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A new proof of the quadratic series of Au-Yeung
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Abstract. In this paper we give a new proof of the following remarkable

series formula )
> (H, 17
> (%) = e,

n=1
where H,, = 1+ % + -+ % denotes the nth harmonic number. The proof
is based on evaluating a special harmonic series by two different methods.
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monic series, Riemann zeta function.
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1. INTRODUCTION AND THE MAIN RESULTS

In this paper we give a new proof of the following remarkable series

formula i <%>2 ) % " .

n=1
where H,, = 1 + % + oo+ % denotes the nth harmonic number.

This formula has an interesting history. It was discovered numerically
by Enrico Au-Yeung, an undergraduate student in the Faculty of Mathe-
matics in Waterloo, and proved rigorously by David Borwein and Jonathan
Borwein in [2], who used Parseval’s theorem to prove it. Formula (1) was re-
discovered by Freitas as Proposition A.1 in the appendix section of [3]. Freitas
proved it by calculating a double integral involving a logarithmic function.
This formula is revived and brought into light by Valean and Furdui [5], who
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proved it by calculating a special integral involving a quadratic logarithmic
function. The series also appears as a problem in [4, Problem 3.70, p. 150]
and [7, Problem 2.6.1. p. 110]. It is clear that this remarkable quadratic
harmonic series has attracted lots of attention lately and has become a classic
in the theory of nonlinear harmonic series.

In this paper we prove formula (1) by calculating the series

1 H, H, H, 4
Z(2¢(3) = —= — =2 _ ) =
So(xe- g )=

in two different ways. Our method is new and as elementary as possible. We
record the results we prove in the next theorem.

Theorem 1. (a) A special harmonic sum.
The following identity holds

1 H, H, H, 4
Z12¢(3) — — — =2 _ =) = —
ST )%

(b) The quadratic series of Au—Yeung.
The following identity holds

> (%): T,

n=1
: — H,
Proof. (a) We have, since 2= 2¢(3) ([4, Problem 3.55, p. 148]), that
n=1
> 1 H1 HQ Hn - Hn+m
B:=S""(2c@3) -5 - 22 L) _ g
SR =X Y

It follows, based on symmetry reasons, that

Sy Mgy e
nlml n+m nlml n+m

which implies

n+m I e — Hn+m Hn+m
ZZ n(n +m)? §Zz<m(n+m)2+n(n+m)2>

n=1m= 1 n=1m=1
2 &= £~ nm(n +m)
Therefore
o0 o0 [ee]
1 H, H, H, 1 Hyim
“2c@3) - - 22— ) =2 2
Si(xe-m-fo )iy Sty
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One may check, by using partial fractions, that the following identity holds

o0 H—n
DI T s (3)
prt k( k: +n) n
Combining (2) and (3) we have that
1 [e.e] oo o0
5;;; nmk( k‘—i—n—i—m)
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and part (a) of the theorem is proved.

(b) Before we prove this part of the theorem we collect a formula that
we need in our analysis. Recall that Abel’s summation by parts formula
([1, p. 55], [4, Lemma A.1, p. 258]) states that if (a,),>1 and (b,),>1 are

n

n
two sequences of real numbers and A,, = > ag, then > apby = Apbp+1 +
k=1 k=1

> Ak(br — bg+1). We will be using the infinite version of this formula
k=1

Z apby, = lim (Anbni1) + Z Ak (br — bgy1)- (4)
k=1 k=1
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We calculate the series in part (a) by using formula (4), with

H H. H,
a, = — and anQC(3)—1—21—2—22— _n_;’
and we have that
H, H H = H
= __1__2_ n+1 n+1
SEVACERE i) 2 Gy
i(Hn-i—l n_1,_1>Hn+1
= 2
n=1 (n+l)
_i<Hn+1>2_§: Hn+1
- 3
—\n+1 —(n+1)
S G
B 3
n=1 n n:ln
_§<H_> mt
\n 72
H, H; Hpi1 > H, =t
SIHCGTLIIHOIOH <2C(3)—1—2—2—2——m —Oandnz_:lﬁ—ﬁ

It follows that
< (HN\? 7t 17
Z_ <n> _30+72_ 4C(4)’

and the theorem is proved
4

T
X
is given in [4, Problem 3. 58 pp 207-208] and it also appears in literature
as a problem proposed by M.S. Klamkin [6]. Another proof of the same
series formula is also given in [8, Chapter 3, pp. 81-82]. For the sake of

completeness we give below an elementary proof of this formula.
We have

ZH, =1 1 1
Szzﬁzzﬁzk(nw):Zkzn%(mk)'

n=1 n=1 k=1

A proof of the series Z which is a special linear Euler sum,
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o0 [ee]
1
We also have, based on symmetry reasons, that S = Z Z ——— and

== nk?(n + k)
it follows that

o0 o0 1
2S:ZZ<n2k(n+k)+nk2n+k>:Z n2k2

n=1k=1 n=1 k=1

:ZnQZkQ:%’

and the series is calculated. O

Corollary 2. The following equality holds

s 7T4 n
St (G- T g ) =@ -xE. 6

n3

7T4 H1 H2 "
53 3 T8 and we have, since ;Hk =n+1)Hypr1—(n+1)
that
i = ™ H  H H,
"\72 13 2 n3
n=1
. ™ Hi H Hp1
:Hﬂwwm“(wwwﬁ_ﬁ_ﬁ_WTEEQ
= Hn+1
+ ) [+ 1) Hnpy — (n+1)] CESE
n=1
i [ nel Hop ]
2
ot (n+1)2 (n+1)
17
= —C(4) —2¢(3).
The corollary is proved. O

We leave to the interested reader, as an open problem, the calculation
of the following series of which the second is the alternating version of the
series (5).

Open problem. Calculate:

o0

@)Zhwm(w&+%—%— %)
n=1

> ™ H, H H,
o S (G- )
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The asymptotic evaluation of the sum ) f (C/E)
k=1

DuMITRU Popral)

Abstract. Let n >0 and f: (1 —n,14+7) — R be a function. We prove
the following asymptotic evaluations:

Z": f ( W) = f(1)n+o(n) for f continuous;
k=1

2": f ( W) =f()n+ f (1) Inn+o(lnn) for f differentiable, and
k=1

if ( W) = f(W)n+f V) Inn—f (1)+ SO+ W (1n2n>

2 n n

for f twice differentiable.
Some applications are given.

Keywords: Convergence and divergence of series and sequences, the
Euler-Maclaurin summation formula, orders of infinity.

MSC: Primary 26A12. Secondary 40A05, 40A25.

1. INTRODUCTION

One of the central problems in mathematical analysis is to find the
asymptotic evaluation of various sums. Let us mention here only the Euler
result 1+%+---+% = lnn+’y+%+0 (%), see [1, 2]. The main purpose of this

n
paper is to find the asymptotic evaluations for the sum > f (W) for the
k=1

1)Faculty of Mathematics and Informatics, Ovidius University, Constanta, Romania,
dpopa@univ-ovidius.ro
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k=1

case when f is continuous, Proposition 1, f is differentiable, Proposition 3
and f is twice differentiable, Proposition 5. For various different asymptotic
evaluations we recommend the reader the book [4]. Our notation and notion
are standard. We recall that, if (b,)nen is a sequence of real numbers such
that there exists ng € N with b, # 0, Vn > ng, and (a,)nen is another
sequence of real numbers, the notation a,, = o(b,) means nli)rgo Z—Z = 0; if
¢ € R* the notation a,, -« ¢b,, means that nh_{r;o ‘g—: = ¢; in particular, a, -« b,

means h_}m 4 — 1. Also the notation z,, = a,+o0 (b,) means x,—a,, = o (by);
n [ee]

n

in particular, a,, « b, is equivalent to a,, = b, + o (by).
2. THE MAIN RESULTS

We begin by proving the evaluation for continuous functions.

Proposition 1. Letn > 0 and f : (1—-n,14+n) — R be a continuous
function. Then

F(VA) 1 (¥2) -+ 1 (V) = Fn+o(n).

Proof. Let ¢ > 0. Since f is continuous at 1, there exists § > 0 such
that Vo € (1 —n,1+n) with | — 1| < d. it follows that |f (z) — f(1)| < e.
From lim {/n = 1, for v. = min (n,d.) > 0, there exists n. € N such that

n—o0
Vn > n. we have {/n —1 < v.. Let n > n.. For every k = 1,...,n we have

0< Vk—1< ¢/n—1<v. and thus ‘f(%)—f(l)‘ge. Then

S (VR) = rym| < S| (V) - 1) <en
k=1 k=1

S F(VR)
or [E=L——— — f(1)| < &, which ends the proof. 0

n

To obtain the asymptotic evaluation for differentiable and twice differ-
entiable functions we need the next result.

