucureşti, Bucureşti, România, cornel.baetica@fmi.unibuc.ro
3)Universitatea din Bucureşti, Bucureşti, România, gamin@fmi.unibuc.ro
4)Universitatea Tehnică din Cluj-Napoca, România, Vasile.Pop@math.utcluj.ro
5)Universitatea Tehnică din Cluj-Napoca, România, Mircea.Rus@math.utcluj.ro
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Au fost acordate 11 medalii de aur, 19 medalii de argint şi 30 de medalii
de bronz.

Prezentăm, ı̂n continuare, problemele de concurs şi soluţiile acestora,
aşa cum au fost indicate de autorii lor. De asemenea, prezentăm şi soluţiile
date de către unii studenţi, diferite de soluţiile autorilor.

Problema 1. Un şir (xn)n≥1 de numere din intervalul [0, 1] se numeşte şir
Devin dacă pentru orice funcţie continuă f : [0, 1] → R are loc relaţia

lim
n→∞

1

n

n∑
i=1

f(xi) =

∫ 1

0
f(x)dx. (1)

Arătaţi că un şir (xn)n≥1 de numere din intervalul [0, 1] este şir Devin dacă

şi numai dacă lim
n→∞

1

n

n∑
i=1

xki =
1

k + 1
pentru orice k ∈ N.

Juriul a considerat că este de aşteptat ca majoritatea concurenţilor
să cunoască teorema Weierstrass-Stone şi să perceapă problema ca fiind o
aplicaţie simplă a acesteia. Concurenţii nu au reacţionat ı̂nsă conform cu
aşteptările juriului, şi, ı̂ntrucât o abordare alternativă care să nu se bazeze
pe teoreme de aproximare a funcţiilor continue prin polinoame a fost dificil
de identificat, mai puţin de 20% dintre ei au reuşit să rezolve problema.

Soluţie. Implicaţia directă se obţine luând ı̂n definiţia şirului Devin
funcţiile particulare fk : [0, 1] → R, fk(x) = xk (k ∈ N).

Pentru implicaţia inversă, notăm cu P proprietatea

lim
n→∞

1

n

n∑
i=1

f(xi) =

∫ 1

0
f(x)dx referitoare la funcţii integrabile pe [0, 1].

Fie ε > 0 şi g : [0, 1] → R o funcţie continuă. Conform teoremei
Weierstrass-Stone, există un polinom Pg,ε ∈ R[X] astfel ı̂ncât

|g(x) − Pg,ε(x)| < ε

3
, ∀x ∈ [0, 1]. (2)

Din ipoteză, lim
n→∞

1

n

n∑
i=1

xki =
1

k + 1
, deci funcţiile fk : [0, 1] → R,

fk(x) = xk (k ∈ N) au proprietatea P.
Cum ambii membri ai relaţiei (1) sunt R-liniari ca funcţii de f , obţinem
faptul că orice funcţie polinomială P : [0, 1] → R verifică relaţia (1). De
aici deducem că există N ∈ N astfel ı̂ncât pentru orice n ≥ N să aibă loc
inegalitatea ∣∣∣∣∣ 1n

n∑
i=1

Pg,ε(xi)−
∫ 1

0
Pg,ε(x)dx

∣∣∣∣∣ < ε

3
. (3)

Din relaţiile (2) şi (3) deducem că pentru orice n ≥ N avem
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∣∣∣∣∣ 1n
n∑

i=1

g(xi)−
∫ 1

0
g(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

(g(xi)− Pg,ε(xi))

∣∣∣∣∣+
+

∣∣∣∣∣ 1n
n∑

i=1

Pg,ε(xi)−
∫ 1

0
Pg,ε(x)dx

∣∣∣∣∣+
∣∣∣∣∫ 1

0
(Pg,ε(x)− g(x)) dx

∣∣∣∣ <
<

2ε

3
+

∫ 1

0
|Pg,ε(x)− g(x)| dx ≤ ε.

Trecând la limită ı̂n inegalitatea de mai sus, obţinem∣∣∣∣∣ limn→∞
1

n

n∑
i=1

g(xi)−
∫ 1

0
g(x)dx

∣∣∣∣∣ ≤ ε.

Cum ı̂nsă ε a fost ales arbitrar, obţinem lim
n→∞

1

n

n∑
i=1

g(xi) =

∫ 1

0
g(x)dx, deci

şi funcţia g are proprietatea P.
Ca urmare, (xn)n este şir Devin.

Problema 2. Fie m, n numere naturale nenule. Arătaţi că oricare ar fi
matricele A1, . . . , Am ∈ Mn(R) există ε1, . . . , εm ∈ {−1, 1} astfel ı̂ncât

Tr
(
(ε1A1 + · · ·+ εmAm)2

)
≥ Tr

(
A2

1

)
+ · · ·+Tr

(
A2

m

)
. (1)

Vasile Pop, Universitatea Tehnică din Cluj-Napoca, România

Juriul a considerat că această problemă este una de dificultate medie.
Cu toate acestea ı̂n jur de 25% dintre concurenţi au obţinut maxim de puncte,
fiind ı̂n cele din urmă cea mai uşoară din cele patru probleme.

Soluţia 1 (a autorului). Această soluţie se bazează pe observaţia că funcţia

f : Mn(R) → R, f(A) = Tr
(
A2
)
,

are proprietatea că

f(A+B) + f(A−B) = 2(f(A) + f(B)), oricare ar fi A,B ∈ Mn(R). (2)

Într-adevăr,

f(A+B) + f(A−B) = Tr
(
(A+B)2 + (A−B)2

)
= Tr

(
2A2 + 2B2

)
=

= 2
(
Tr(A2) + Tr(B2)

)
= 2(f(A) + f(B)).

Acum (1) se demonstrează uşor prin inducţie după m ≥ 1.
Afirmaţia este evident adevărată pentru m = 1 considerând ε1 = 1.
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Pentru pasul de inducţie (de la m la m + 1), fie A1, . . . , Am, Am+1 ∈
Mn(R). Din ipoteza de inducţie există ε1, . . . , εm ∈ {−1, 1} astfel ı̂ncât

Tr
(
(ε1A1 + · · ·+ εmAm)2

)
≥ Tr

(
A2

1

)
+ · · ·+Tr

(
A2

m

)
(3)

şi notăm A = ε1A1 + · · ·+ εmAm. Folosind (2) obţinem

f(A+Am+1) + f(A−Am+1) = 2(f(A) + f(Am+1)),

ceea ce ı̂nseamnă că cel puţin una dintre inegalităţile

f(A+Am+1) ≥ f(A) + f(Am+1)

f(A−Am+1) ≥ f(A) + f(Am+1)

este adevărată. Aşadar există εm+1 ∈ {−1, 1} astfel ı̂ncât

f(A+ εm+1Am+1) ≥ f(A) + f(Am+1),

care se rescrie astfel:

Tr
(
(ε1A1 + · · ·+ εmAm + εm+1Am+1)

2
)
≥ Tr

(
(ε1A1 + · · · + εmAm)2

)
+

(4)

+ Tr
(
A2

m+1

)
.

Combinând (3) şi (4) rezultă că

Tr
(
(ε1A1 + · · ·+ εmAm + εm+1Am+1)

2
)
≥ Tr

(
A2

1

)
+ · · · +Tr

(
A2

m

)
+

+Tr
(
A2

m+1

)
.

ceea ce ı̂ncheie demonstraţia.

Soluţia 2. Această soluţie a fost găsită de către membrii juriului care au
corectat la această problemă.

Fie E = {ε = (ε1, . . . , εm) : εi ∈ {−1, 1} pentru orice i}. Evident avem
|E| = 2m.

Dacă A1, . . . , Am ∈ Mn(R) şi ε ∈ E, atunci

(ε1A1 + · · ·+ εmAm)2 =
(
A2

1 + · · · +A2
m

)
+
∑
i 	=j

εiεjAiAj

şi sumând după toţi ε ∈ E obţinem∑
ε∈E

(ε1A1 + · · ·+ εmAm)2 = 2m
(
A2

1 + · · · +A2
m

)
+
∑
ε∈E

∑
i 	=j

εiεjAiAj.

Analizând suma dublă

S =
∑
ε∈E

∑
i 	=j

εiεjAiAj =
∑
i 	=j

(∑
ε∈E

εiεj

)
AiAj,
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rezultă că S = 0, deoarece
∑
ε∈E

εiεj = 0 pentru orice i �= j (εiεj = 1 pentru

jumătate din elementele lui E şi εiεj = −1 pentru cealaltă jumătate). În
concluzie ∑

ε∈E
(ε1A1 + · · ·+ εmAm)2 = 2m

(
A2

1 + · · ·+A2
m

)
şi cum Tr este o aplicaţie liniară rezultă că∑

ε∈E
Tr (ε1A1 + · · ·+ εmAm)2 = 2m

(
Tr
(
A2

1

)
+ · · · +Tr

(
A2

m

))
,

deci media lui Tr (ε1A1 + · · ·+ εmAm)2 peste E este Tr
(
A2

1

)
+ · · ·+Tr

(
A2

m

)
,

ceea ce este suficient pentru a obţine concluzia.

Remarcă. Urmărind argumentele din ambele soluţii, concluzia rămâne
adevărată dacă Tr se ı̂nlocuieşte cu orice funcţională liniară pe Mn(R). De
asemenea, putem demonstra următoarea afirmaţie generală:

Dacă (G,+) este un grup şi f : G → R satisface ecuaţia funcţională
pătratică

f(a+ b) + f(a− b) = 2(f(a) + f(a)) pentru orice a, b ∈ G,

atunci pentru orice m ≥ 1 şi orice a1, . . . , am ∈ G au loc următoarele:

(1)
∑

f (±1a1 ±2 · · · ±m am) = 2m (f (a1) + · · ·+ f (am)), unde suma

se consideră după toate alegerile posibile ±i ale semnelor + şi −
pentru orice ai (i = 1,m);

(2) există o alegere ±i a semnelor + şi − pentru fiecare ai (i = 1,m)
astfel ı̂ncât f (±1a1 ±2 · · · ±m am) ≥ f (a1) + · · ·+ f (am).

În cazul nostru, G = Mn(R) şi f(A) = Tr
(
A2
)
.

Problema 3. Fie n ≥ 2 şi A,B ∈ Mn(C) cu proprietatea că B2 = B.
Arătaţi că

rank(AB −BA) ≤ rank(AB +BA). (1)

Vasile Pop, Universitatea Tehnică din Cluj-Napoca, România

Juriul a considerat această problemă ca fiind de dificultate medie. În
jur de 8% dintre concurenţi au obţinut punctaj maxim la această problemă.

Soluţia 1 (a autorului). Deoarece B2 = B, rezultă că valorile proprii ale
lui B aparţin mulţimii {0, 1}. Notăm cu JB forma Jordan a lui B. Atunci
orice celulă Jordan Jλ a lui JB satisface J2

λ = Jλ, ceea ce se ı̂ntâmplă doar

pentru celule de dimensiune 1. În concluzie JB este o matrice diagonală de

forma

[
Ik 0
0 0

]
, cu k eventual 0. De asemenea, fie P o matrice de asemănare

ı̂ntre B şi JB , i.e.,

JB = P−1BP, B = PJBP
−1.
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Dacă k = 0, atunci JB = On, deci B = On şi inegalitatea (1) este ı̂n
mod evident o egalitate.

Dacă k ≥ 1, atunci fie C = P−1AP (equivalent, A = PCP−1). Rezultă
că

AB −BA = P (CJB − JBC)P−1,

AB +BA = P (CJB − JBC)P−1,

deci

rank(AB −BA) = rank(CJB − JBC),

rank(AB +BA) = rank(CJB + JBC).

Scriem C =

[
C1 C2

C3 C4

]
, cu C1 ∈ Mk(C), C4 ∈ Mn−k(C). Atunci

CJB =

[
C1 C2

C3 C4

]
·
[
Ik 0
0 0

]
=

[
C1 0
C3 0

]
,

JBC =

[
Ik 0
0 0

]
·
[
C1 C2

C3 C4

]
=

[
C1 C2

0 0

]
,

CJB − JBC =

[
0 −C2

C3 0

]
,

CJB + JBC =

[
2C1 C2

C3 0

]
.

Obţinem

rank(CJB − JBC) = rankC2 + rankC3,

rank(CJB + JBC) ≥ rank

[
0 C2

C3 0

]
= rankC2 + rankC3,

ceea ce ı̂ncheie demonstraţia.

Soluţia 2 (dată ı̂n concurs de Andrei Alexandru Jelea de la Uni-
versitatea Politehnica din Bucureşti).
Deoarece B2 = B, avem că B (B − In) = (B − In)B = On, deci

(B − In) (AB +BA) (B − In) = (B − In)AB (B − In)

+ (B − In)BA (B − In)

=On.

Folosind inegalitatea Frobenius

rankXY Z + rankY ≥ rankXY + rankY Z,
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obţinem că

rank (AB +BA) = rank (B − In) (AB +BA) (B − In) + rank (AB +BA)

≥ rank (B − In) (AB +BA) + rank (AB +BA) (B − In)

= rank (BAB −AB) + rank (BAB −BA)

≥ rank
(
(BAB −BA)− (BAB −AB)

)
= rank (AB −BA) .

Soluţia 3 (C. Băeţica şi G. Mincu). În această soluţie vom considera
C-spaţiul vectorial V = Cn şi f, g : V → V aplicaţiile liniare asociate ma-
tricelor A,B (̂ın baza canonică). Din ipoteză avem că g2 = g.

Fie u = fg+ gf şi v = fg− gf . Inegalitatea cerută este echivalentă cu
dimC keru ≤ dimC ker v.

Pentru a demonstra acest fapt să observăm următoarele:
1) ker u ∩ ker g ⊆ ker v;
2) g(ker u) ⊆ ker v.

1) Dacă x ∈ keru∩ker g, atunci g(x) = 0 şi (fg+gf)(x) = 0, ceea ce implică
(gf)(x) = 0 şi de aici obţinem (fg − gf)(x) = 0, adică v(x) = 0.
2) Pe de altă parte, dacă y ∈ g(ker u), atunci există z ∈ keru astfel ı̂ncât
y = g(z). Cum z ∈ keru avem (fg + gf)(z) = 0 şi aplicând g la stânga
obţinem (gfg)(z) + (gf)(z) = 0. Acum calculăm v(y) = (fg − gf)(y) =
= (fg − gf)(g(z)) = (fg)(z) − (gfg)(z) = (fg + gf)(z) = u(z) = 0.

Este ı̂nsă uşor de văzut că (ker u ∩ ker g) ∩ g(ker u) = {0}, ceea ce
ı̂nseamnă că suma acestor două subspaţii ale lui ker v este directă. De aici
putem conchide că

dimC ker u = dimC(ker u ∩ ker g) + dimC g(ker u) ≤ dimC ker v,

ceea ce era de demonstrat.

Problema 4. (a) Fie n ≥ 1 un număr ı̂ntreg. Calculaţi

∫ 1

0
xn−1 lnxdx.

(b) Calculaţi
∞∑
n=0

(−1)n
(

1

(n+ 1)2
− 1

(n+ 2)2
+

1

(n+ 3)2
− · · ·

)
. (1)

Ovidiu Furdui, Alina Ŝıntămărian, Universitatea Tehnică din

Cluj-Napoca, România

Juriul a considerat această problemă ca fiind cea mai dificilă şi aşa a
fost: numai 6% dintre concurenţi au dat o soluţie completă.

Soluţie (a autorilor). (a) Integrând prin părţi obţinem∫ 1

0
xn−1 lnxdx = − 1

n2
, n ∈ N. (2)
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(b) Pentru k ∈ N notăm

Ek =
1

(n+ 1)2
− 1

(n+ 2)2
+ · · ·+ (−1)k−1

(n+ k)2
.

Din (2) rezultă că

Ek = −
∫ 1

0
xn
(
1− x+ · · ·+ (−x)k−1

)
lnxdx =

= −
∫ 1

0
xn

1− (−x)k
1 + x

lnxdx =

= −
∫ 1

0

xn lnx

1 + x
dx+ (−1)k

∫ 1

0

xn+k lnx

1 + x
dx.

Făcând k → ∞ se obţine

1

(n+ 1)2
− 1

(n+ 2)2
+

1

(n+ 3)2
− · · · = −

∫ 1

0

xn lnx

1 + x
dx,

deoarece

0 ≤ −
∫ 1

0
lnx

xn+k

1 + x
dx ≤ −

∫ 1

0
xk lnxdx =

1

(k + 1)2
→ 0 (când k → ∞).

Apoi evaluarea celei de-a n-a sume parţiale a seriei (1) conduce la

n∑
i=0

(−1)i
(

1

(i+ 1)2
− 1

(i+ 2)2
+

1

(i+ 3)2
− · · ·

)
= −

n∑
i=0

(−1)i
∫ 1

0

xi lnx

1 + x
dx

= −
∫ 1

0

lnx

1 + x

n∑
i=0

(−x)i dx = −
∫ 1

0

lnx

1 + x
· 1− (−x)n+1

1 + x
dx =

= −
∫ 1

0

lnx

(1 + x)2
dx+ (−1)n+1

∫ 1

0

xn+1 lnx

(1 + x)2
dx.

Făcând n→ ∞ in egalitatea precedentă rezultă că
∞∑
n=0

(−1)n
(

1

(n + 1)2
− 1

(n+ 2)2
+

1

(n+ 3)2
− · · ·

)
= −

∫ 1

0

lnx

(1 + x)2
dx,

deoarece

0 ≤ −
∫ 1

0

xn+1 lnx

(1 + x)2
dx ≤ −

∫ 1

0
xn+1 lnxdx =

1

(n+ 2)2
→ 0 (când n→ ∞).

Pe de altă parte ∫ 1

0

lnx

(1 + x)2
dx = − ln 2

folosind integrarea prin părţi.
În concluzie, sume seriei (1) este ln 2.
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Soluţie alternativă pentru (b). Această soluţie se bazează pe ideea
schimbării ordinii de sumare.

Termenul general al seriei (1) se poate scrie astfel: rn =
∑

k≥n+1

(−1)k−1

k2
,

care este restul de ordin n al seriei absolut convergente
∑
k≥1

(−1)k−1

k2
.

Fixăm m ≥ 1 şi considerăm a m-a sumă parţială a seriei (1):

sm =
m∑

n=0

rn =
m∑

n=0

⎛⎝ ∑
k≥n+1

(−1)k−1

k2

⎞⎠ .

Deoarece fiecare dintre seriile r0, r1, . . . , rm este absolut convergentă, este
posibil să schimbăm ordinea de sumare ı̂n sm şi să adunăm termenii ı̂n orice
ordine; ı̂n particular, este permis să interschimbăm ordinea de sumare (fixăm
k, sumăm după n, apoi sumăm după k) şi asta duce la

sm =
∑
k

⎛⎜⎜⎜⎜⎝
∑
n≥0
n≤m
n+1≤k

(−1)k−1

k2

⎞⎟⎟⎟⎟⎠ =
∑
k≥1

⎛⎝min{m,k−1}∑
n=0

(−1)k−1

k2

⎞⎠ =

=
∑
k≥1

(1 + min {m,k − 1}) · (−1)k−1

k2
=

=

m+1∑
k=1

k · (−1)k−1

k2
+
∑

k≥m+2

(m+ 1) · (−1)k−1

k2
=

=

m+1∑
k=1

(−1)k−1

k
+ (m+ 1)rm+1.

Acum, făcând m → ∞ rezultă concluzia, folosind că
∑
n≥1

(−1)n−1

n
= ln 2 şi

lim
n→∞nrn = 0 deoarece |rn| < 1

(n+ 1)2
.

Remarcă. Soluţia alternativă conduce la următorul rezultat general:
dacă (an)n≥1 este un şir descrescător astfel ı̂ncât seriile

∑
n≥1

an şi
∑
n≥1

(−1)nnan

sunt convergente, atunci∑
n≥0

⎛⎝ ∑
k≥n+1

(−1)k−1ak

⎞⎠ =
∑
n≥1

(−1)n−1nan.
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MATHEMATICAL NOTES

Multivariate weak hazard rate order according to hazard rate
function

Luigi-Ionuţ Catana
1)

Abstract. In this note we prove that in the particular cases of multivariate
uniform distribution the properties of dilatation and translation of the weak
hazard rate order are lost.

Keywords: Weak hazard rate order, hazard rate function.

MSC: 60E15.

Introduction

Let (Ω,F , P ) be a probability space and X : Ω → Rd be an absolute
continuous random vector, d ≥ 2. We denote by μ its distribution μ(B) =
P (X ∈ B), B ∈ B (R), by F (x) = P (X ≤ x) its distribution function,
F ∗(x) = P (X > x) and by f its density. Notice that if d ≥ 2 then one
cannot find a distribution such that F ∗ ≡ 1− F (see [1]).

For a random vector X with F ∗ differentiable, we define the hazard rate

function r : L(X) → Rd, r(x) =
(
− ∂

∂xi
(lnF ∗(x))

)
i=1,d

, where

L(X) = {x ∈ Rd : F ∗(x) > 0}.

When we have random vectors X and Y , we will denote by μ and ν
their distributions, by F and G their distribution functions, and by r and q
their hazard rate functions, respectively.

Remark 1. It is not true that if F ∗ is differentiable, then the distri-
bution μ is absolute continuous with respect to the Lebesgue measure λd.

Counterexample. Let U ∼ Unif ([0, 1]) and X =
(
cos π

4U, sin
π
4U
)

with X ∼ μ. Then F ∗
X is differentiable, but μ is not absolute continuous with

respect to the Lebesgue measure λ2.
Proof. Indeed we have

1)Departament of Mathematics, Faculty of Mathematics and Informatics, University of
Bucharest, Romania, luigi catana@yahoo.com
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F ∗
X (x1, x2) = P ((X1,X2) > (x1, x2)) = P (X1 > x1,X2 > x2)

= P
(
cos
(π
4
U
)
> x1, sin

(π
4
U
)
> x2

)
= P

(
U <

4

π
arccos x1, U >

4

π
arcsinx2

)
= P

(
4

π
arcsinx2 < U <

4

π
arccos x1

)
=

∫ 4
π
arccos x1

4
π
arcsinx2

1[0,1] (t) dt.

Then F ∗
X is differentiable.

Let A = {(x, y) ∈ R2 : x ∈ [0, π4 ] , y = cos x}. Then it is obvious that

λ2 (A) = 0, but μ (A) > 0. �
Remark 2. Let us notice that r ≥ 0.

If d = 2, then r1 (x1, x2) =
fX1

(x1,X2>x2)

F ∗(x1,x2)
and r2 (x1, x2) =

fX2
(X1>x1,x2)

F ∗(x1,x2)
,

∀ (x1, x2) ∈ L(X), where we have denoted fX1 (x1,X2 > x2) =
∫∞
x2
f(x1, t)dt

and fX2 (X1 > x1, x2) =
∫∞
x1
f(t, x2)dt.

For x, y ∈ Rd we say that x ≤ y if xi ≤ yi, i = 1, d.
For x, y ∈ Rd we say that x < y if x ≤ y and x �= y. For c ∈ Rd and

r ∈ R, r > 0, we put

B [c, r] = {x :
∥∥x− c

∥∥ ≤ r},
B (c, r) = {x :

∥∥x− c
∥∥ < r}.

A set C ⊂ Rd is increasing if x ∈ C, y ∈ Rd, y ≥ x⇒ y ∈ C.

Let us recall the following definitions (see [3]):

Definition 1. Let X and Y be two random vectors. We say that X
is stochastic dominated by Y and we denote X ≺st Y iff for all increasing
subsets C ⊂ Rd it holds P (X ∈ C) ≤ P (Y ∈ C).

Definition 2. Let X and Y be two random vectors. We say that X is
weak stochastic dominated by Y and we denote X ≺stw Y iff F ∗ ≤ G∗.

Definition 3. Let X and Y be two random vectors. We say that X is
dual weak stochastic dominated by Y and we denote X ≺stdw Y iff F ≥ G.

Definition 4. Let X and Y be two random vectors. We say that
X is smaller than Y in hazard rate sense and we denote X ≺hr Y iff
F ∗ (x)G∗ (y) ≤ F ∗ (x ∧ y)G∗ (x ∨ y) , for all x, y ∈ Rd.

Definition 5. Let X and Y be two random vectors. We say that X is
smaller than Y in weak hazard rate sense and we denote X ≺whr Y iff

G∗

F ∗ is non-decreasing on L(Y ).
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The following two results are well known (see [3]).

Proposition 1. Let X and Y be two random vectors with hazard rate
functions r and q, respectively. Then X ≺whr Y iff r (x) ≥ q (x), for all
x ∈ L(X) ∩ L(Y ).

Proposition 2. Let X and Y be two random vectors. If X ≺whr Y,
then X ≺stw Y.

The multivariate uniform distribution Unif(A) has the density function

f(x) = 1A(x)
λd(A)

, where A ∈ B (R) has positive finite Lebesgue measure λd (A).

In [2] the author has proved that Unif ([0, a]) ≺hr Unif ([0, b]) iff a ≤ b,
thus the hazard rate order is increasing in this case.