> (VE-1)°
Proposition 2. For every o > 0 we have lim *~tpe— = 1.
n—0o0 ST
Proof. Let € > 0. Since a > 0, lim (ez—_l)a = 1. It follows that 3. > 0
z—0,2>0 x

such that V0 < 2 < d. we have (ezz;al)a — 1‘ <¢g,or

|(e" — 1) — 2% < ex®, VO < x < 4. (1)
Since lim an =0, for J; > 0 there exists n. € N such that Vn > n. we have

n—oo

0<1nT”<5E. Let n > n.. Foreveryk::1,...,nvvehaweO§%glnT"<(5<S
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Ink

and by (1) we deduce ’(eT — 1)a _ (lnk)a

SN N 2V A BN o (Ink
> (VE-1) _Z<T> <> |(VF-1) —<7>‘
k=1 k=1 k=1
- <lnk>a
<e¢ —
n
k=1
> (VE-1)° > (VE-1)°
or equivalently |%=% —1| < e Thus, lim *=5———— =1, ie,
£y o 5 (n5)

> ((L/E— 1) Z (Tk) . Since, by the Stolz-Cesaro lemma, the case

k=1
n

[]. or [3], [4, Capitolul V], it holds > (Ink)® «~ n(Inn)®, it follows that
k=1

> (%)(l - (;na@la, and hence > ({/n —1)" «~ (lna")l , which ends the proof

k=1 k=1

of the proposition. O

Proposition 3. Let n > 0 and f : (1—n,14+n) — R be a differentiable
function. Then

FV) 4+ £ (V2) 44 £ () = F(n+ £ (DInn+o(lnn).

Proof. Let € > 0. Since f is differentiable at 1, hm (x) f = f"(1), thus
there exists J. > 0 such that Vx € (1 —n,1 —1—77) Wlth the property that
|z — 1] < 0, x # 1, it follows that ‘%—f’(l) < g, or

F@—f) = Q)@= <cle—1.V e—1 <5 (2)

Since lim n = 1, for v. = min(n,d:) > 0 there exists n. € N such that
n—oo

Vn > n. we have {/n —1 < v.. Let n > n.. For every k = 1,...,n we have

0< Vk—1< n—1<uv. and, by (2),
‘f(%)—f(l)—f’(l)(%—l)’ga(%—l).

Then we have

n

S (VR — fn— > (Vi-1)

k= k=1
n

—_
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k=1

S5 F(VE)—F(1)n 35 F(VE)—f(1)n
r|=,———— — f(1)| <e. Thus lim *———— = f/(1) and, by
¥ (Vi) " (Vi)
=1 =1

Proposition 2, we obtain

i LD (VB bt F ) = F W0

n—o00 Inn

|

To prove the evaluation for twice differentiable function we need the
next result which uses the Stirling formula.

n

n
Proposition 4. ) (W - 1) =lnn—1+ lrgnn +o (@)
k=1

Proof. Let € > 0. Since lirr%) ez_z%_x = %, it follows that there exists d. > 0
Tr—r

such that V0 < x < 0. we have ‘ez;# — %‘ < e, or

2
x
e —1l—x—"—|<ex’, VO<z<0.. (3)
Since lim lnT":O, for 0. > 0 there exists n. € N such that ¥n > n. we have
n—oo
0<1nT”<55. Let n > n.. Forevery/’f:1,...,nwehave()§%glnT"<(56
and, by (3), |e’n —1— 1k _ Wk < Sk o
. Ink In’k|  eln’k
L e
n 2n? n?

We deduce that

n 2n2
k=1 = 1 k=1
c n
S ) E 1112 k
=
> (VEk—1)-1 3 Ink . S (VE=1)-1 > Ik .
or | &=L —=t— — 5| < e. Hence, lim = —=L— = 5. Since

< > 2k n—00 L S 2k
" k=1 " k=1

by the Stolz-Cesaro lemma, the case [5], it holds > In?k « nln®n, we
k=1
i(%a)-% S Ink
k=1

k=1

obtain lim

= %, that is
n—o0

N 1 In? In?
(\/E_1>:E lnk—l—nn—i—o(nn).

2n n
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n
Since, by Stirling’s evaluation, kz—:1 Ink=nln n—n+m7"+ln vV 27r—|—ﬁ+0 (%),
(see [1, 2, 5]), we deduce

. 1 Inv/2 1 1 In?
S (VE-1) = 1nn—1+ﬂ+u+—+o< >+M

2n n 12n2 n2 2n
k=1

In’n In?n In®n
+o =lnn—-1+ + 0 ,
n 2n n

2
because L2 %, # =0 (1“—") O

2n ) n

Now we prove the evaluation for the case of twice differentiable func-
tions.

Proposition 5. Letn >0 and f : (1 —n,1+4+n) — R be a twice differentiable
function. Then

F1(1) + (1) '1n2”+0 (1n2n> |

2 n n

SO F(VE) = fntf (Dnn—f/(1)+
k=1

Proof. Let € > 0. Since f is twice differentiable at 1, we have

@O - WE=1) _ )
z—1 (:L’ — 1)2 2 7

thus there exists 0. > 0 such that Vo € (1 —n,1+n) with |z — 1| < é.,  # 1,
we have ‘f(x)_f((lz:{/(l)(x_l) - fﬂ(l)‘ <g orVre (l—nl+mn),|lz—1] <J.

2 2
the following relatio)n holds
F@-f)-ale-1)-g@-1"|<e@-17 (4)

where a = [/ (1), g = @ Since h_)m Yn =1, for v, = min(n,0:) > 0

there exists n. € N such that Vn > n. we have /n —1 < v.. Let n > n..
For every k=1,...,n we have 0 < ¥k — 1 < ¢/n — 1 < v, and by (4),

£(VR) =1 - (VE-1) -5 (VE-1) <o (V1)
We have

SIICORVIUT S (/S S 7y
k=1

n
<>
k=1

f(%)—f(l)—a(%—l)—ﬁ(%—lf <e (Q/E—1)2
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k=1

lélf(W)_f(l)n_alél(%_l) —-B|<e
no 2 S €
2z (V5-1)
Thus . .
. k;f(ﬁ) —f(l)n—ak;(\/E—Q B
n—00 i (W—1>2

k=1
and, by Proposition 2, we deduce that
> F(VE) - fn-ay (VE-1)
nsoo n’n .

This is equivalent to
n . n . 1 2 1 2
S5 (VR) = rmra s (VR 1)+ 2 (M)
k=1 k=1 " K
which by Proposition 4 gives us

éf(%) =f(1)n+alnn—a+ (%"‘5) ln2n+0<ln;n>

n

/ " n2n n2n
:f(l)n—i—f’(l)lnn—f’(l)—i—f(1)—;f (1)-1n +0<1 )

Now we give some examples.
Corollary 6. Let a > 0 and ¢ : (0,1 +a) — R be a twice differentiable
function. Then for every natural number p

o (W) 4o (W) + oo (W) =np) + £ -

(1 (1 12 12
P ) W (e

2p? n n
Proof. In Proposition 5 we take f: (0,1 +a) = R, f(z) = ¢ (¥/x). We have

P =T iy 3 (A (1) iy wz)) e

¢ (1)
p

1
P P P

thus £/ (1) + £ (1) = €204 O
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Corollary 7. (i) Let p be a natural number and oo > 0. Then

n

Z 1 _n Inn . 1
k=1 Wek+a o+l pla+1)?® pla+1)?
N 11—« ln2n+ <1n2n>
. ) )
w2 (a+1)° n n

(ii) Let p be a natural number and oo € R*. Then

e VI L ea™V2 Ly ™ e a—ealnn— act
p p
N ala+1) oo ln2n+0 In?n '
2p? n n
Proof. (i) We take in Corollary 6, ¢ : (0,2) — R, ¢(x) = HLQ, so that
/ 1 " _ 2

¥ (LU) - (m+a)27 ¥ (x) - (m+a)3'

(ii) We take in Corollary 6, ¢ : (0,2) — R, ¢ (x) = e**, for which one
computes ¢ (z) = ae®®, ¢ (z) = ae?. O

Corollary 8. Letn >0 and f: (1 —n,141n) = (0,00) be a twice differen-
tiable function. Then for every natural number p

n ) _fa
i (45) -

) i)
Rt

Proof. Let o : (1—n,14+n) = R, ¢(x) =In f(z). Then f is twice differen-
tiable and by Corollary 6

ilnf<p%) ~nlnf (1) + ORI a
k=1

pf (1) pf (1)

f’(1)+f”(1)f(1)—[f/(1)]2

2 2 2
where f, = T O tn g o (120) 5 0 a5 oo, Then
n
pn

I1f("F) , :

el g )
——y — ¢ pf) . e — e pfD as n — oo.
[ (O - nard

Corollary 9. Let p be a natural number and a > 0. Then

n
H(1+apc/g)me—ﬁ(1+a)n.nﬁ

k=1
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and

n
JJR (1 +a W) e PatHIn@iD) In® (14 @) - prlafhinatn
k=1

Proof. Take in Corollary 8, f: (0,2) — (0,00), f(z) = 1+ ax (respectively
f(z) =In(1+ ax)). O
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Density of the space of bounded Lipschitz functions in the
space of continuous functions

LOREDANA I0ANAY

Abstract. We provide a proof for the fact that a continuous function
f:T — X, where (T,d) is a compact metric space and X is a Hilbert
space, can be approximated by bounded Lipschitz functions g : T — X.