1. Main Results

It is known that if d = 1, X ∼ Unif(I), I ⊂ [0,∞) closed interval then
X ≺whr aX for all a ∈ R, a ≥ 1, and that X ≺whr X + a for all a ≥ 0.

We were surprised to notice that in the multidimensional case these
properties do not hold anymore. For d ≥ 2 it may happen that never X ≺whr

aX, for some uniform distribution.

Proposition 3. Let X ∼ Unif(B [(1, 1); 1]). Then there does not exist
a ∈ R, a > 1, such that X ≺whr aX.

Proof. It is obvious that aX ∼ Unif(B [(a, a); a]).
Let us suppose that there exists a ∈ R, a > 1, such that X ≺whr aX

and consider r, respectively q, the hazard rate function for X, respectively
aX.

Then r (x) ≥ q (x), for all x ∈ L(X) ∩ L(aX).

We have r1

(
1
2 ,

2+
√
3

2

)
=

fX1

(
1
2
, X2>

2+
√

3
2

)

F ∗
X

(
1
2
, 2+

√
3

2

) = 0, since F ∗
X

(
1
2 ,

2+
√
3

2

)
> 0

and fX1

(
1
2 ,X2 >

2+
√
3

2

)
= 0.

On the other side, q1

(
1
2 ,

2+
√
3

2

)
=

f(aX)1

(
1
2
, (aX)2>

2+
√

3
2

)

F ∗
aX

(
1
2
, 2+

√
3

2

) > 0, since

F ∗
aX

(
1
2 ,

2+
√
3

2

)
> 0 and f(aX)1

(
1
2 , (aX)2 >

2+
√
3

2

)
> 0.

Then r1

(
1
2 ,

2+
√
3

2

)
< q1

(
1
2 ,

2+
√
3

2

)
, which is a contradiction.

In conclusion it does not exist a ∈ R, a > 1 such that X ≺whr aX. �
It is obvious that if X ∼ Unif(B [(0, 0); 1]) then X ≺whr X and X ≺whr

X + b, for all b ≥ (2, 2) .
However, for this particular case, the translation property is not true,

as one can see in the following

Proposition 4. Let X ∼ Unif(B [(0, 0); 1]). Then there does not exist
b ∈ R2, b > (0, 0) and b � (1, 1), such that X ≺whr X + b.
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Proof. It is obvious that X + b ∼ Unif(B [b; 1]).
Let us suppose that there exists b ∈ R2, b > (0, 0) and b � (1, 1) such

that X ≺whr X + b and consider r, q the hazard rate function for X,X + b.
Then r (x) ≥ q (x), for all x ∈ L(X) ∩ L(X + b).
If b1 < 1 then let us take t ∈ R2 with ‖t‖ = 1,t1 < 0, t2 > 0.

We have r1 (t1, t2) =
fX1

(t1,X2>t2)

F ∗
X(t1,t2)

= 0, since fX1 (t1,X2 > t2) = 0 and

F ∗
X (t1, t2) > 0.

On the other side, q1 (t1, t2) =
f(X+b)1

(t1, (X+b)2>t2)
F ∗
X+b(t1,t2)

> 0, since we have

f(X+b)1
(t1, (X + b)2 > t2) > 0 and F ∗

X+b (t1, t2) > 0.

Then r1 (t1, t2) < q1 (t1, t2) , which is a contradiction.
If b2 < 1 then let us take t ∈ R2 with ‖t‖ = 1, t1 > 0, t2 < 0.

We have r2 (t1, t2) =
fX2

(X1>t1,t2)

F ∗
X(t1,t2)

= 0, since fX2 (X1 > t1, t2) = 0 and

F ∗
X (t1, t2) > 0.

On the other side, q2 (t1, t2) =
f(X+b)2

((X+b)1>t1,t2)
F ∗
X+b(t1,t2)

> 0, since we have

f(X+b)2
((X + b)1 > t1, t2) > 0 and F ∗

X+b (t1, t2) > 0.

Then r2 (t1, t2) < q2 (t1, t2) , which is a contradiction.
In conclusion it does not exist b ∈ R2, b > (0, 0) and b � (1, 1) such that

X ≺whr X + b. �

References

[1] L.I. Catana, A property of unidimensional distributions which is lost in multidimen-
sional case, Gazeta Matematică, Seria A 34(113) (2016), no. 3–4, 39–41.

[2] L.I. Catana, The monotony in hazard rate sense of some families of multidimensional
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Theorem 1. [The extended Liouville Theorem] If f is an entire function
and if, for some integer k ≥ 0, there exist positive constants A and B such
that |f(z)| ≤ A+B|z|k for all sufficiently large |z|, then f is a polynomial of
degree at most k.

Theorem 2. If f is an entire function and one of the four inequalities

−A|z|n ≤ Re f(z) ≤ A|z|n,
−A|z|n ≤ Im f(z) ≤ A|z|n

holds for sufficiently large |z|, then f is a polynomial of degree less than or
equal to n.

Definition 3. An entire function f is said to be of finite order k if for some
k and some R > 0, |f(z)| ≤ exp(|z|k) for all z with |z| > R.

Theorem 4. Suppose f is an entire function of finite order k. Then ei-
ther f has infinitely many zeroes or f(z) = Q(z)eP (z), where P and Q are
polynomials.

Remark 1. If f is an entire function that is never zero, then f(z) = eP (z),
where P (z) is a polynomial of degree less than or equal to k (k is a finite
order of f).

Proof. We can define an entire function P (z) = log f(z) which by our hy-
pothesis must satisfy |ReP (z)| = |Re log f(z)| = | log |f(z)|| ≤ |z|k, where k
is a finite order of f . The statements follow from Theorem 2. �

We give three applications of these theorems.

A1. Find all solutions to the infinite system of equations

x1 + y1 = 2,

x2 + 2x1y1 + y2 = 4,

x3 + 3x2y1 + 3x1y2 + y3 = 8,

...

xn +

(
n

1

)
xn−1y1 +

(
n

2

)
xn−2y2 + · · · + yn = 2n,

...

with xk, yk ≥ 0 for all k.
Solution. If the sequences {xn}, {yn} are a solution, we consider their gene-
rating functions

f(z) =

∞∑
n=0

xnz
n

n!
, g(z) =

∞∑
n=0

ynz
n

n!
, with x0 = y0 = 1.
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Since xk, yk ≥ 0, for all k, it follows that xk, yk ≤ 2k, so that both f(z) and
g(z) are entire functions. We have

f(z)g(z) =

∞∑
n=0

Cnz
n

where

Cn =

n∑
j=0

xn−j

(n − j)!

yj
j!

=

n∑
j=0

(
n

j

)
xn−jyj
n!

,

so (from the hypothesis)

f(z)g(z) =
∞∑
n=0

2nzn

n!
= e2z.

Thus, f and g are entire functions with no zeroes.
From the above relation and Remark 1 it follows that f(z) = eαz+β and

g(z) = eγz+δ. Since f(0) = x0 = 1 and g(0) = y0 = 1, one has β = δ = 0 and
f(z) = eαz , g(z) = eγz.

Expanding, one finds

f(z) = eαz = 1 + αz +
α2z2

2!
+ · · · = 1 + x1z +

x2z
2

2!
+ · · · ,

g(z) = eγz = 1 + γz +
γ2z2

2!
+ · · · = 1 + y1z +

y2z
2

2!
+ · · · .

Thus, there are infinitely many solutions of the form {xk}, {yk} with
xk, yk ≥ 0, xk = αk, yk = γk, k = 1, 2, 3, . . . and α+ γ = 2.

Note that the system has a unique solution if x1 and y1 are given.

A2. e
z − z has infinitely many zeroes.

Solution. If ez − z had only a finite number of zeroes a1, a2, . . . , aN , then
ez − z = (z − a1)(z − a2) · · · (z − aN )g(z), where g(z) is a non-zero entire
function given by

g(z) =
ez − z

(z − a1)(z − a2) · · · (z − aN )
.
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We then define the entire function g1(z) = log g(z), with

Re g1(z) = log |g(z)| = log

∣∣∣∣ ez − z

(z − a1)(z − a2) · · · (z − aN )

∣∣∣∣
= log |ez − z| − log |(z − a1)(z − a2) · · · (z − aN )|

≤ log |ez − z| = log

∣∣∣∣1 + z2

2!
+
z3

3!
+ · · ·

∣∣∣∣
≤ log

(
1 +

|z|2
2!

+
|z|3
3!

+ · · ·
)

≤ log e|z| ≤ |z| for sufficiently large z.

Then, according to Theorem 2, g1 would be a linear polynomial, that is

log
ez − z

(z − a1)(z − a2) · · · (z − aN )
= az + b

and furthermore

ez − z = (z − a1)(z − a2) · · · (z − aN )eaz+b.

Considering z → ∞, it is obvious that this relation cannot hold.

A3. e
z−P (z) and sin z−P (z) have infinitely many zeroes for every non-zero

polynomial P .
Solution. If ez −P (z) does not have infinitely many zeroes, then ez −P (z) =
Q(z)eR(z), where Q,R are polynomials. Considering the growth at infinty, it
follows that R(z) = z, Q(z) = 1 and P (z) = 0.

Similarly for sin z − P (z).
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.

Files should be in PDF or DVI format. Once a problem is accepted and considered

for publication, the author will be asked to submit the TeX file also. The referee

process will usually take between several weeks and two months. Solutions may also

be submitted to the same e-mail address. For this issue, solutions should arrive

before 15th of May 2020.

PROPOSED PROBLEMS

489. Let m ≤ n be positive integers. For A ∈ Mm,n(C) and B ∈ Mn,m(C)
define the functions

fA,B : Mn(C) −→ Mm(C), fA,B(X) = AXB,

fB,A : Mm(C) −→ Mn(C), fB,A(Y ) = BYA.

Prove that fA,B is surjective (onto) if and only if fA,B is injective (one-to-
one).

Proposed by Vasile Pop, Technical University of Cluj-Napoca, Ro-

mania.

490. Let n ∈ N∗. Calculate∫ 1

0

(
ln(1− x) + x+ x2

2 + · · ·+ xn

n

x

)2

dx.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania.

491. If the arithmetic mean of a, b, c, d ≥ 0 is 1, then their quadratic mean

q =
√

a2+b2+c2+d2

4 takes values in the interval [1, 2].

If q ∈ [1, 2] then we denote by M = Mq the largest possible value of
the geometric mean of four numbers a, b, c, d ≥ 0 with the arithmetic mean
1 and the quadratic mean q.

Determine M in terms of q and prove that M + q ≥ 2.

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania and Alexander Bogomolny, New Jersey, USA.

492. Let V be a vector space over F2 = Z/2Z and f : V → R∪{∞} satisfying
f(x) = ∞ iff x = 0 and

f(x+ y) ≥ min{f(x), f(y)} ∀x, y ∈ V.

For every c ∈ V we define gc : V → R∪{∞} by gc(x) = f(x)+f(x+ c).
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(i) Prove that gc satisfies the same inequality as f , viz.,

gc(x+ y) ≥ min{gc(x), gc(y)} ∀x, y ∈ V.

Equivalently, if x, y, z, t ∈ V with x+ y = z + t then

f(x+ z) + f(x+ t) ≥ min{f(x) + f(y), f(z) + f(t)}.
For any a, b ∈ V we define ha,b : V → R ∪ {∞} by

ha,b(x) = f(x) + f(x+ a) + f(x+ b).

(ii) If x, y, a, b ∈ V such that f(x) ≤ f(y) prove that

hx,x+a+b(y) ≥ min{ha,b(x), ha,b(y)}.
Let k : V 2 → R ∪ {∞}, k(x, y) = f(x) + f(y) + f(x+ y).
(iii) If a, b, x, y ∈ V prove that

ha,b(x+ y) ≥ min{ha,b(x), ha,b(y), k(x, y)}
and

k(x, y) ≥ min{ha,b(x), ha,b(y), ha,b(x+ y)}.
Conclude that none of the four numbers ha,b(x), ha,b(y), ha,b(x + y) and
k(x, y) is strictly smaller than all remaining three numbers.

(iv) If a, b, x, y, z ∈ V prove that

max{hy,z(x), hz,x(y), hx,y(z)} ≥ min{ha,b(x), ha,b(y), ha,b(z)}.
Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.

493. (a) Calculate

lim
n→∞n

∫ ∞

0

sinx

e(n+1)x − enx
dx.

(b) Let k > −1 be a real number. Calculate

lim
n→∞nk+1

∫ ∞

0

xk sinx

e(n+1)x − enx
dx.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Uni-

versity of Cluj-Napoca, Romania.

494. Let n ≥ 3 and let a1, . . . , an be nonnegative real numbers such that
a21 + · · · + a2n = n− 1.

(i) Prove that a1 + · · ·+ an − a1 · · · an ≤ n− 1.
(ii) Prove that if k < 1 then the inequality a1+· · ·+an−ka1 · · · an ≤ n−1

is not always true.

Proposed by Leonard Giugiuc, Colegiul Naţional Traian, Drobeta

Turnu Severin, România, Qing Song, Beihang University Library and

Yongxi Wang, Shanxi University Affiliated High School, People’s

Republic of China.
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495. Let n ≥ 2 and A,B ∈ Mn(C) such that

AB −BA = c(A−B)

for some c ∈ C∗.
a) For n = 2, give an example of distinct matrices A and B that satisfy
the above condition.
b) Prove that A and B have the same eigenvalues.

Proposed by Vasile Pop, Technical University of Cluj-Napoca,

Romania, and Mihai Opincariu, Avram Iancu National College, Brad,

Romania.

SOLUTIONS

472. Let a, b, c ∈ [0, π2 ] such that a+b+c = π. Prove the following inequality:

sin a+ sin b+ sin c ≥ 2 + 4

∣∣∣∣sin(a− b

2

)
sin

(
b− c

2

)
sin

(
c− a

2

)∣∣∣∣ .
Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania and Jiahao He, South China University of

Technology, People’s Republic of China.

Solution by the authors. Since both sides of the inequality are symmetric
we may assume that a ≥ b ≥ c. Then the product from the right side is non-
negative and we have to prove that

sin a+ sin b+ sin c− 4 sin

(
a− b

2

)
sin

(
b− c

2

)
sin

(
c− a

2

)
≥ 2.

Since a−b
2 + b−c

2 + c−a
2 = 0 we have

−4 sin

(
a− b

2

)
sin

(
b− c

2

)
sin

(
c− a

2

)
= sin(a− b)+ sin(b− c)+ sin(c−a).

(In general, 4 sinx sin y sin z = sin(y+z−x)+sin(z+x−y)+sin(x+y−z)−
sin(x+ y+ z). When x+ y+ z = 0 this is equal to − sin 2x− sin 2y− sin 2z.)

Also since a+ b+ c = π we have sin a = sin(b+ c) and similarly for sin b
and sin c. Hence the inequality we want to prove also writes as

sin(a+ b) + sin(a− b) + sin(b+ c) + sin(b− c) + sin(c+ a) + sin(c− a) ≥ 2,

which is equivalent to sin a cos b + sin b cos c + sin c cos a ≥ 1. But c ≥ b, so
sin c cos a ≥ sin b cos a and

sin a cos b+ sin b cos c+ sin c cos a ≥ sin a cos b+ sin b(cos a+ cos c).

Since 0 ≤ a+c− π
2 ≤ a, c ≤ π

2 and
(
a+ c− π

2

)
+ π

2 = a+c, by the Karamata’s
inequality applied to the cosine function, which is concave on [0, π2 ], we get

cos a+ cos c ≥ cos
(
a+ c− π

2

)
+ cos

π

2
= cos

(π
2
− b
)
+ 0 = sin b.
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It follows that

sin a cos b+ sin b cos c+ sin c cos a ≥ sin a cos b+ sin2 b.

So it suffices to prove that sin a cos b + sin2 b ≥ 1, which is equivalent to
sin a cos b ≥ cos2 b, i.e., to sin a ≥ cos b = sin

(
π
2 − b

)
. This follows from the

fact that c ≤ π
2 , so a = π − b− c ≥ π

2 − b.
Note that we have equality when a, b, c are, in some order, π

2 , 0,
π
2 . �

We also received a solution from Yury Yucra Limachi, from Puno, Peru.

473. (Corrected1)) Let e1, . . . , en be the elementary symmetric polynomials
in the variables X1, . . . ,Xn,

ek(X1, . . . ,Xn) =
∑

1≤i1<...<ik≤n

Xi1 · · ·Xik

and let M be the ideal generated by e1, . . . , en in R[X1, . . . ,Xn].
Then every monomial Xm1

1 · · ·Xmn
n with the degree m = m1+ · · ·+mn

strictly greater than
(n
2

)
belongs to M . On the other hand, there exists a

monomial of degree
(
n
2

)
which does not belong to M .

Proposed by George Stoica, New Brunswick, Canada.

Solution by C. Băeţica. Let R = R[X1, . . . ,Xn], and I = (s1, . . . , sn). If
P is a minimal prime over I, then sn ∈ I and there exists i ∈ {1, . . . , n} such
that Xi ∈ P . We may assume Xn ∈ P . Since sn−1 ∈ P and Xn ∈ P we get
X1 · · ·Xn−1 ∈ P . Similarly we can suppose Xn−1 ∈ P , and so on. Now it is
easily seen that the only minimal prime ideal over I is P = (X1, . . . ,Xn). This

shows that
√
I = (X1, . . . ,Xn), and therefore the height of I is n. Since R is

Cohen-Macaulay the grade of I is also n, and thus s1, . . . , sn form a regular

sequence. By induction on n one can show thatHR/I(t) =
(1− t) · · · (1− tn)

(1− t)n
,

a polynomial of degree n(n−1)/2. (Here HR/I(t) stands for the Hilbert series
of R/I.) In particular, the homogeneous parts of R/I of degree d > n(n−1)/2
are zero, and thus every homogeneous polynomial of degree d > n(n − 1)/2
belongs to I.

For the second part of the question we define the homogeneous poly-
nomials hi(X1, . . . ,Xn), 1 ≤ i ≤ n, as the sum of all monomials of total
degree i in X1, . . . ,Xn. By Proposition 5, page 350 from Cox D., Little J.,
O’Shea D., Ideals, Varieties, and Algorithms, Springer, 2015, we learn that
hj(Xj , . . . ,Xn), 1 ≤ j ≤ n, form a Gröbner basis for I with respect to the
lexicographic order on R with X1 > · · · > Xn. In particular, the initial ideal
of I is generated by the monomials X1,X

2
2 , . . . ,X

n
n . Now it is immediate

that the monomial X2X
2
3 · · ·Xn−1

n does not belong to I.

1)In the 1-2/2018 issue the problem appeared with
(
n
k

)
instead of

(
n
2

)
, which doesn’t

make sense.
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Solution by C.N. Beli. We denote by X the multivariable (X1, . . . ,Xn)
so that R[X1, . . . ,Xn] = R[X]. We have R[X] =

⊕
k≥0

R[X]k, where R[X]k is

the set of all homogeneous polynomials of degree k. Since M is generated
by homogeneous ideals, it is homogeneous as well, so M =

⊕
k≥0

Mk, where

Mk =M ∩R[X]k. We must prove that R[X]k ⊆M , i.e., Mk = R[X]k, holds
for k >

(n
2

)
, but not for k =

(n
2

)
.

We put N = Z≥0 and N∗ = Z≥1. If i = (i1, . . . , in) ∈ Nn then we denote

Xi = Xi1
1 · · ·Xin

n . Every polynomial P ∈ R[X] writes as P =
∑

i∈I(P )

aiX
i,

where I(P ) ⊆ Nn is a finite set and ai ∈ R \ {0}, ∀i ∈ I(P ). The set I(P ) is
called the support of P .

On Nn we define the lexicographic order by (i1, . . . , in) < (j1, . . . , jn) if
there is 1 ≤ h ≤ n such that il = jl for l < h and ih < jh. If i, j ∈ Nn we say
that i ≤ j if i < j or i = j.

If i = (i1, . . . , in) ∈ Nn we put o(i) = (j1, . . . , jn) ∈ Nn, where j1, . . . , jn
is the sequence i1, . . . , in in decreasing order.

For example, o(0, 2, 3, 0, 2) = (3, 2, 2, 0, 0). If P ∈ R[X] \ {0} then we
define f(P ) ∈ (Nn,≤) by f(P ) = max

i∈I(P )
o(i).

Lemma 1. Let i ∈ Nn with degXi = m.
(i) If i ∈ N∗n then Xi ∈Mm.
(ii) If i ∈ Nn with o(i) = (j1, . . . , jn) such that jh − jh+1 ≥ 2 for some

1 ≤ h ≤ n−1 then Xi ≡ P (mod Mm) for some P ∈ R[X]m such that either
f(P ) < f(Xi) = o(i) or P = 0.

Proof. (i) If i = (i1, . . . , in) ∈ N∗n and j = (i1−1, . . . , in−1) then j ∈ Nn

and we have Xi = Xj(X1 · · ·Xn) = Xjen ∈ M . Since also Xi ∈ R[X]m, we
have Xi ∈Mm.

(ii) Let i = (i1, . . . , in). By permuting the variables X1, . . . ,Xn, we may

assume that Xi = Xi1
1 · · ·Xin

n satisfies i1 ≥ · · · ≥ in, i.e., that o(i) = i and
js = is ∀s.

Let 1 ≤ h ≤ n − 1 such that ih − ih+1 ≥ 2. Let j = (i1 − 1, . . . , ih −
1, ih+1, . . . , in). If j = (j1, . . . , jn) then i = (j1 + 1, . . . , jh + 1, jh+1, . . . , jn).
Since the sequence i1, . . . , in is decreasing and ih − ih+1 ≥ 2, we have j1 ≥
· · · ≥ jh > jh+1 ≥ · · · ≥ jn.

We have degXj =
∑
s
js =

∑
s
is − h = m− h. Also eh ∈ R[X]h. Hence

Xjeh ∈ R[X]m. Since also Xjeh ∈ M , we have Xjeh ∈ Mm. It follows that
Xi ≡ P (mod Mm), where P = Xi −Xjeh. Since both Xi,Xjeh ∈ R[X]m,
we have P ∈ R[X]m. We must prove that f(P ) < i.

Note that X1 · · ·Xh is a monomial in eh so XjX1 · · ·Xh = Xi is a
monomial of Xjeh. It is canceled in P = Xi −Xjeh. We must prove that all
the other monomials Xk that appear in Xjeh satisfy o(k) < i.
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We write eh =
∑
c∈T

Xc, where T = {(c1, . . . , cn) ∈ {0, 1}n | ∑
s
cs = h}.

We have eh = X1 . . . Xh +
∑
c∈T ′

Xc, where T ′ = T \ {(1, . . . , 1, 0, . . . , 0)}. (In

(1, . . . , 1, 0, . . . , 0) we have 1 on the first h positions.) Then

P = Xi −Xj(X1 . . . Xh +
∑
c∈T ′

Xc) = −Xj
∑
c∈T ′

Xc = −
∑
c∈T ′

Xj+c

and we must prove that o(j + c) < i for every c ∈ T ′.
Let c = (c1, . . . , cn) ∈ T ′. For 1 ≤ s ≤ h we have js + cs ≥ js ≥ jh

and for every h + 1 ≤ s ≤ n we have js + cs ≤ js + 1 ≤ jh+1 + 1 ≤ jh.
Hence the largest h entries of j + c are, in some order, j1 + c1, . . . , jh + ch.
So, if o(j + c) = k = (k1, . . . , kn), then k1, . . . , kh are j1 + c1, . . . , jh + ch
written in decreasing order. For short, (k1, . . . , kh) = o(j1 + c1, . . . , jh + ch).
Note that c1, . . . , ch ∈ {0, 1}, but they cannot be all 1, since this would mean
(c1, . . . , cn) = (1, . . . , 1, 0, . . . , 0) /∈ T ′. Therefore for every 1 ≤ s ≤ h we
have js + cs ≤ js + 1 = is and at least one of these inequalities is strict.
It follows that in (Nh,≤) we have o(j1 + c1, . . . , jh + ch) < o(i1, . . . , ih),
i.e., (k1, . . . , kh) < (i1, . . . , ih). But this implies that in (Nh,≤) we have
(k1, . . . , kn) < (i1, . . . , in), i.e., o(j + c) < i, as claimed. �

Lemma 2. Let i ∈ Nn such that degXi ≥ (n
2

)
and let o(i) = j =

(j1, . . . , jn). Then one of the following statements holds:
(1) i ∈ N∗n.
(2) There is some 1 ≤ h ≤ n− 1 such that jh − jh+1 ≥ 2.
(3) j = α := (n− 1, n− 2, . . . , 1, 0). In particular, degXi =

(n
2

)
.

Proof. We have j1 ≥ · · · ≥ jn ≥ 0. If jn ≥ 1 then {j1, . . . , jn} =
{i1, . . . , in} ⊆ N∗ so (1) holds. Therefore we will assume that jn = 0.

Suppose now that (2) does not hold, so jh ≤ jh+1+1 for 1 ≤ h ≤ n−1.
Since jn = 0, this implies inductively that jn−1 ≤ 1, jn−2 ≤ 2,. . . , j1 ≤ n−1.
Then we get(
n

2

)
≤ degXi =

∑
h

ih =
∑
h

jh ≤ (n− 1) + (n− 2) + · · · + 1 + 0 =

(
n

2

)
.