Keywords: Lipschitz functions, continuous functions, approximation,
density of Lipschitz functions in continuous functions

MSC: 46C05, 46C07, 41A30, 26A16

1. INTRODUCTION

The Lipschitz functions form an important class of continuous func-
tions, playing an “intermediate role” between general continuous functions
and differentiable functions. In this respect, we can think at the famous
Rademacher theorem, which asserts that a lipschitzian function is almost
everywhere differentiable.

An important problem in general Functional Analysis is the problem of
approximating elements of a normed space X with elements of a subspace
Y of X, the elements of Y being more “accessible” or easier to handle. It
is the case of X, the space of continuous functions, and its subspace Y, the
subspace of lipschitzian functions.

1)Faculty of Mathematics and Computer Science, University of Pitesti, Romania,
loredana.madalina.ioana@gmail.com
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Within this framework, the problem has been attacked by many mathe-
maticians (see e.g. [1], [3], [4]).
The present paper offers a contribution in this direction.

2. PRELIMINARY FACTS

Let K be either R or C, N* = {1,2,...}, and X a K-vector space
(usually, X is a normed space). For any non empty set 7" and any normed
space (X, || -]|), we can consider the Banach space

B(T,X)={f:T — X | f is bounded}
equipped with the norm
fr=1fle=sw{If@®I |teT}

(the norm of uniform convergence). We will work in the particular situation
when (T, d) is a compact metric space (T having at least two elements). Then
we have C(T, X) C B(T, X), where

CT,X)={f:T—X ’ f is continuous }

is a Banach space when equipped with the induced norm || - ||.

Let (T,d) and (X, p) be two metric spaces, 7" having at least two ele-
ments, and let f : T" — X. The Lipschitz constant of f is defined by the
formula

B p(f(x), f(y))
£l = SUP{ W

In case || f||;, < oo, we say f is a Lipschitz map. In this case, we have
p(f(x), f(y) < ||fll, d(z,y) for any &,y € T. The set of all lipschitzian func-
tions f : T — X will be denoted by Lip(7, X). When X is a normed space,
it follows that Lip(7, X) is a seminormed vector space with the seminorm
f—||fll,- When (T,d) is a compact metric space, Lip(7, X) = BL(T, X)
(bounded Lipschitz), Lip(7,X) = BL(T,X) c C(T,X) C B(T,X), and
Lip(T, X) is a normed space with the norm

|z, yeT, x#y}.

Fr= 1l 0l + £ -

Density results similar to the one we present in this paper can be found
in [1], [3], 4], [5]
For general Functional Analysis, see [2].

3. THE RESULT

Theorem 1. Let (T,d) be a compact metric space and X a Hilbert space.
Then BL(T, X) is dense in C(T,X), if C(T,X) is endowed with the natural
norm ||.||oc. In particular, if X is a separable Hilbert space, then C(T,X) is
also separable.
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Proof. First step. The case X = K.

In this case, the proof can be obtained using the Stone-Weierstrass
theorem, as a direct application of the fact that the space BL(T, K) is an
algebra of functions with all the required properties. Moreover, there exists
a sequence (f™),,~, C BL(T, K) such that the set

A={f"|meN}
is dense in C(T, K). For details, see [5].

Second step. The case X = K.
According to the previous step, there exists a countable set

A={g™ | meN"}CBL(TK)
that is dense in C(7, K). Then the set A" = Ax Ax...x A C BL(T,K")

n times

is countable and dense in C (T, K™). Indeed, if f € A™ let f1, ..., fn € ADbe
such that f = (f1,..., fn) We have (all norms on K™ are equivalent):

I (#)— £ (") HKn\Zlfa — i (1")] Zr\f]nm v, t") VUt €T

Then f € BL (T, K”), so the inclusion A™ C BL (T, K™) holds. The count-
ability of A™ is obvious. Finally, let f € C(T,K"), f = (f1,..., fa). As for

every 1 < j < n there exists a sequence { g7" C A such that
m>=1

195" = Fill prraey === O

we get that for g™ := (¢]",...,g") € A" we have

n
19" = fllgLir, kny < Z g7 — fjHBL(T, K oo O

Third step. The case when X is a finite dimensional Hilbert space.

Let dimg X = n € N*. We know that in this case X is isometrically
isomorphic with K". Let ¢ : K™ — X be such an isometric isomorphism. We
denote by ® : C(T, K™) — C (T, X) the isometric isomorphism of Banach
spaces induced by ¢. Then ® (BL (T, K")) = BL(T,X) and, as BL (T, K")
is dense in C (T, K™), we deduce that BL(T, X) is dense in C(T', X).

Fourth step. The case when X is a separable Hilbert space.

In this case there exists an orthonormal basis (e;),cy- for X, hence there
exists a canonical isomorphism ¢ : [2 — X.

Let us denote

®:C(T,1°) = C(T, X)

the isometric isomorphism of Banach spaces induced by .

As @ (BL (T,1%)) = BL(T, X), it will be enough to prove that BL (T, [?)
is dense in C (T, l2).
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For n > 1 we denote by
CN(T, ) :={feC(T, P)|(f(t), ex) =0, VteT,Vk=n+1},
and
BL™ (T, 1) = BL (T, 1*) nc™ (T, 1?).
Also, we will use the notations:
(T, )= |Jc" (1, 17),
n>1
BLY (T, 1?) = | J BL™ (T, 17) .

n>=1

As ¢ (T, l2) is isometrically isomorphic with C (T, K™), and BL (T, K")

is dense in C (T, K™), we deduce that (ﬁ”‘”‘” is the closure of H C C(T, X)
for the || - ||oo norm):

BLM (T, I2) S>CM (T, 12), Vn > 1.
Let feC (T, l2) and € > 0. We have
F&) =" fult)ex, Yt €T,
k>1
where fi(t) := (f(t), er). We know that
IFOI7 =D 1)t €T,

k>1

RIS

the convergence being uniform on 7" (according to Dini’s theorem).
As a consequence, there exists n. > 1 such that
o0 2

IF@O = £ = > 1A®F <, VeeT,

k=n<+1
where

fe(t) = ka(t)ek, teT.
k=1
As we can consider that f. € C(T,K"), it results that there exists
ge € BL(T,K") (Which can be identified with BL () (T, l2)) such that

13 13
Hfs _QEHOO < ) — Hfs(t) _ga(t)HP < 2’ VieT.
Then

£ () = ge Nl = 1 (t) = @Ol + 1f=(0) = g=(D)172 <

As a consequence,

||f(t) - gs(t)le <

2 2 2
e e e
4 ==, teT
Ftr T tE

3

V2

MET = |f - gl <e.
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Then BL° (T, l2) is dense in C (T, 12). As BL (T, l2) > BL (T, l2)7
we will have even more that BL (T, l2) is dense in C (T, ZQ).

The space BL° (T , l2) is separable, because in every topological space
we have the implication:

(An C B, and A, D B, Vn € N) implies (U A, D UB”> )

Then C (T, l2) is separable.

Fifth step. The case when X is a nonseparable Hilbert space.

It means that there exists an orthonormal basis (e;),.; for X, with
card] > Wo. Let (t),-; be a sequence in T dense in T'. Let f: T — X be a
continuous function.

We know that for every k > 1 3 J, C I at most countable such that

(f (tg),ei) =0, for Vie I\ Jy

and
Flte) = (f(tn), e)es
i€Jy
If we denote by J = U Jk, then J is a countable subset of I and (f (tx),e;) =

k>1

0,VkE>1, Viell\J.

The natural conclusion is that (f(t),e;) =0, Vie I\ J.

Then f(t) = (f(t),e;)e;, VteT.

ieJ

Moreover, if we denote by X ; the closed subspace of X generated by the
countable family (e;),c;, we have that f (T') C X;. Let II; : X — X be the
orthogonal projection of X onto X ;. Then f;:=1l;0f € C(T, X;). As X
is a separable Hilbert space, according to the Fourth Step, 3 g. € BL (T, X)
such that

[fr—gell<e <= |fs(t)—g:(llx, <e, VteT.