So all inequalities must be equalities, i.e., (j1, . . . , jn) = (n−1, n−2, . . . , 1, 0),
hence we have (3). �

Now back to the proof, suppose that P =
∑

i∈I(P )

aiX
i ∈ R[X]m, with

degP = m >
(n
2

)
. Let j = (j1, . . . , jn) = f(P ). We have P = P ′ + P ′′,

with P ′ =
∑
i∈I′

aiX
i and P ′′ =

∑
i∈I′′

aiX
i, where I ′ and I ′′ are the sets of all

indices i ∈ I(P ) such that o(i) = j and o(i) < j, respectively. Obviously,
f(P ′′) < j (or P ′′ = 0, if I ′′ = ∅). For every i ∈ I ′, since degXi = m >

(n
2

)
,

we are in one of the cases (1) and (2) of Lemma 2. Then, by Lemma 1, we
have that Xi ≡ Qi (mod Mn) for some Qi ∈ R[X]m with f(Qi) < o(i) = j.
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Then P ′ ≡ ∑
i∈I′

aiQi (mod Mn), so P = P ′ + P ′′ ≡ Q (mod Mn), where

Q =
∑
i∈I′

aiQi + P ′′. Since f(Qi) < j ∀i ∈ I ′ and f(P ′′) < j or they are 0,

same will happen with Q.
If Q = 0 then P ∈ Mn and we are done. Otherwise we apply the same

procedure to Q and the invariant f(P ) will decrease further. Since it cannot
decrease indefinitely, eventually we get P ≡ 0 (mod Mn), so P ∈ Mn, as
claimed.

For the second statement, we will prove that Xi /∈ M(n2)
if o(i) = α =

(n− 1, n− 2, . . . , 1, 0).
Let Sn be the symmetric group on n letters. For any σ ∈ Sn and

i = (i1, . . . , in) ∈ Nn we denote iσ := (iσ(1), . . . , iσ(n)). (If we regard i and
σ as functions i : {1, . . . , n} → N and σ : {1, . . . , n} → {1, . . . , n} then iσ is
the composition i ◦ σ.) This is a right action of Sn on Nn, i.e., (iσ)τ = i(στ)
∀σ, τ ∈ Sn.

Then for any i ∈ Nn we have o(i) = α iff i = ασ for some σ ∈ Sn. More-
over, since the entries of α are mutually distinct, σ is uniquely determined.
So there is a bijection Sn → o−1(α), given by σ �→ ασ.

We define a linear map ψ : R[X](n2)
→ R by

∑
i
aiX

i =
∑

σ∈Sn

ε(σ)aασ .

On monomials, ψ is given by Xασ �→ ε(σ) ∀σ ∈ Sn and Xi �→ 0 if i /∈ o−1(α).

Lemma 3. We have M(n2)
⊆ kerψ.

Proof. As a vector space, M(n2)
is generated by the products Xjeh, with

1 ≤ h ≤ n and j = (j1, . . . , jn) ∈ Nn such that degXj =
(n
2

)−h. So it suffices
to prove that such products belong to kerψ.

As seen in the proof of Lemma 1, we have eh =
∑
c∈T

Xc, where T =

{(c1, . . . , cn) ∈ {0, 1}n | ∑
s
cs = h}, so Xjeh =

∑
c∈T

Xj+c. Hence, if we put

A = {σ ∈ Sn | ασ = j + c for some c ∈ T}, then f(Xjeh) =
∑
σ∈A

ε(σ).

Note that j1, . . . , jn cannot be mutually distinct since this would imply
that

(n
2

) − h = degXj = i1 + · · · + in ≥ 0 + 1 + · · · + n − 1 =
(n
2

)
. So there

are 1 ≤ s1 < s2 ≤ n such that js1 = js2 . We denote by τ the transposition
(s1, s2) ∈ Sn. ThenH = {1, τ} is a subgroup of Sn and Sn writes as a disjoint

union of left cosets from Sn/H, Sn =
n!/2⋃
t=1

σtH =
n!/2⋃
t=1

{σt, σtτ}.
Let σ ∈ A and let c = (c1, . . . , cn) ∈ T such that j + c = ασ. We

define c′ = (c′1, . . . , c′n) by c′s1 = cs2 , c
′
s2 = cs1 and c′s = cs for s �= s1, s2.

Obviously c′ ∈ {0, 1}n and
n∑

s=1
c′s =

n∑
s=1

cs = h, so c′ ∈ T . We denote

i = (i1, . . . , in) = j + c and i′ = (i′1, . . . , i′n) = j + c′. Since js1 = js2 , we have
i′s1 = js1 + c′s1 = js2 + cs2 = is2 and similarly i′s2 = is1 . If s �= s1, s2 then
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i′s = js + c′s = js + cs = is. In conclusion, i′s = iτ(s) ∀s, i.e., i′ = iτ . This
means j + c′ = (j + c)τ = αστ , so στ ∈ A.

Hence if σ ∈ A then the whole left coset σH = {σ, στ} is contained
in A. It follows that A is a union of left cosets A =

⋃
t∈B

{σt, σtτ} for some

B ⊆ {1, . . . , n!/2}. Hence
f(Xjeh) =

∑
σ∈A

ε(σ) =
∑
t∈B

(ε(σt) + ε(σtτ)) =
∑
t∈B

0 = 0.

(Since τ is odd, σt and σtτ have opposite parities, so ε(σt) = −ε(σtτ).) �
As a consequence of Lemma 3, if i ∈ Nn with o(i) = α then i = ασ

for some σ ∈ Sn, so ψ(X
i) = ψ(Xασ) = ε(σ) �= 0, whence Xi /∈ kerψ, so

Xi /∈M(n2)
.

In particular Xα = Xn−1
1 Xn−2

2 · · ·Xn−1 /∈M(n2)
. �

We can actually prove that M(n2)
= kerψ. For this we need some

preliminary results.

Lemma 4. Let P ∈ R[X](n2)
.

(i) If f(P ) < α then P ∈M(n2)
.

(ii) If f(P ) is arbitrary then there are bσ ∈ R, with σ ∈ Sn, such that
P ≡ ∑

σ∈Sn

bσX
ασ (mod M(n2)

) and ψ(P ) =
∑

σ∈Sn

ε(σ)bσ .

Proof. Note that if f(P ) �= α then, by the same proof from the case
when degP = m >

(n
2

)
, there is a polynomial Q ∈ R[X](n2)

with P ≡ Q

(mod M(n2)
), such that f(Q) < f(P ) or Q = 0. When f(P ) = α this no

longer applies because of the obstruction posed by the special case (3) of
Lemma 2.

If degP < α then degP �= α, so there is Q with P ≡ Q (mod M(n2)
),

such that f(Q) < f(P ) or Q = 0. If Q = 0 then we are done. Otherwise
f(Q) < f(P ) < α, so the procedure can be repeated. Since f(P ) cannot
decrease indefinitely, eventually we get f(P ) ≡ 0 (mod M(n2)

), i.e., P ∈M(n2)
and we have (i).

For the proof of (ii) we show first that for any P ∈ R[X](n2)
we have P ≡

Q (mod M(n2)
) for some Q ∈ R[X](n2)

with f(Q) ≤ α or Q = 0. If f(P ) ≤ α

or P = 0 then we just take Q = P . So we may assume that f(P ) > α. Since
f(P ) �= α, we have P ≡ Q (mod M(n2)

) for some Q ∈ R[X](n2)
such that

f(Q) < f(P ) or Q = 0. If f(Q) ≤ α or Q = 0 then we are done. Otherwise
f(Q) > α, so we can apply the same procedure to Q. At each step f(P )
decreases. Eventually we get some Q with f(Q) ≤ α or Q = 0.

Let ai be the coefficient of Xi in Q. Since f(Q) ≤ α or Q = 0, every
Xi that appears with non-zero coefficient in Q satisfies o(i) ≤ α. Then
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Q =
∑

o(i)=α

aiX
i +

∑
o(i)<α

aiX
i. But if o(i) < α then f(Xi) = o(i) < α so,

by (i), Xi ∈ M(n2)
. Hence P ≡ Q =

∑
o(i)=α

aiX
i +

∑
o(i)<α

aiX
i ≡ ∑

o(i)=α

aiX
i

(mod M(n2)
).

Since {i ∈ Nn | o(i) = α} = {ασ | σ ∈ Sn}, we get P ≡ ∑
o(i)=α

aiX
i =∑

σ∈Sn

bσX
ασ (mod M(n2)

), where bσ = aασ. By Lemma 3, we have P −∑
σ∈Sn

bσX
ασ ∈M(n2)

⊆ kerψ. Therefore ψ(P ) = ψ(
∑

σ∈Sn

bσX
ασ)=

∑
σ∈Sn

ε(σ)bσ .

�
Lemma 5. If 1 ≤ h ≤ n − 1 and τ ∈ Sn, τ = (h, h + 1), then

Xα +Xατ ∈M(n2)
.

Proof. Note that α = (α1, . . . , αn), with αs = n−s. Let j = (j1, . . . , jn),

j = (α1 − 1, . . . , αh − 1, αh+1, . . . , αn)

= (n− 2, n − 3, . . . , n− h− 1, n − h− 1, n − h− 2, . . . , 1, 0).

We have degXj = degXα − h =
(n
2

)− h. Then degXjeh is homogeneous of

degree degXj + h =
(
n
2

)
and Xjeh ∈M , so Xjeh ∈M(n2)

.

We write as usual eh =
∑
c∈T

Xc, with T = {c = (c1, . . . , cn) ∈ {0, 1}n |∑
s
cs = h}, so that Xjeh =

∑
c∈T

Xj+c.

Let c′, c′′ ∈ T , c′ = (1, . . . , 1, 0, . . . , 0) and c′′ = (1, . . . , 1, 0, 1, 0, . . . , 0).
If c = c′ then for s ≤ u we have js + c′s = αs − 1 + 1 = αs, and for s ≥ u+ 1
we have js + c′s = αs +0 = αs. Hence j + c′ = α. If c = c′′ note that c′′s = c′s,
so js + c′′s = js + c′s = αs for s �= h, h + 1. Also jh + c′′h = αh − 1 + 0 = αh+1

and jh+1+ c
′′
h+1 = αh+1+1 = αh. Hence js+ c

′′
s = ατ(s) ∀s, i.e., j+ c′′ = ατ .

Since Xjeh =
∑
c∈T

Xj+c, we have Xα +Xατ = Xj+c′ +Xj+c′′ = Xjeh−∑
c∈T\{c′,c′′}

Xj+c. We have Xjeh ∈M(n2)
, so if we prove that

∑
c∈T\{c′,c′′}

Xj+c ∈
M(n2)

then Xα +Xατ ∈ M(n2)
and we are done. By Lemma 4(i) it is enough

to prove that

f(
∑

c∈T\{c′,c′′}
Xj+c) = max

c∈T\{c′,c′′}
o(j + c) < α.

So we must prove that o(j + c) < α ∀c ∈ T \ {c′, c′′}.
Let c ∈ T \ {c′, c′′} and let o(j + c) = k = (k1, . . . , kn). We must

prove that k < α. Assume first that c1 = · · · = cu−1 = 1. Since c1 +
· · · + cn = u there is precisely one index u ≤ s ≤ n such that cs = 1. This
index cannot be u or u + 1 since this would imply that c = c′ or c′′. So
cu = cu+1 = 0. For 1 ≤ s ≤ u − 1 we have js + cs = αs − 1 + 1 = αs. Also
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ju + cu = αu − 1 + 0 = αu − 1, ju+1 + cu+1 = αu+1 + 0 = αu − 1 and if
s ≥ u + 2 then js + cs = αs + cs ≤ αu+2 + 1 = αu − 2 + 1 = αu − 1. Since
α1 > α2 > · · · > αu−1 > αu−1, we have that k1, . . . , ku, the largest u entries
of j + c in decreasing order, are α1, α2, . . . , αu−1, αu − 1. This implies that
(k1, . . . , kn) < (α1, . . . , αn), i.e., k < α.

If not all c1, . . . , cu−1 are 1 then let 1 ≤ v ≤ u− 1 be minimal with the
property that cv = 0. For 1 ≤ s ≤ v−1 we have js+cs = αs−1+1 = αs. Also
jv+cv = αv−1+0 = αv−1. For v+1 ≤ s ≤ n we use the fact that the sequence
j is decreasing and v + 1 ≤ u so js + cs ≤ jv+1 + 1 = αv+1 − 1 + 1 = αv − 1.
Since α1 > α2 > · · · > αv−1 > αv − 1, we have that k1, . . . , kv, the largest v
entries of j + c in decreasing order, are α1, α2, . . . , αv−1, αv − 1. This implies
that (k1, . . . , kn) < (α1, . . . , αn), i.e., k < α. �

Lemma 6. For every σ ∈ Sn we have Xα ≡ ε(σ)Xασ (mod M(n2)
).

Proof. For φ ∈ Sn put Xφ = (Xφ(1), . . . ,Xφ(n)). If i = (i1, . . . , in) ∈ Nn

then Xiφ
φ =

n∏
s=1

X
iφ(s)
φ(s) =

n∏
t=1

Xit
t = Xi.

Then, as a consequence of Lemma 4, if φ, τ ∈ Sn such that τ is a

transposition of the form (u, u+1), with 1 ≤ u ≤ n− 1, then Xαφ
φ +Xατφ

φ =

Xα + Xατ ∈ M(n2)
. But M(n2)

is invariant to permutations of the variables

X1, . . . ,Xn, so X
αφ
φ +Xατφ

φ ∈ M(n2)
remains true if we replace X by Xφ−1 ,

which sends Xφ to X. Hence we have Xαφ +Xατφ ∈M(n2)
, i.e.,

Xαφ ≡ −Xατφ (mod M(n2)
).

Let now σ ∈ Sn. Then σ writes as σ = τk · · · τ1, where each τl ∈ Sn
is a transposition of the form (u, u + 1). Since each τl is odd, we have
ε(σ) = (−1)k.

For 1 ≤ l ≤ k we take τ = τl and φ = τl−1 · · · τ1 in the congruence
above. We get Xατl−1···τ1 ≡ −Xατl···τ1 (mod M(n2)

). Hence we have

Xα ≡ −Xατ1 ≡ Xατ2τ1 ≡ · · · ≡ (−1)kXατk ···τ1 (mod M(n2)
).

But σ = τk · · · τ1 and ε(σ) = (−1)k, so we have Xα ≡ ε(σ)Xασ (mod M(n2)
).

�
We now prove our main result.

Proposition. M(n2)
= kerψ. Equivalently, a homogeneous polynomial

of degree
(
n
2

)
belongs to M if and only if ψ(P ) = 0.

Proof. The inclusionM(n2)
⊆ kerψ is just Lemma 3. Conversely, assume

that P ∈ kerψ. By Lemma 4(ii) there are bσ ∈ R for σ ∈ Sn such that
P ≡ ∑

σ∈Sn

bσX
ασ (mod M(n2)

) and 0 = ψ(P ) =
∑

σ∈Sn

ε(σ)bσ .
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Then we have b1 = − ∑
σ∈Sn\{1}

ε(σ)bσ , so

P ≡ b1X
α +

∑
σ∈Sn\{1}

bσX
ασ =

(
−

∑
σ∈Sn\{1}

ε(σ)bσ

)
Xα +

∑
σ∈Sn\{1}

bσX
ασ

=
∑

σ∈Sn\{1}
bσ(X

ασ − ε(σ)Xα) (mod M(n2)
)

But for every σ ∈ Sn \ {1}, by Lemma 6, we have Xα − ε(σ)Xασ ∈ M(n2)
,

so bσ(X
ασ − ε(σ)Xα) = −ε(σ)bσ(Xα − ε(σ)Xασ) ≡ 0 (mod M(n2)

), whence

P ≡ 0 (mod M(n2)
), i.e., P ∈M(n2)

. �

Note. The first part of this problem was posted on math.stackexchange
at the address https://math.stackexchange.com/questions/84780.

In the original posting from 2011 the condition was that the degree is

> n(n− 1) but, in comments, it was improved to > n(n−1)
2 .

474. Calculate

∞∑
n=1

(2n − 1)

[(
1

n2
+

1

(n + 1)2
+ · · ·

)2

− 1

n2

]
.

Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Uni-

versity of Cluj-Napoca, Cluj-Napoca, Romania.

Solution by the authors. The series equals 3. We need Abel’s summation
by parts formula which states that if (an)n≥1 and (bn)n≥1 are sequences of real

or complex numbers and An =
n∑

k=1

ak, then
n∑

k=1

akbk = Anbn+1 +
n∑

k=1

Ak(bk −

bk+1), or
∞∑
k=1

akbk = lim
n→∞Anbn+1 +

∞∑
k=1

Ak(bk − bk+1).

We apply this formula for

an = 2n− 1 and bn =

(
1

n2
+

1

(n+ 1)2
+ · · ·

)2

− 1

n2
.

We have An = n2 and

bn − bn+1 =
1

n2

(
1

n2
+

2

(n+ 1)2
+

2

(n+ 2)2
+ · · ·

)
+

1

(n + 1)2
− 1

n2
.

It follows that
∞∑
n=1

(2n − 1)

[(
1

n2
+

1

(n+ 1)2
+ · · ·

)2

− 1

n2

]

= lim
n→∞n2

[(
1

(n+ 1)2
+

1

(n+ 2)2
+ · · ·

)2

− 1

(n+ 1)2

]
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+

∞∑
n=1

n2
[
1

n2

(
1

n2
+

2

(n+ 1)2
+ · · ·

)
+

1

(n+ 1)2
− 1

n2

]

=
∞∑
n=1

[(
2

n2
+

2

(n+ 1)2
+ · · ·

)
+

n2

(n+ 1)2
− 1

n2
− 1

]

= 2

∞∑
n=1

[(
1

n2
+

1

(n+ 1)2
+ · · ·

)
− 1

n

]
+

∞∑
n=1

(
2

n
− 1

n2
− 2n+ 1

(n + 1)2

)

= 2
∞∑
n=1

[(
1

n2
+

1

(n+ 1)2
+ · · ·

)
− 1

n

]
+

∞∑
n=1

(
2

n
− 2

n+ 1
+

1

(n+ 1)2
− 1

n2

)

= 2

∞∑
n=1

[(
1

n2
+

1

(n+ 1)2
+ · · ·

)
− 1

n

]
+ 1. (1)

We used in our calculations the limit

lim
n→∞n2

[(
1

(n + 1)2
+

1

(n+ 2)2
+ · · ·

)2

− 1

(n+ 1)2

]

= lim
n→∞n2

(
1

(n+ 1)2
+

1

(n+ 2)2
+ · · ·

)2

− 1

= 0,

where the limit lim
n→∞n

(
1

(n+1)2
+ 1

(n+2)2
· · ·
)
= 1 can be proved by an appli-

cation of Cesàro–Stolz lemma, the 0/0 case.

Now we calculate the sum

∞∑
n=1

[(
1

n2
+

1

(n+ 1)2
+ · · ·

)
− 1

n

]
.

We apply yet again Abel’s summation formula, this time with an = 1

and bn =
(

1
n2 + 1

(n+1)2 + · · ·
)
− 1

n , and we get

∞∑
n=1

[(
1

n2
+

1

(n+ 1)2
+ · · ·

)
− 1

n

]
= lim

n→∞n

[(
1

(n+ 1)2
+

1

(n+ 2)2
+ · · ·

)
− 1

n+ 1

]
+

∞∑
n=1

n

(
1

n2
− 1

n
+

1

n+ 1

)

=

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1. (2)

Combining (1) and (2) the problem is solved. �
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475. We say that a function f : R → R has the property (P ) if it is continuous
and

2f(f(x)) = 3f(x)− x for all x ∈ R.

a) Prove that if f has property (P ) then M = {x ∈ R : f(x) = x} is a
nonempty interval.

b) Find all functions with property (P ).

Proposed by Dan Moldovan and Bogdan Moldovan, Cluj-Napoca, Roma-

nia.

Solution by the authors. a) We have that

f(x) = f(y) ⇒ f(f(x)) = f(f(y)) ⇒ x = y.

It follows that the function is injective and, being continuous, it is strictly

monotone. From f(x) =
2f(f(x)) + x

3
it follows that f is increasing (as a

sum of increasing functions).
Let x0 ∈ R. We define the sequence of iterates (xn)n≥0: xn+1 = f(xn),

for all n ∈ N. After replacing in the hypothesis, we get 2xn+2 = 3xn+1 − xn,
meaning that

xn = c1 · 1

2n
+ c2 · 1n,

where c1 = 2x0 − 2f(x0) and c2 = 2f(x0)− x0.
We have lim

n→∞xn = c2 and, because f is continuous, from xn+1 = f(xn)

it follows that c2 = f(c2). So the function f has c2 = 2f(x0) − x0 as a
fixed point. Moreover, since x0 has been chosen arbitrarily, it follows that
2f(x)− x is a fixed point of f , for all x ∈ R, hence

2f(x)− x ∈M for all x ∈ R. (1)

Now, let a, b ∈M and c ∈ (a, b). We define the function

h : R → R, h(x) = 2f(x)− x− c.

Obviously, h is continuous, and h(a)h(b) = (a− c)(b− c) < 0. So there exists
x1 ∈ (a, b) such that h(x1) = 0, meaning that c = 2f(x1)− x1, which by (1)
ensures that c is a fixed point of f .

Concluding, M is a nonempty interval.

b) Consider α = infM and β = supM . If α = −∞ and β = +∞, then
f(x) = x for all x ∈ R, which clearly has property (P ).

Assume next that β is finite and let x0 > β. Then

2f(x0)− x0 ≤ β < x0 (2)

since 2f(x0)−x0 ∈M by (1). It follows that the sequence (xn)n≥0 of iterates
defined above is strictly decreasing because c1 > 0. Moreover, the sequence
decreases to c2 = 2f(x0) − x0 ∈ M as n → ∞. If c2 �= β, then there exists
k ∈ N such that xk ∈ [c2, β) ⊆ M , hence xk ∈ M and then (xn)n≥k is
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constant, in contradiction with its strict monotonicity. Therefore, c2 = β
which gives us f(x0) =

x0+β
2 (for all x0 > β).

Similarly, if α is finite we consider x0 < α and following the same
reasoning we get f(x0) =

x0+α
2 (for all x0 < α). In conclusion, the functions

verifying property (P ) are:

f(x) =

⎧⎨⎩
x+α
2 , if x ≤ α
x, if x ∈ (α, β)

x+β
2 , if x ≥ β

(x ∈ R)

(easy to check that property (P ) is satisfied), with the observation that α, β
may be infinite (cases when the corresponding branches are missing). �

Solution by Leonard Giugiuc. If n ≥ 1 denote by fn = f ◦ · · · ◦ f , where
the number of f ’s is n. We also put f0(x) = x.

By replacing in the given relation x by fn(x) one gets 2fn+2 = 3fn+1−fn
∀n ≥ 0, so we have a second degree linear recurrence, from which we get

fn =

(
2n − 1

2n−1

)
f1 −

(
2n−1 − 1

2n−1

)
f0 =

(
2n − 1

2n−1

)
f −

(
2n−1 − 1

2n−1

)
x.

As a consequence, for every x ∈ R we have limn→∞ fn(x) = g(x), where
g(x) = 2f(x)− x. Since f is continuous, g is continuous too.

We have g(f(x)) = 2f(f(x))− f(x) = 3f(x)− x− f(x) = 2f(x)− x =
g(x), i.e., g ◦ f = g. By composing to the right with fk for some k ≥ 0 we
get g ◦ f ◦ fk = g ◦ fk, i.e., g ◦ fk+1 = g ◦ fk. It follows that for n ≥ 0 we have
g = g ◦ f = g ◦ f2 = · · · = g ◦ fn.

Then for every n ≥ 0 we have g(x) = g(fn(x)). Since g is continuous and
limn→∞ fn(x) = g(x), we have g(g(x)) = limn→∞ g(fn(x)) = limn→∞ g(x) =
g(x), so g ◦ g = g.

If g is constant, say g(x) = a ∀x ∈ R, then 2f(x)−x = a, so f(x) = x+a
2 .

We assume now that g is not a constant function. Since g is continuous,
g(R) is a proper interval I ⊂ R. For every x ∈ I we have x = g(y) for some
y ∈ R and we get g(x) = g(g(y)) = g(y) = x, i.e., 2f(x)−x = x. So f(x) = x
∀x ∈ I.

If I = R, i.e., if g is surjective, then g(x) = x ∀x ∈ R.
Suppose now that I ⊂ R. Assume first that I is bounded from above

and let b = sup I. Then there is a sequence xn in I with xn → b. By taking
limits in the relation g(xn) = xn, we get g(b) = b, so b ∈ I. As a consequence,
f(b) = b

We claim that f(y) ≤ b for every y ≥ b. When y = b we have f(b) = b.
Suppose that there is y > b such that f(y) < b. Then (f(y), b)∩ I �= ∅. Take
t ∈ (f(y), b) ∩ I. Since f(b) = b > t > f(y) and f is continuous, there is
x ∈ (b, y) with f(x) = t. Since t ∈ I we Have f(t) = t. Then

2f(f(x)) = 3f(x)− x⇒ 2f(t) = 3t− x⇒ 2t = 3t− x⇒ x = t.
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But t < b < x. Contradiction. Thus f(x) ≥ b ∀x ≥ b. Recursively fn(x) ≥ b
∀x ≥ b ∀n ≥ 0. (If fn(x) ≥ b then fn+1(x) = f(fn(x)) ≥ b.)