If we denote by iy : X; — X the canonical embedding of X; into X,
which is obviously an isometry, and we remark that f = ;o f;, we infer that

Hf - gEHoo < e, where g. =ijo0g..
It is clear that g. € BL(T, X). O
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Olimpiada de matematica a studentilor din sud-estul
Europei, SEEMOUS 2019"

CORNEL BAETICAY, GABRIEL MINCU®), VASILE Pop?, MIRCEA Rus®)

Abstract. The 13" South Eastern European Mathematical Olympiad for
University Students, SEEMOUS 2019, was held on 12-17 March 2019, in
Devin, Bulgaria. We present the competition problems and their solutions
as given by the corresponding authors. Solutions provided by some of the
competing students are also included here.

Keywords: Diagonalizable matrix, rank, trace, change of variable, inte-
grals, series

MSC: Primary 15A03; Secondary 15A21, 26D15.

INTRODUCTION

SEEMOUS (South Eastern European Mathematical Olympiad for Uni-
versity Students) este o competitie anuala de matematica, adresata studen-
tilor din anii I gi II ai universitatilor din sud-estul Europei. A 13-a editie
a acestei competitii a avut loc intre 12 gi 17 martie 2019 si a fost organi-
zatda de catre Universitatea de Arhitectura, Inginerie Civila si Geodezie din
Sofia, Bulgaria. Concursul s-a desfagurat in localitatea Devin din Bulgaria,
la acesta luand parte un numar de 83 de studenti de la 19 universitati din
Bulgaria, FYR Macedonia, Grecia, Roménia si Turkmenistan.

A existat o singura proba de concurs constand din patru probleme iar
pentru rezolvarea lor s-au acordat 5 ore. Acestea au fost selectate de juriu
dintre cele 40 de probleme propuse si au fost considerate ca avand diverse
grade de dificultate: Problema 1 — grad redus de dificultate, Problemele 2, 3
— dificultate medie, Problema 4 — grad ridicat de dificultate.

Dhttps://www.fte-uacg.bg/seemous2019/

2)Universitatea din Bucuresti, Bucuresti, Romania, cornel.baetica@fmi.unibuc.ro
3)Universitatea din Bucuresti, Bucuresti, Romania, gamin@fmi.unibuc.ro

4) Universitatea Tehnica din Cluj-Napoca, Romania, Vasile.Pop@math.utcluj.ro
5)Universitatea Tehnicd din Cluj-Napoca, Romania, Mircea.Rus@math.utcluj.ro
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Au fost acordate 11 medalii de aur, 19 medalii de argint si 30 de medalii
de bronz.

Prezentam, in continuare, problemele de concurs si solutiile acestora,
asa cum au fost indicate de autorii lor. De asemenea, prezentam si solutiile
date de catre unii studenti, diferite de solutiile autorilor.

Problema 1. Un sir (z,,),>1 de numere din intervalul [0, 1] se numeste gir
Dewvin daca pentru orice functie continua f : [0,1] — R are loc relatia

JE&ngwz = [ sy )

Aratati ca un sir (xn)n>1 de numere din intervalul [0,1] este sir Devin daca

si numai daca lim — Z h—_— pentru orice k € N.
n—oo n

Juriul a considerat ca este de asteptat ca majoritatea concurentilor
sa cunoasca teorema Weierstrass-Stone si sa perceapa problema ca fiind o
aplicatie simpla a acesteia. Concurentii nu au reactionat insa conform cu
asteptarile juriului, si, intrucat o abordare alternativa care sa nu se bazeze
pe teoreme de aproximare a functiilor continue prin polinoame a fost dificil
de identificat, mai putin de 20% dintre ei au reugit sa rezolve problema.

Solutie. Implicatia directa se obtine luand in definitia sirului Devin
functiile particulare f, : [0,1] — R, fx(z) = 2% (k € N).
Pentru 1mphcat1a inversa, notam cu P proprietatea

lim — Z f(z;) / f(z)dx referitoare la functii integrabile pe [0, 1].

n—o0o n

Fle e >0sg:[0,1] — R o functie continua. Conform teoremei
Weierstrass-Stone, existd un polinom P, . € R[X] astfel incat

€
9(z) — Pye(z)] < 57 Ve [0,1]. (2)
Din ipoteza, lim —Zm = ——, deci functiile fx : [0,1] — R,
n—oo n

fe(z) = 2% (k € N) au proprletatea P.

Cum ambii membri ai relatiei (1) sunt R-liniari ca functii de f, obtinem
faptul ca orice functie polinomiala P : [0,1] — R verifica relatia (1). De
aici deducem ca exista N € N astfel incat pentru orice n > N sa aiba loc

inegalitatea
1o !
" Z Pye(x) — / Pye(x)da
i=1 0

Din relatiile (2) si (3) deducem ca pentru orice n > N avem

< g (3)

S
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=3 (glai) — Ppei)

<

1 1
3o~ [ gle)da

=1

+ + <

1
/0 (Bye(2) — gla)) da

1 @ !
=) Pyelw) — / P, (z)dx
nia 0

2e 1
< E—i_ |Py(x) —g(z)|da <e.
0

Trecand la limita in inegalitatea de mai sus, obtinem

G !
nlggogiz_;g(wi) —/0 g(z)de

<e.

1 ¢ !
Cum 1nsa ¢ a fost ales arbitrar, obtinem lim — Zg(wl) = / g(x)dx, deci
n—oon P 0
si functia g are proprietatea P.
Ca urmare, (x,), este sir Devin.

Problema 2. Fie m, n numere naturale nenule. Aratati ca oricare ar fi
matricele Ay, ..., Ay, € M, (R) exista €1,...,e, € {—1,1} astfel incat

Te ((e1Ar+ o+ 2 dp)?) 2 Te (43) +o+Te (42). (1)
Vasile Pop, Universitatea Tehnica din Cluj-Napoca, Romania

Juriul a considerat ca aceasta problema este una de dificultate medie.
Cu toate acestea in jur de 25% dintre concurenti au obfinut mazim de puncte,
fiind in cele din urma cea mai usoara din cele patru probleme.

Solutia 1 (a autorului). Aceasta solutie se bazeaza pe observatia ca functia
fiMu(R) SR, f(A) = Tr (42),
are proprietatea ca
f(A+B)+ f(A—B) =2(f(A) + f(B)), oricare ar fi A, B € M,(R). (2)
intr—adevér,
f(A+B)+ f(A—B)=Tr ((A+ B)* + (A— B)?) = Tr (24% + 2B?) =
=2 (Tr(A?) + Tr(B?)) = 2(f(A) + f(B)).

Acum (1) se demonstreaza ugor prin inductie dupa m > 1.
Afirmatia este evident adevarata pentru m = 1 considerand ¢; = 1.
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Pentru pasul de inductie (de la m la m + 1), fie Ay,..., Ay, Ayl €
M, (R). Din ipoteza de inductie exista e1,...,&, € {—1,1} astfel incat

H((51A1+...+5m,4m)2)21&(A%)+---+T&(A$n) (3)
si notam A =e1A; + -+ + en4,,. Folosind (2) obtinem
A+ Apia) + f(A = Amgr) = 2(f(A) + f(Am41)),
ceea ce Inseamna ca cel putin una dintre inegalitatile
f(A+ Amir) 2 f(A) + f(Amir)
f(A= A1) 2 f(A) + f(Amir)
este adevarata. Asadar exista e,41 € {—1,1} astfel incat
f(A + €m+1Am+l) > f(A) + f(ATfH-l)v
care se rescrie astfel:
Tr ((slAl b e A+ amHAmH)Q) > Tr ((alAl T amAm)2> +
(4)
+Tr (A2,4) -
Combinand (3) si (4) rezulta ca
Tr ((51A1 + ot emAn + em+1Am+1)2) > Tr (A7) + -+ Tr (A7) +
+Tr (A2.).
ceea ce Incheie demonstratia.

Solutia 2. Aceasta solutie a fost gasita de catre membrii juriului care au
corectat la aceasta problema.

Fie E = {e = (e1,...,6m) : & € {—1,1} pentru orice i}. Evident avem
|E| =2™.

Daca Ay,..., Ay, € M, (R) sie € E, atunci

(E1A1 + -+ emAp)’ = (AT + -+ A%) + ZfifinAj
i)

si sumand dupa toti € € F¥ obtinem

Z (E1A1 + -+ emApy)’ = 2" (AT + - + AZ) + Z ZEiSjAz’AJ‘-
eelr ceE i#j

Analizand suma dubla

S = ZZEiainAj = Z (Z €i€j> AiAj,

ceE i#j i#j \e€R
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rezulta ca S = 0, deoarece Z eie; = 0 pentru orice i # j (g,6; = 1 pentru
eelR )
jumatate din elementele lui F si g,6; = —1 pentru cealalta jumatate). In
concluzie
Y (E1Ar 4t emAn)? =27 (AT + -+ A7)
eelE
si cum Tr este o aplicatie liniara rezulta ca

Y Tr(e1Ar+ -+ emAm)® =27 (Tr (A}) + -+ Tr (A7),

eeFE
deci media lui Tr (e1 A1 + -+ - + emAm)2 peste E este Tr (A%) 4T (Afn),
ceea ce este suficient pentru a obtine concluzia.

Remarca. Urmarind argumentele din ambele solutii, concluzia raméane
adevarata daca Tr se inlocuiegte cu orice functionala liniara pe M, (R). De
asemenea, putem demonstra urmatoarea afirmatie generala:
Daca (G,+) este un grup si f : G — R satisface ecuatia functionala
patratica
fla+0b)+ f(a—b) =2(f(a) + f(a)) pentru orice a,b € G,
atunci pentru orice m > 1 i orice aq,...,a, € G au loc urmatoarele:

(1) S F (10142 ) = 27 (f (1) + - + f (am)), unde suma
se considera dupa toate alegerile posibile £; ale semnelor + si —
pentru orice a; (i = 1,m);

(2) exista o alegere +; a semnelor + si — pentru fiecare a; (i = 1,m)
astfel incat f (£1a1 £o - tmam) > fla) + -+ [ (am).

In cazul nostru, G = M, (R) si f(A) = Tr (A%).

Problema 3. Fie n > 2 si A,B € M,(C) cu proprietatea cd B> = B.
Aratati ca
rank(AB — BA) <rank(AB + BA). (1)

Vasile Pop, Universitatea Tehnica din Cluj-Napoca, Romania
Juriul a considerat aceasta problema ca fiind de dificultate medie. In
jur de 8% dintre concurenti au obfinut punctaj mazim la aceasta problemd.

Solutia 1 (a autorului). Deoarece B? = B, rezulta ca valorile proprii ale
lui B apartin multimii {0,1}. Notam cu Jp forma Jordan a lui B. Atunci
orice celula Jordan Jy a lui Jp satisface J/% = Jy, ceea ce se Intampla doar

pentru celule de dimensiune 1. In concluzie Jz este o matrice diagonala de
forma {%’%} , cu k eventual 0. De asemenea, fie P o matrice de asemanare
intre B si Jp, i.e.,

Jg =P 'BP, B=PJgP '
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Daca k = 0, atunci Jg = Oy, deci B = O, si inegalitatea (1) este in
mod evident o egalitate.
Dacia k > 1, atunci fie C = P71 AP (equivalent, A = PCP~!). Rezulta

9%

ca
AB — BA = P(CJg — JgC)P™!,
AB+ BA = P(CJg — JgC)P™!,
deci
rank(AB — BA) = rank(C'Jp — Jp(C),
rank(AB + BA) = rank(CJg + Jp(C).
. C1 | Cy .
Scriem C = ,cu Cp € Mg(C), Cy € M,,_(C). Atunci
C3 | Cy
[ai ]G L,]0o] [Ci]o
en=ata] [oiv] = [@fo]
[ |0 [Ci|Co] [ Ci|Co
we= o] [ata] = [519)
[0 ]-C
C’JB—JBC—_C3 0 },
[201]Cy
CJB + JBC - _T3’T:| .
Obtinem

rank(CJp — JgC') = rank Cs 4 rank Cf,

rank(CJp + JpC) > rank { (g) C(;Q ] = rank Cy + rank Cj,
3

ceea ce Incheie demonstratia.

Solutia 2 (data in concurs de Andrei Alexandru Jelea de la Uni-

versitatea Politehnica din Bucuresti).
Deoarece B2 = B, avem ci B (B — I,,) = (B — I,,) B = O,,, deci

(B —1I,) (AB + BA) (B —I,,) = (B — I,) AB (B — I,,)
+ (B - In) BA (B - In)
=0y,

Folosind inegalitatea Frobenius

rank XY Z 4+ rankY > rank XY + rankY 7,
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obtinem ca
rank (AB + BA) =rank (B — I,,) (AB + BA) (B — I,,) + rank (AB + BA)
> rank (B — I,,) (AB + BA) +rank (AB + BA) (B — I,,)
=rank (BAB — AB) + rank (BAB — BA)
> rank ((BAB — BA) — (BAB — AB))
=rank (AB — BA).

Solutia 3 (C. Baetica si G. Mincu). In aceastd solutie vom considera
C-spatiul vectorial V = C" si f,g : V — V aplicatiile liniare asociate ma-
tricelor A, B (in baza canonicd). Din ipoteza avem ci g% = g.

Fieu= fg+gf siv= fg— gf. Inegalitatea ceruta este echivalenta cu
dimg ker u < dimg ker v.

Pentru a demonstra acest fapt sa observam urmatoarele:

1) keru Nker g C ker v;

2) g(keru) C kerw.
1) Daca = € kerunker g, atunci g(z) = 0si (fg+9gf)(x) =0, ceea ce implica
(9f)(x) =0 si de aici obtinem (fg — gf)(z) = 0, adica v(z) = 0.
2) Pe de alta parte, daca y € g(kerw), atunci exista z € keru astfel incat
y = g(z). Cum z € keru avem (fg+ gf)(z) = 0 si aplicand g la stanga
obtinem (g9fg)(z) + (¢f)(z) = 0. Acum calculam v(y) = (fg — gf)(y) =
= (fg—9)9(2)) = (f9)(2) = (9f9)(2) = (fg+ gf)(2) = u(z) = 0.

Este insa usor de vazut ca (keru Nkerg) N g(keru) = {0}, ceea ce
inseamna ca suma acestor doua subspatii ale lui ker v este directa. De aici
putem conchide ca

dimc ker v = dimc (ker u N ker g) 4+ dimc g(ker u) < dimc ker v,

ceea ce era de demonstrat.

1
Problema 4. (a) Fie n > 1 un numar intreg. Calculati / 2" nzda.
0

(b) Calculati

N . 1 1 1
> (1) ((n+1)2_(n+2)2+(n+3)2_‘”>‘ (1)

n=0

Ovidiu Furdui, Alina Sintamarian, Universitatea Tehnica din
Cluj-Napoca, Roméania

Juriul a considerat aceasta problema ca fiind cea mai dificila si asa a
fost: numai 6% dintre concurenti au dat o solufie completd.

Solutie (a autorilor). (a) Integrand prin parti obtinem

1

1

/ x”_llnxdx:——z, n € N. (2)
0 n
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(b) Pentru k£ € N notam

1 1 (—1)F1
S RS e T R TR O )

Din (2) rezulta ca
1
Ek:—/ x”(1—x-|—.~+(—x)k_1>lnxdx:
0
1 1—(— k
:_/ x"&lnxdx:
0

1+x

1 n 1 n+kl
:—/ L nxdx+(—1)k/ R )
0 1+$ 0 1+$

Facand k — oo se obtine

1 1 n 1 / "Inx d
m+1)2 (n+2)2 (n+3)? o 14+x 7
deoarece

1 xn-‘rk‘ 1 1
Og—/lnx dxﬁ—/ *Inzrder=——— =0 (cand k — o).
0 14z 0 (k+1)2

Apoi evaluarea celei de-a n-a sume partiale a seriei (1) conduce la

- ' 1 1 1 = - ailng
—11 — [ — — _11 d
ZZ;( )<(i+1)2 (i+2)2+(i—|—3)2 > ;( )/0 1tz 0
/ Inx )idx:—/l Inx _1—(—gg)n+1 e
1+x o 1+z 1+

_ _/1 lnx dx—i—(—l)"‘H /1 L lnxdx.
o (1+x)? o (1+2)?