It follows that for every x ≥ b we have g(x) = limn→∞ fn(x) ≥ b. On
the other hand, g(x) ∈ g(R) = I, so that g(x) ≤ sup I = b. Hence for every
x ≥ b we have 2f(x)− x = g(x) = b, whence f(x) = x+b

2 .
If I is bounded from bellow and a = inf I then, by a similar reasoning,

we get a ∈ I and for every x ≤ a we gave 2f(x)−x = g(x) = a, so f(x) = x+a
2 .

In conclusion, we have three cases: I = (−∞, b], I = [a,∞) and I =
[a, b], where a, b ∈ R are parameters, a < b. In each of these cases, we have
a different formula for f , namely

f(x) =

{
x if x ≤ b,
x+b
2 if x ≥ b,

f(x) =

{
x+a
2 if x ≤ a,

x if x ≥ b,

respectively

f(x) =

⎧⎪⎨⎪⎩
x+a
2 if x ≤ a,

x if a ≤ x ≤ b,
x+b
2 if x ≥ b.

Together with these, we have the functions f(x) = x and f(x) = x+a
2 ,

previously obtained. Obviously all these functions satisfy the required con-
dition. �

476. Calculate the integral ∫ ∞

0

arctan x√
x4 + 1

dx.

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,

Romania.

Solution by the author. We denote

A =

∫ ∞

0

arctan x√
x4 + 1

dx and B =

∫ ∞

0

arcctan x√
x4 + 1

dx.

Then

A+B =

∫ ∞

0

arctan x+ arcctan x√
x4 + 1

dx =
π

2

∫ ∞

0

1√
x4 + 1

dx.

To compute the integral C =
∫∞
0

1√
x4+1

dx we use the following formula for

Euler’s beta function

B(p, q) =

∫ ∞

0
yp−1(1 + y)p+qdy.

We make the change of variables x4 = y in the integral C and we get

C =
1

4

∫ ∞

0
y−3/4(1 + y)1/2dy =

1

4
B(1/4, 1/4).
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We use the well known formula B(p, q) = Γ(p)Γ(q)
Γ(p+q) and we get

C =
1

4
· Γ(1/4)

2

Γ(1/2)
=

1

4
√
π
Γ(1/4)2.

It follows that A + B = π
2C =

√
π
8 Γ(1/4)2. But arctan x = arcctan 1

x so,

after making the change of variables t = 1
x , we get A = B. Thus our integral

equals A =
√
π

16 Γ(1/4)
2. �

Solution by Moubinool Omarjee, Lycée Henri IV, Paris, France. We
denote by A our integral and we make the substitution y = 1

x . We get

A =

∫ ∞

0

arctan x√
x4 + 1

dx =

∫ ∞

0

arctan 1
y√

y4 + 1
dy =

∫ ∞

0

π
2 − arctan y√

y4 + 1
dy

=
π

2

∫ ∞

0

1√
y4 + 1

dy −A.

Hence

A =
π

2

∫ ∞

0

1√
x4 + 1

dx.

But it is a well-known result that
∫∞
0

1√
x4+1

dx = 4Γ(5/4)2√
π

(see wolfram alpha.)

We therefore get
∫∞
0

arctg x√
x4+1

dx =
√
πΓ2(5/4) = 1.4561 . . . . �

We also received a solution from Daniel Văcaru, from Piteşti, Romania.

He proved that the integral is equal to π
2

∫ 1
0

1√
x4+1

dx, but left the result in

this form.

477. For every complex matrix A we denote by A∗ its adjoint, i.e., the
transposed of its conjugate, A∗ = ĀT . If A is square and A = A∗ we say that
A is self-adjoint (or Hermitian). In this case for every complex vector x we
have x∗Ax ∈ R. If A,B are self adjoint we say that A ≥ B if x∗Ax ≥ x∗Bx
for every complex vector x.

For a complex matrix A we denote |A|2 = AA∗. Note that |A|2 is
self-adjoint and ≥ 0. (If A∗x = y = (y1, . . . , yn)

T then x∗|A|2x = y∗y =
(ȳ1, . . . , ȳn)(y1, . . . , yn)

T = |y1|2 + · · ·+ |yn|2 ≥ 0.)
Let A be a square matrix with complex coefficients and I the identity

matrix of the same order. Then the following statements are equivalent:
(i) |I + zA|2 = |I − zA|2 for all z ∈ C;
(ii) |I + zA|2 ≥ I for all z ∈ C;
(iii) A = 0.
Are these statements still equivalent if we replace “complex” by “real”

throughout?

Proposed by George Stoica, New Brunswick, Canada.



50 Problems

Solution by the author. Obviously (iii) ⇒ (ii), (i).
Let us prove that (ii) ⇒ (iii). Since |I+ zA|2 = I+ zA+ z̄A∗+ |z|2|A|2,

the inequality |I + zA|2 ≥ I writes as

zA+ z̄A∗ + |z|2|A|2 ≥ 0 for all z ∈ C.

For natural m ≥ 1 and z = 1/m,−1/m, i/m,−i/m, the above inequality
becomes

A+A∗ +
1

m
|A|2 ≥ 0, A+A∗ − 1

m
|A|2 ≤ 0

and

iA− iA∗ +
1

m
|A|2 ≥ 0, iA− iA∗ − 1

m
|A|2 ≤ 0.

Letting m→ ∞ in the first two inequalities, and then in the last two inequal-
ities, gives

A+A∗ = 0 and iA− iA∗ = 0,

which imply that A = 0, i.e., (iii) is proved.
Finally, let us prove that (i) ⇒ (iii). The relation |I + zA|2 = |I − zA|2

for all z ∈ C, writes as zA+ z̄A∗ = 0 for all z ∈ C. For z = 1, i, we conclude
that

A+A∗ = 0 and iA− iA∗ = 0,

which yield that A = 0, i.e., (iii) is true.

The statements are no longer equivalent if one replaces “complex” by
“real” in the problem. If we try to reproduce the proof from the complex
case then we can no longer give z the values z = ±i/m or i. So, by a
similar reasoning, we obtain that (i) is equivalent to A + AT = 0 and that
(ii) implies A+AT = 0. But in fact (ii) is equivalent to A+AT = 0. Indeed,
if A + AT = 0 then |I + zA|2 = I + z2|A|2 ≥ I. So both (i) and (ii) are
equivalent to A+AT = 0, but they do not imply (iii).

E.g., for A =

[
0 1
−1 0

]
we have |I+zA|2 = (1+z2)I ≥ I, but A �= 0. �

478. Determine the largest positive constant k such that for every a, b, c ≥ 0
with a2 + b2 + c2 = 3 we have

(a+ b+ c)2 + k|(a− b)(b− c)(c− a)| ≤ 9.

Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania.

Solution by the author. We denote by kmax the required largest constant.
The inequality can also be written as

(a+ b+ c)2
√
a2 + b2 + c2

3
+ k|(a − b)(b− c)(c − a)| ≤ 9

(
a2 + b2 + c2

3

)3/2

.
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Since this new form of the inequality is homogeneous it should hold for every
a, b, c ≥ 0 with a2 + b2 + c2 �= 0.

By homogeneity, we may assume that a+ b+ c = 3. Then 0 ≤ ab+ bc+

ca ≤ (a+b+c)2

3 = 3, so ab + bc + ca = 3(1 − q) for some q ∈ [0, 1]. Together

with a+ b+ c = 3, this implies a2+b2+c2

3 = 1 + 2q.
Then the required equality becomes

k|(a− b)(b− c)(c − a)| ≤ 18q
√

1 + 2q.

We denote x = a − 1, y = b − 1, z = c − 1. Then 0 ≤ a, b, c ≤ 3,
a + b + c = 3 and ab + bc + ca = 3(1 − q) translate to −1 ≤ x, y, z ≤ 2,
x+ y + z = 0 and xy + yz + zx = −3q. (We have xy + yz + zx = ab+ bc+
ca− 2(a+ b+ c) + 3 = 3(1− q)− 2 · 3 + 3 = −3q.)

We also have (a− b)(b− c)(c − a) = (x− y)(y − z)(z − x).
If we put Pj = xj + yj + zj (j ∈ N) then P1 = 0, P2 = 6q, P3 = 3xyz

and P4 = 18q2. We denote p = xyz.

Lemma. (x−y)2(y−z)2(z−x)2 = 3P2P4+2P1P2P3−(P 3
2+3P 2

3+P
2
1P4).

This result is well known so we won’t prove it.
By the above considerations and notations, we get (x− y)2(y− z)2(z−

x)2 = 27(4q3 − p2). Therefore, our inequality writes as

k
√

4q3 − p2 ≤ 2
√
3q
√
1 + 2q.

Note that if q = 0 then P2 = x2+y2+z2 = 6q = 0, so x = y = z = 0. If
q = 1 then ab+ bc+ ca = 3(1− q) = 0. Since a, b, c ≥ 0 and a+ b+ c = 3, this
implies that two of the numbers a, b, c are 0 and the third is 3. Hence x, y, z
are, in some order, −1,−1, 2. In both cases 4q3 − p2 = 0, so the inequality

k
√

4q3 − p2 ≤ 2
√
3q
√
1 + 2q holds for k > 0 arbitrary. So we may assume

that q ∈ (0, 1).
As we will see, if q ∈ (0, 1) then x, y, z can be chosen such that 4q3−p2 �=

0. In this case our inequality writes as

k ≤ 2
√
3q
√
1 + 2q√

4q3 − p2
.

Note that for q fixed the above upper bound is big when p2 is large. So if

p2q = min{p2 | ∃−1 ≤ x, y, z ≤ 2, x+y+z = 0, xy+yz+zx = −3q, xyz = p}
then k should satisfy the inequalities k ≤ f(q) for every q ∈ (0, 1), where
f : (0, 1) → R,

f(q) =
2
√
3q
√
1 + 2q√

4q3 − p2q

.

In conclusion, kmax = min0<q<1 f(q).
Apparently, the smallest possible value of p2q is 0. But, as we will see,

this happens only when q ≤ 1
3 . So we discuss two cases.
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Case 1. 0 < q ≤ 1
3 . We take x = −√

3q, y = 0, z =
√
3q. Then the

conditions −1 ≤ x, y, z ≤ 2, x + y + z = 0, and xy + yz + zx = −3q are
fulfilled. We also have p = xyz = 0. Hence pq = 0 and we have f(q) =
2
√
3q

√
1+2q√

4q3
=

√
3
√
q−1 + 2. Then min0<q≤1/3 f(q) = f(13) =

√
15.

Case 2. 1
3 ≤ q < 1. We have 0 ≤ (x + 1)(y + 1)(z + 1) = xyz + (xy +

yz+ zx) + (x+ y+ z)+ 1 = p− 3q+1, so p ≥ 3q− 1 ≥ 0 and p2 ≥ (3q− 1)2.
We prove that this lower bound for p2 can be attained for every 1

3 ≤ q < 1.
We must have (x+1)(y+1)(z+1) = 0 so, say, x = −1. Then x+y+z = 0

and xy + yz + zx = −3q write as −1 + y + z = 0 and −1(y + z) + yz = −3q,
which are equivalent to y+ z = 1 and yz = 1− 3q. Thus y, z are the roots of

X2−X+1−3q so, say, y =
1−
√

3(4q−1)

2 and z =
1+
√

3(4q−1)

2 . Since 1
3 ≤ q < 1,

we have 1 ≤ 3(4q − 1) < 9, so −1 < y ≤ 0 and 1 ≤ z < 2. In conclusion,
−1 ≤ x, y, z,≤ 2, so x, y, z satisfy all the required conditions.

Hence p2q = (3q − 1)2, and we get

f(q) =
2
√
3q
√
1 + 2q√

4q3 − (3q − 1)2
.

Note that√
4q3 − (3q − 1)2 =

√
(q − 1)2(4q − 1) = (1− q)

√
4q − 1,

therefore we have

f(q) = 2
√
3

q
√
2q + 1

(1− q)
√
4q − 1

.

We make the substitution u =
√

2q+1
4q−1 . Then u ∈ (1,

√
5] and we have

q = u2+1
2(2u2−1) . It follows that f(q) = h(u), with h : (1,

√
5] → R defined by

h(u) =
2√
3
· u

3 + u

u2 − 1
.