Facand n — oo in egalitatea precedenta rezulta ca

o0

n 1 1 1 (' Iz
> (1) <(n+1)2_(n+2)2+(n+3)2_"'>__/0 (1+x)2dx7

n=0

deoarece

ntlin g 1o 1 .
0<— | ——dzr<— [ 2" Inrxdr=-——5 — 0 (cand n — o0).
0 (+ o) ! (n+ 2P

Pe de alta parte
1
Inz
———dxr=—-In2
/0 Itz2 " 0

folosind integrarea prin parti.
In concluzie, sume seriei (1) este In 2.
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Solutie alternativa pentru (b). Aceasta solutie se bazeaza pe ideea
schimbarii ordinii de sumare.
(1)t

Termenul general al seriei (1) se poate scrie astfel: r, = Z —
k>n+1

-1 k—1
care este restul de ordin n al seriei absolut convergente Z 7)2

k>1
Fixam m > 1 gi consideram a m-a suma partiala a seriei (1):

(_1)k—1
Sm—Zrn—Z >
n=0 \k>n+1
Deoarece fiecare dintre seriile rg,r1,...,7r,;, este absolut convergenta, este
posibil sa schimbam ordinea de sumare in s,, si sa adunam termenii in orice
ordine; in particular, este permis sa interschimbam ordinea de sumare (fixam
k, sumam dupa n, apoi sumam dupa k) si asta duce la

(_1)k—1 min{m,k—1} (_1)k—1
sm=>_ | 2 |2 X -
k n>0 k>1 n=0
n<m
n+1<k
. -1 k—1
:Z(1+m1n{m,k‘— 1})- % =
k>1
m+1 k—1
(=)
= k- 1)
2 CUZr Y e 2

Acum, facand m — oo rezulta concluzia, folosind ca Z
n>1
1
7}1—>r{>lonr” = 0 deoarece |r,| < CESIEh
Remarca. Solutia alternativa conduce la urmatorul rezultat general:

daca (ayp),,~ este un sir descrescator astfel incat seriile ) a, si Y (—1)"nay,
- n>1 n>1
sunt convergente, atunci

DU DY —0Ftar | =D (1" nay.

n>0 \ k>n+1 n>1
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MATHEMATICAL NOTES

Multivariate weak hazard rate order according to hazard rate
function

Luicl-IoNuT CATANAY

Abstract. In this note we prove that in the particular cases of multivariate
uniform distribution the properties of dilatation and translation of the weak
hazard rate order are lost.

Keywords: Weak hazard rate order, hazard rate function.
MSC: 60E15.

INTRODUCTION

Let (2, F, P) be a probability space and X : Q — R? be an absolute
continuous random vector, d > 2. We denote by p its distribution u(B) =
P(X € B), B € B(R), by F(z) = P(X < x) its distribution function,
F*(x) = P(X > x) and by f its density. Notice that if d > 2 then one
cannot find a distribution such that F* =1 — F' (see [1]).

For a random vector X with F™* differentiable, we define the hazard rate
function r : L(X) — R?, r(x) = (—% (lnF*(x)))' — where

’ i

L(X)={z eR: F*(x) > 0}.

When we have random vectors X and Y, we will denote by p and v
their distributions, by F' and G their distribution functions, and by r and ¢
their hazard rate functions, respectively.

Remark 1. It is not true that if F™* is differentiable, then the distri-
bution p is absolute continuous with respect to the Lebesgue measure \°.

Counterexample. Let U ~ Unif ([0,1]) and X = (cos%U, sin%U)
with X ~ p. Then F% is differentiable, but u is not absolute continuous with
respect to the Lebesgue measure A\2.

Proof. Indeed we have

1)Depaur‘camlent of Mathematics, Faculty of Mathematics and Informatics, University of
Bucharest, Romania, luigi_catana@yahoo.com
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((X1,X2) > (z1,22)) = P (X1 > 21, X2 > x9)
(cos (%U) > r1,sin (%U) > xg)

4 4 .
(U < —arccoszi,U > —arcsin x2>
T T

I
e

4 4 P arccos xri
P (— arcsinxg < U < — arccos x1> = / Lo, () dt.

T T i arcsin x2

Then F% is differentiable.
Let A = {(z,y) € R* : 2 € [0, %],y = cosz}. Then it is obvious that
A2 (A) =0, but u(A) > 0. O
Remark 2. Let us notice that r > 0.
z1,Xo>T Xi1>z1,¢
If d = 2, then ry (x1,22) = % and ro (v1,22) = %7
V (z1,22) € L(X), where we have denoted fx, (z1, X2 > 22) = f;; f(z,t)dt

and fx, (X1 > x1,22) = fxof ft, zo)dt.

For =,y € R? we say that « < y if z; < y;, i = 1,d.

For z,y € R? we say that < y if < y and x # y. For ¢ € R? and
reR, r >0, we put

Ble,r] ={z: Hw — CH <r},

B(c,r) ={z: Hw — CH <r}.
A set C C R is increasing if z € C,y e RY,y >z =y € C.
Let us recall the following definitions (see [3]):

Definition 1. Let X and Y be two random vectors. We say that X
is stochastic dominated by Y and we denote X < Y iff for all increasing
subsets C' C R? it holds P(X € C) < P(Y € C).

Definition 2. Let X and Y be two random vectors. We say that X is
weak stochastic dominated by Y and we denote X < Y iff F* < G*.

Definition 3. Let X and Y be two random vectors. We say that X is
dual weak stochastic dominated by Y and we denote X <gqw Y iff ' > G.

Definition 4. Let X and Y be two random vectors. We say that
X is smaller than Y in hazard rate sense and we denote X =<y, Y iff
F*(2)G* (y) < F* (x ANy) G* (x Vy), for all 2,y € RY,

Definition 5. Let X and Y be two random vectors. We say that X is
smaller than Y in weak hazard rate sense and we denote X <y, Y iff

*

I is non-decreasing on L(Y').
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The following two results are well known (see [3]).

Proposition 1. Let X and Y be two random vectors with hazard rate
functions r and ¢, respectively. Then X <y Y iff 7(z) > ¢(z), for all
xe L(X)NLY).

Proposition 2. Let X and Y be two random vectors. If X <y, Y,
then X <4tw Y.

The multivariate uniform distribution Unif(A) has the density function

f(x) = 1A((A%, where A € B(R) has positive finite Lebesgue measure \% (A).

n [2] the author has proved that Unif ([0, a]) <y, Unif ([0, b)) iff a < b,
thus the hazard rate order is increasing in this case.

1. MAIN RESULTS

It is known that if d = 1, X ~ Unif(I), I C [0,00) closed interval then
X <ynr aX for all a € R,a > 1, and that X <yp X +a for all a > 0.

We were surprised to notice that in the multidimensional case these
properties do not hold anymore. For d > 2 it may happen that never X <y,
aX, for some uniform distribution.

Proposition 3. Let X ~ Unif(B[(1,1);1]). Then there does not exist
a€R,a>1, such that X <ynr aX.

Proof. Tt is obvious that aX ~ Unif(B [(a,a);al).

Let us suppose that there exists a € R, a > 1, such that X <yn aX
and consider r, respectively ¢, the hazard rate function for X, respectively
aX.

Then 7 (z) > q (), for all x € L(X) N L(aX).

= V3
) = Sy 0 £ (1 295) >

We have rq (%

and fx, (3% > 2558) <o,

1 243\ _ f(aX)l(éu(aX)z 2+2\/§)
2> 2)_ F*(12+f)

Fry (1 2+f) >0 and fux), (  (aX), > 2+f) > 0.

Then rq ;, 24V3) q 1 2+2‘/_> , which is a contradiction.

In conclusion 1t does not ex1st a € R,a > 1 such that X <, aX. O

It is obvious that if X ~ Unif(B [(0,0);1]) then X <ypn X and X <yhy
X +0b, forallb>(2,2).

However, for this particular case, the translation property is not true,
as one can see in the following

Proposition 4. Let X ~ Unif(B[(0,0);1]). Then there does not exist
beR?2, b>(0,0) and b # (1,1), such that X <yn X +b.

On the other side, q1( > 0, since




30 O. BUICA, APPLICATIONS OF AN EXTENDED THEOREM OF LIOUVILLE

Proof. Tt is obvious that X + b ~ Unif(B [b; 1]).

Let us suppose that there exists b € R?, b > (0,0) and b # (1,1) such
that X <ynr X + b and consider r, ¢ the hazard rate function for X, X + b.

Then r (z) > g (z), for all z € L(X) N L(X +b).

If b; < 1 then let us take t € R? with ||¢|| = 1,t; < 0,t2 > 0.

We have ry (t1,t2) = fxy (b, Xa>ta) 0, since fx, (t1, X2 > t2) = 0 and

F}(tl,tz)
F_;k( (tl,tg) > 0.
b1, (X+b),>t .
On the other side, ¢ (t1,t2) = f<X+b)1£ L (X+0);>ta) > 0, since we have
FX+b(t1’t2)

f(X+b)1 (t1, (X + b)2 > ty) > 0 and F)*(—i-b (t1,t2) > 0.
Then 71 (t1,t2) < q1 (t1,t2), which is a contradiction.
If by < 1 then let us take t € R? with [[t]| =1, t; > 0, to < 0.

fxq (X1>t1,t2) .
We have ry (t1,t2) = % = 0, since fx, (X7 > t1,t2) = 0 and
F;( (tl,tg) > 0.
_ fix ), (X+b), >t1,t2)

On the other side, g2 (t1,t2) = Pyt

f(X+b)2 ((X + b)l > tl,tg) > 0 and F;(—i-b (tl,tg) > 0.

Then 79 (t1,t2) < g2 (t1,t2), which is a contradiction.

In conclusion it does not exist b € R?,b > (0,0) and b # (1,1) such that
X <wnr X + 0. O

> 0, since we have
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Applications of an extended theorem of Liouville
Ovipiu BuicA?

Abstract. This note contains three applications of Liouville’s extended
theorem on entire functions.

Keywords: entire functions, finite order, system of equations.
MSC: 30D10; 30B10.

In the following we present three applications of Liouville’s extended
theorem on entire functions.
The following theorems are proved in [1].
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Theorem 1. [The extended Liouville Theorem| If f is an entire function
and if, for some integer k > 0, there exist positive constants A and B such
that | f(2)| < A+ B|z|* for all sufficiently large |z|, then f is a polynomial of
degree at most k.

Theorem 2. If f is an entire function and one of the four inequalities
—Alz|" < Re f(2) < Al2|",
—Alz[" <1Im f(2) < Alz["

holds for sufficiently large |z|, then f is a polynomial of degree less than or

equal to n.

Definition 3. An entire function f is said to be of finite order k if for some
k and some R >0, |f(2)| < exp(|z|¥) for all z with |z| > R.

Theorem 4. Suppose f is an entire function of finite order k. Then ei-
ther f has infinitely many zeroes or f(z) = Q(2)e’'®), where P and Q are
polynomials.

Remark 1. If f is an entire function that is never zero, then f(z) = eF(?),
where P(z) is a polynomial of degree less than or equal to k (k is a finite

order of f).

Proof. We can define an entire function P(z) = log f(z) which by our hy-
pothesis must satisfy |Re P(z)| = |Re log f(2)| = |log|f(2)|| < |z|¥, where k
is a finite order of f. The statements follow from Theorem 2. O

We give three applications of these theorems.
A ;. Find all solutions to the infinite system of equations
1+ =2,
T + 2191 + Y2 = 4,
x3 + 3zay1 + 3T1y2 + Y3 = 8,

n n N
Tn + 1 Tp—1Y1 + 9 Tp—oYe + -+ yp=2",

with zg, yr > 0 for all k.
Solution. If the sequences {x,},{yn} are a solution, we consider their gene-
rating functions

2 2" 2y 2"
fR) =) =5 g(x)=) "= withag=yp=1.
! S

n=0
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Since g,y > 0, for all k, it follows that z,yx < 2¥, so that both f(z) and
g(z) are entire functions. We have

F@)9() =3 Cuz”
n=0

where
=Y =2 ()

so (from the hypothesis)

X on.n
2"z 9

J)gle) =3 =

n!

n=0

Thus, f and g are entire functions with no zeroes.

From the above relation and Remark 1 it follows that f(z) = e***# and
g(z) = ¥+, Since f(0) = o = 1 and g(0) = yo = 1, one has f = 6 = 0 and
F(2) = e, g(z) = 7.

Expanding, one finds

2,2 2
f(,z):eaZ:1+az+%+'“=1+9€1Z+%+"'7
2,2 2
z z
9(x) =" =1+yz+ ot = L+ S

Thus, there are infinitely many solutions of the form {zy}, {yx} with
Thoyr >0, 2, = yp =%, k=1,2,3,... and a + v = 2.
Note that the system has a unique solution if z; and y; are given.

As. e€* — z has infinitely many zeroes.

Solution. If e — z had only a finite number of zeroes ay,as,...,ay, then
e —z=(z—a1)(z —az) - (2 — an)g(z), where g(z) is a non-zero entire
function given by
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We then define the entire function g;(z) = log g(z), with

Regi(z) = log|g(z)| = log

e —z
@—aﬂﬁ—aﬂ~-@—aNA
—log|e* — 2| — log |(z — a1)(z — a2) -~ (2 — aw)
22 Z3

2 3

<logle* — z| =log |1 +

2! 3!
< logel*l < |z| for sufficiently large .
Then, according to Theorem 2, g; would be a linear polynomial, that is
e —z

lOg(z—al)(z—ag)---(z—aN) —azth

and furthermore

e —z=(z—a)(z—ag) - (z — ayn)e .

Considering z — o0, it is obvious that this relation cannot hold.

Aj. € — P(z) and sin z — P(z) have infinitely many zeroes for every non-zero
polynomial P.
Solution. If e* — P(z) does not have infinitely many zeroes, then e* — P(z) =
Q(2)ef?) | where Q, R are polynomials. Considering the growth at infinty, it
follows that R(z) = z, Q(z) = 1 and P(z) = 0.

Similarly for sin z — P(z).
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.
Files should be in PDF or DVI format. Once a problem is accepted and considered
for publication, the author will be asked to submit the TeX file also. The referee
process will usually take between several weeks and two months. Solutions may also
be submitted to the same e-mail address. For this issue, solutions should arrive
before 15th of May 2020.

PROPOSED PROBLEMS
489. Let m < n be positive integers. For A € M, ,(C) and B € M,, ,,(C)

define the functions
fap: Mn(C) — M (C),  fap(X)=AXB,
fB.A: My(C) — M, (C), fpa(Y)=BYA.

Prove that f4 p is surjective (onto) if and only if f4 p is injective (one-to-
one).
Proposed by Vasile Pop, Technical University of Cluj-Napoca, Ro-

mania.

490. Let n € N*. Calculate

n\ 2
/1 In(l—a)+z+2 4.+ 1
xZ.
0 X

Proposed by Ovidiu Furdui and Alina Sint&mdrian, Technical

University of Cluj-Napoca, Cluj-Napoca, Romania.

491. If the arithmetic mean of a,b,c,d > 0 is 1, then their quadratic mean
qg=1/ w takes values in the interval [1, 2].

If ¢ € [1,2] then we denote by M = M, the largest possible value of
the geometric mean of four numbers a, b, c,d > 0 with the arithmetic mean

1 and the quadratic mean gq.
Determine M in terms of ¢ and prove that M + ¢ > 2.

Proposed by Leonard Giugiuc, Traian National College, Drobeta
Turnu Severin, Romania and Alexander Bogomolny, New Jersey, USA.

492. Let V be a vector space over Fo = Z/2Z and f : V — RU{oo} satisfying
f(z) =00 iff z =0 and

[z +y) > min{f(z), f(y)} Va,yecV.
For every ¢ € V we define g. : V. — RU{oo} by gc(z) = f(z)+ f(z+¢).
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(i) Prove that g. satisfies the same inequality as f, viz.,

ge(x +y) > min{ge(), gc(y)} Vz,y € V.
Equivalently, if x,y,z,t € V with x +y = z + ¢ then

flz+2) + flx+1t) 2 min{f(z) + f(y), f(2) + F{)}-
For any a,b € V we define hyp : V — R U {oo} by

hap(x) = f(2) + f(x +a) + [z +b).
(ii) If x,y,a,b € V such that f(z) < f(y) prove that

ha:,a:+a+b(y) > min{ha,b('r)v ha,b(y)}‘

Let k: V? = RU {oo}, k(z,y) = f(2) + f(y) + f(z + ).
(iii) If a, b, 2,y € V prove that

hap(x +y) = min{hap(2), hap(y), k(z,y)}
and
k(z,y) = min{hqp(2), hap(y), hap(z +y)}-
Conclude that none of the four numbers hq (), hep(y), hep(z + y) and

k(x,y) is strictly smaller than all remaining three numbers.
(iv) If a,b,xz,y,z € V prove that

max{hy . (), he 2 (Y), hey(2)} > min{hg p(2), hap(Y), hap(2)}

Proposed by Constantin-Nicolae Beli, IMAR, Bucuresti, Romania.

493. (a) Calculate
) 0 sin x
" /0 oGz — g 17

(b) Let £k > —1 be a real number. Calculate

00 k
. T Ssmax
lim nk'H/ —— . o d.
Nn—00 0 e(n+ ) _ ene

Proposed by Ovidiu Furdui and Alina Sint&mdrian, Technical Uni-
versity of Cluj-Napoca, Romania.

494. Let n > 3 and let aq,...,a, be nonnegative real numbers such that
at+--+a:=n—1

(i) Prove that ay +---+ap, —ay---a, <n— 1.

(ii) Prove that if £ < 1 then the inequality a;+- - -+a,—ka; - - - a, <n—1
is not always true.

Proposed by Leonard Giugiuc, Colegiul National Traian, Drobeta
Turnu Severin, Rom&nia, Qing Song, Beihang University Library and
Yongxi Wang, Shanxi University Affiliated High School, People’s
Republic of China.
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495. Let n > 2 and A, B € M,,(C) such that
AB — BA =c¢(A - B)

for some ¢ € C*.

a) For n = 2, give an example of distinct matrices A and B that satisfy
the above condition.

b) Prove that A and B have the same eigenvalues.

Proposed by Vasile Pop, Technical University of Cluj-Napoca,
Romania, and Mihai Opincariu, Avram Iancu National College, Brad,
Romania.

SOLUTIONS
472. Let a,b, c € [0, 5] such that a+b-+c = 7. Prove the following inequality:

. a—>b\ . b—rc\ . c—a
s (| —— | sin sin .
2 2 2
Proposed by Leonard Giugiuc, Traian National College, Drobeta

Turnu Severin, Romania and Jiahao He, South China University of
Technology, People’s Republic of China.

sina 4+ sinb+sinc > 2+ 4

Solution by the authors. Since both sides of the inequality are symmetric
we may assume that a > b > ¢. Then the product from the right side is non-
negative and we have to prove that

. . . . (fa—=b\ . [b—c\ . [c—a
sina + sinb + sinc — 4 sin 5 sin 5 sin 5 > 2.

SinceaT_l’—l—l’;—C%-%:Owehave

—4sin (a ; b) sin (b;C> sin (c;a) = sin(a —b) +sin(b—¢) +sin(c —a).

(In general, 4sinxsinysinz = sin(y+z —z) +sin(z+z —y) +sin(z +y —z) —
sin(z +y+ z). When x +y+ z = 0 this is equal to — sin 2z — sin 2y — sin 2z.)

Also since a+ b+ ¢ = 7w we have sina = sin(b+ ¢) and similarly for sinb
and sin c. Hence the inequality we want to prove also writes as

sin(a + b) + sin(a — b) + sin(b + ¢) + sin(b — ¢) + sin(c + a) + sin(c — a) > 2,

which is equivalent to sinacosb + sinbcosc + sinccosa > 1. But ¢ > b, so
sinccosa > sinbcosa and

sinacosb + sinbcos ¢ + sin ccosa > sinacos b + sin b(cos a + cos ¢).
Since 0 < a+c—5 < a,c < 5 and (a +c— %) +5 = a+c, by the Karamata’s
inequality applied to the cosine function, which is concave on [0, 5], we get

T s s )
cosa+cochcos<a+c—§)+cos§:cos(§—b>+():smb.
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It follows that
sinacosb + sinbcos ¢ 4 sin ¢ cos a > sina cos b + sin? b.

So it suffices to prove that sinacosb + sin?b > 1, which is equivalent to
sinacosb > cos?b, i.e., to sina > cosb = sin (% — ) This follows from the
fact that c < §,s0a=m—b—c> 5 —b.

Note that we have equality when a,b, ¢ are, in some order, §,0,5. [

We also received a solution from Yury Yucra Limachi, from Puno, Peru.

473. (Corrected") Let ey, . .. , e, be the elementary symmetric polynomials
in the variables X1,..., X,
Xty X)) = D Xy Xy,

1<i1<...<ig<n
and let M be the ideal generated by eq,...,e, in R[Xy,..., X,].
Then every monomial X7 --- X" with the degree m = mj+---+m,,
strictly greater than (g) belongs to M. On the other hand, there exists a
monomial of degree (72‘) which does not belong to M.

Proposed by George Stoica, New Brunswick, Canada.

Solution by C. Baetica. Let R =R[Xy,..., X,],and I = (s1,...,8,). If
P is a minimal prime over I, then s,, € I and there exists i € {1,...,n} such
that X; € P. We may assume X,, € P. Since s,,_1 € P and X,, € P we get
X1 X,—1 € P. Similarly we can suppose X,,_1 € P, and so on. Now it is

easily seen that the only minimal prime ideal over I is P = (X,...,X,,). This

shows that VT = (X1,...,X,), and therefore the height of I is n. Since R is

Cohen-Macaulay the grade of I is also n, and thus si,...,s, form a regular
1=t (-t

sequence. By induction on n one can show that Hp/;(t) = 1) ’

a polynomial of degree n(n—1)/2. (Here Hp/;(t) stands for the Hilbert series
of R/1.) In particular, the homogeneous parts of R/I of degree d > n(n—1)/2
are zero, and thus every homogeneous polynomial of degree d > n(n — 1)/2
belongs to 1.

For the second part of the question we define the homogeneous poly-
nomials h;(X1,...,X,), 1 < ¢ < n, as the sum of all monomials of total
degree i in X1,...,X,. By Proposition 5, page 350 from Cox D., Little J.,
O’Shea D., Ideals, Varieties, and Algorithms, Springer, 2015, we learn that
hi(Xj,...,Xyn), 1 < j < n, form a Grobner basis for I with respect to the
lexicographic order on R with X7 > --- > X,,. In particular, the initial ideal
of I is generated by the monomials XI,X22, ..., X', Now it is immediate
that the monomial XX2 -+ X! does not belong to I.

DIn the 1-2/2018 issue the problem appeared with (Z) instead of (;‘), which doesn’t
make sense.
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Solution by C.N. Beli. We denote by X the multivariable (X1,...,X,)
so that R[X1,...,X,] = R[X]. We have R[X]| = @ R[X], where R[X]y is
k>0
the set of all homogeneous polynomials of degree k. Since M is generated
by homogeneous ideals, it is homogeneous as well, so M = @ My, where
k>0
My, = M NR[X];. We must prove that R[X], C M, i.e., M} = R[X], holds
for k> (), but not for k = (3).

We put N = Z>¢ and N* = Z>;. If i = (i1, ...,i,) € N” then we denote

Xt = X*... Xin. Every polynomial P € R[X] writes as P = Y a; X",

i€I(P)
where I(P) C N" is a finite set and a; € R\ {0}, Vi € I(P). The set I(P) is
called the support of P.

On N we define the lexicographic order by (i1, ...,i,) < (ji,.-.,Jn) if
there is 1 < h < n such that ¢ = j; for [l < h and i, < ji. If 7,5 € N” we say
that : < jifi <jori=j.

Ifi = (i1,...,iy) € N* we put o(i) = (j1,...,7Jn) € N, where j1,...,7n
is the sequence i1, ...,1, in decreasing order.

For example, 0(0,2,3,0,2) = (3,2,2,0,0). If P € R[X]\ {0} then we
define f(P) € (N*,<) by f(P) = max o(i).

i€l (P)

Lemma 1. Let i € N” with deg X* = m.

(i) If i € N** then X' € M,,.

(ii) If ¢+ € N with o(i) = (j1,...,Jn) such that j, — jp+1 > 2 for some
1 <h<n-—1then X* = P (mod M,,) for some P € R[X],, such that either
f(P) < f(X%) = o(i) or P =0.

Proof. (i) Ifi = (i1,...,ip,) € N and j = (i1—1,...,i,—1) then j € N”
and we have X' = X/(X;--- X,,) = X’e, € M. Since also X* € R[X],,, we
have X' € M,,.

(ii) Let ¢ = (41,...,4,). By permuting the variables X,..., X,,, we may
assume that X’ = X! ... X/» satisfies iy > --- > i, i.e., that o(i) = i and
Js = i Vs.

Let 1 < h <n —1 such that i, —ip41 > 2. Let j = (i1 — 1,...,ip —
1aih+17' . 7Zn) If.] = (jlv' . 7]77,) then ¢ = (]1 +1,...,0n+ 1ajh+17' . 7.777,)
Since the sequence 41, ...,1i, is decreasing and iy, — i1 > 2, we have j; >
2 Jh > Jhtl 2 2 ne

We have deg X7 = > js =Y is — h =m — h. Also e}, € R[X];. Hence

S S

XVep, € R[X],,. Since also X7ej, € M, we have X’e;, € M,,. It follows that
Xt = P (mod M,,), where P = X* — X7e;,. Since both X*, X7e}, € R[X],,
we have P € R[X],,. We must prove that f(P) < i.

Note that Xi--- X} is a monomial in e so X7 X;--- X, = X' is a
monomial of X7ey,. It is canceled in P = X* — XJe;,. We must prove that all
the other monomials X* that appear in X7ey, satisfy o(k) < i.
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We write e, = > X¢ where T = {(c1,...,¢,) € {0,1}" | > ¢s = h}.
ceT s
We have e, = X7... X, + > X where TV =T\ {(1,...,1,0,...,0)}. (In
ceT”’
(1,...,1,0,...,0) we have 1 on the first h positions.) Then

P=X'-X/(X;.. Xp+ ) X)=-X'> X=-> Xt
ceT’ ceT’ ceT’

and we must prove that o(j + ¢) < i for every c € T".
Let ¢ = (¢1,