We have h′(u) = 2√
3
u4−4u2−1
(u2−1)2

. The only zero of h′ in the interval (1,
√
5 ]

is
√

2 +
√
5. We have that h′ is ≤ 0 on the interval

(
1,
√

2 +
√
5
]
and ≥ 0

on
[√

2 +
√
5,
√
5
]
. In conclusion,

min
1/3≤q<1

f(q) = min
1<u≤√

5
h(u) = h

(√
2 +

√
5
)
=

1 +
√
5√

3

√
2 +

√
5.

If φ is the golden ratio φ = 1+
√
5

2 , then note that 2 +
√
5 = φ3, so we

have min1/3≤q<1 f(q) =
2φ2

√
φ√

3
.

From Case 1 we have min0<q≤1/3 f(q) =
√
15 > min1/3≤q<1 f(q). Hence

kmax = min0<q<1 f(q) = min1/3≤q<1 f(q) =
2φ2

√
φ√

3
. �
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Note from the editor. The proof of the formula for (x − y)2(y −
z)2(z − x)2 given by the author is unnecessarily complicated. The product
Δ = (x−y)2(y−z)2(z−x)2 is the discriminant of the polynomial (X−x)(X−
y)(X − z) = X3 − 3qX − p. (We have x + y + z = 0, xy + yz + zx = −3q
and xyz = p.)

It is known that the discriminant of the polynomial X3 + cX + d is
−4c3−27d2. In our case, c = −3q and d = −p, so Δ = −4(−3q)3−27(−p)2 =
27(4q3 − p2).

Solution by Mihai Cipu. We may assume without loss of generality that
b = a+ x, c = b+ y for some x, y ≥ 0. Since

a+ b+ c = 3a+ 2x+ y, a2 + b2 + c2 = 3a2 + 2(2x+ y)a+ 2x2 + 2xy + y2,

3(a2 + b2 + c2)− (a+ b+ c)2 = 2(x2 + xy + y2),

the desired inequality is equivalent to
√
3xy(x+ y)k ≤ 2(x2 + xy + y2)

√
3a2 + 2(2x+ y)a+ 2x2 + 2xy + y2.

As the right hand side of the previous inequality decreases with a, we may
assume that a = 0. When we denote t = y/x, we deduce that the maximal
value of k is

kmax = inf
t>0

2√
3
f(t),

where f(t) =
(t2 + t+ 1)

√
t2 + 2t+ 2

t(t+ 1)
.

Routine computations give

f ′(t) =
(t+ 2)(t4 + t3 − 2t− 1)

t2(t+ 1)2
√
t2 + 2t+ 2

.

The polynomial P (t) = t4 + t3 − 2t − 1 has unique positive zero u, takes
negative values for t < u and positive values for t > u. Therefore, one has
kmax = 2f(u)/

√
3.

The wanted value v = f(u) can be computed by noting that u is a
common zero for the polynomials P (t) and Q(t), where

Q(t) = (t2 + t+ 1)2(t2 + 2t+ 2)− v2t2(t+ 1)2.

Therefore, v is a positive zero for their resultant. Using a package like
PARI/GP1), one easily finds Res(P,Q) = (v4 − 11v2 − 1)2, whence

v =

√
11 + 5

√
5

2
.

Then the value kmax is determined as in the first solution.

1)The package is a widely used computer algebra system freely downloadable from the
address https://pari.math.u-bordeaux.fr/download.html.
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479. Let p be an odd prime number and A ∈ Mp(Q) a matrix such that
det(Ap + Ip) = 0 and det(A+ Ip) �= 0. Prove that:

a) Tr(A) is an eigenvalue of A+ Ip.
b) det(A+ Ip)− det(A− Ip) = (p− 1)Tr(A) + 2.

Proposed by Vlad Mihaly, Technical University of Cluj-Napoca,

Cluj-Napoca, Romania.

Solution by the author. a) Let −1, ξ1, ξ2, . . . , ξp−1 be the complex roots
of −1 of order p. Because det(Ap + Ip) = 0 and det(A + Ip) �= 0, we obtain
that there exists ξ ∈ {ξ1, ξ2, . . . , ξp−1} an eigenvalue of A. Let pA be the
characteristic polynomial of A and let P (X) = Xp−1 −Xp−2 + · · · −X + 1.
Since pA, P ∈ Q[X], ξ is a root for both pA and P , while P is an irreducible
polynomial over Q[X], it follows that P | pA. So, all the roots of P are
eigenvalues of A, hence

σ(A) = {ξ, ξ2, . . . , ξp−1, r},
where r is an eigenvalue of A.

We have Tr(A) = r + ξ + ξ2 + · · · + ξp−1 = r + 1 ∈ Q. Since r is an
eigenvalue of A, we have that Tr(A) = r + 1 is an eigenvalue of A+ Ip.

b) From

det(A− Ip) = (ξ − 1)(ξ2 − 1) · . . . · (ξp−1 − 1)(r − 1) = P2(1)(r − 1) = r − 1,

det(A+ Ip) = (ξ + 1)(ξ2 + 1) · . . . · (ξp−1 + 1)(r + 1) = P2(−1)(r + 1)

= (r + 1)p,

and Tr(A) = r + 1, we find

det(A+ Ip)− det(A− Ip) = (p − 1)Tr(A) + 2.

�

480. Let k, n be natural numbers, x1, x2, . . . , xk be distinct complex numbers
and a matrix A ∈ Mn(C) such that (A−x1In)(A−x2In) · · · (A−xkIn) = On.
Prove that rank(A−x1In)+rank(A−x2In)+ · · ·+rank(A−xkIn) = n(k−1).

Proposed by Dan Moldovan and Vasile Pop, Technical University of

Cluj-Napoca, Cluj-Napoca, Romania.

Solution by the authors. We proceed step by step.
1) If λ is an eigenvalue of matrix A and P ∈ C[X] such that P (A) = On,

then P (λ) = 0 (AX = λX, X �= O ⇒ P (A)X = P (λ)X ⇒ P (λ)X = O ⇒
P (λ) = 0).

Therefore if λ1, λ2, . . . , λp are all the distinct eigenvalues of A, then
{λ1, λ2, . . . , λp} ⊆ {x1, x2, . . . , xk} and we may assume that one has
λ1 = x1, λ2 = x2, . . . , λp = xp and p ≤ k.

2) If p < k, then for all i ∈ {p + 1, . . . , k}, xi is not an eigenvalue of
A so the matrix A − λiIn is invertible and rank(A − λiIn) = n, hence the
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problem can be reduced to the problem with the first p values xi:
prove that if holds (A− x1In)(A− x2In) · · · (A− xpIn) = On then
rank(A− x1In) + rank(A− x2In) + · · ·+ rank(A− xpIn) = n(p− 1).

3) It is sufficient to consider instead of A its Jordan canonical form
JA = P−1AP and again the problem can be further reduced to the follow-
ing one: show that if (JA − x1In)(JA − x2In) · · · (JA − xpIn) = On, then
rank(JA − x1In) + rank(JA − x2In) + · · ·+ rank(JA − xpIn) = n(p− 1).

4) We will show that JA is a diagonal matrix: if Jλ1 is the direct sum
of all Jordan blocks from JA corresponding to the eigenvalue λ1 and its
dimension is m × m, then (Jλ1 − x1Im)(Jλ1 − x2Im) · · · (Jλ1 − xpIm) = On

and the matrices Jλ1−x2Im, . . . , Jλ1−xpIm are invertible, hence Jλ1 = λ1Im.
Similarly for λ2, . . . , λp. Thus, JA is a diagonal matrix.

5) When JA = diag[λ1Ik1 |, . . . , |λpIkp ], then rank(JA − λ1In) = n− k1,
. . . , rank(JA − λpIn) = n− kp and hence rank(JA − λ1In) + rank(JA − λ2In)
+ · · ·+ rank(JA − λpIn) = pn− (k1 + k2 + · · ·+ kp) = pn− n = (p− 1)n. �

Solution by Moubinool Omarjee, Lycée Henri IV, Paris, France. Since
in C[T ] we have gcd(T−xi, T−xj) = 1 ∀i �= j, the relation (A−x1In) · · · (A−
xkIn) = 0 implies that

Cn = ker(A− x1In)⊕ · · · ⊕ ker(A− xkIn).

We take dimensions and we get

n =
k∑

j=1

dimker(A− xjIn).

By the rank theorem, this implies

n =

k∑
j=1

(n− rank (A− xjIn)).

This gives rank (A− x1In) + · · ·+ rank (A− xkIn) = n(k − 1). �
We also received a solution from Leonard Giugiuc.

481. Let K be a field and let n ≥ 1. Let A,B ∈ Mn(K) such that [A,B]
commutes with A or B.

If charK = 0 or charK > n then it is known that [A,B] is nilpotent,
i.e., [A,B]n = 0.

Prove that this result no longer holds if 0 < charK ≤ n.
(Here by [·, ·] we mean the commutator [A,B] = AB −BA.)

Proposed by Constantin-Nicolae Beli, IMAR, Bucureşti, Romania.

Solution by the author. First we give a proof of the already known result
so that we can see what doesn’t work when 0 < charK ≤ n.
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Let C = [A,B]. We prove that every positive power of C writes as the
commutator of two matrices, so its trace is 0. (In general, trXY = trY X,
so tr (XY − Y X) = 0.)

Let i ≥ 1. We have Ci = Ci−1(AB − BA) = Ci−1AB − Ci−1BA.
If C commutes with A then so does Ci−1 and we have Ci = ACi−1B −
Ci−1BA = [A,Ci−1B]. If C commutes with B then so does Ci−1 and we
have Ci = Ci−1AB − BCi−1A = [Ci−1A,B]. So, in both cases, Ci is the
commutator of two matrices and we have tr (Ci) = 0.

Let α1, . . . , αn be the roots of the characteristic polynomial PC(X) in
a certain extension L of K. Then the roots of PCi(X) are αi

1, . . . , α
i
n, so

tr (Ci) = 0 writes as αi
1 + · · ·+ αi

n = 0.
Let S1, . . . , Sn be the elementary symmetric polynomials in n variables

and let Πi(X1, . . . ,Xn) = Xi
1+· · ·+Xi

n. We have the Newton-Girard formulae

kSk =
k∑

i=1
(−1)i−1Sk−iΠi. Let si = Si(α1, . . . , αn). We have Πi(α1, . . . , αn) =

0 ∀i ≥ 1, so if we take (X1, . . . ,Xn) = (α1, . . . , αn) in the Newton-Girard
formulae then we get ksk = 0 ∀1 ≤ k ≤ n, so sk = 0. Here we used the
fact that either charK = 0 or charK > n ≥ k, so that k ∈ K×. Then
PC(X) = Xn − s1X

n−1 + · · ·+ (−1)nsn = Xn, so Cn = 0, as claimed.
The proof doesn’t work when charK = p ≤ n because in this case

psp = 0 does not imply sp = 0. Note that it is enough to consider the case
n = p. Indeed, if A,B ∈ Mp(K) are a counter-example in the case n = p
then for n ≥ p we have a counter-example given by the matrices

A =

(
A 0p,n−p

0n−p,p 0n−p,n−p

)
and B =

(
B 0p,n−p

0n−p,p 0n−p,n−p

)
.

Suppose now that n = p = charK. With the notations above, ksk = 0
implies sk = 0 for 0 ≤ k ≤ p − 1, so PC(X) = Xp + (−1)psp = Xp − sp.
(Even when p = 2, because in characteristic 2 we have 1 = −1.) If α = p

√
sp

then PC = Xp − αp = (X − α)p, so α1 = · · · = αp = α and the minimal
polynomial of C has the form (X − α)i for some 1 ≤ i ≤ p. We will provide
a counter example with i = 1 and α = 1, i.e., when the minimal polynomial
is X − 1 and we have [A,B] = C = Ip. Then obviously C commutes with
both A and B.

For convenience, we index the rows and columns of the p × p matrices
not by 1, . . . , p, but by Zp = Z/pZ. Let ei,j with i, j ∈ Zp be the canonical
basis of Mp(K), where ei,j has 1 on the (i, j) position and 0 everywhere else.
We have ei,jek,l = δj,kei,l. Then we take A =

∑
i∈Zp

ei,i+1 and B =
∑
i∈Zp

iei+1,i.

(Note that, since charK = p, we have Zp ⊆ K, so B ∈ Mp(Zp) ⊆ MP (K).)
Then AB =

∑
i∈Zp

iei,i and BA =
∑
i∈Zp

iei+1,i+1 =
∑
i∈Zp

(i− 1)ei,i.

Hence [A,B] = AB −BA =
∑
i
ei,i = Ip, as claimed. �


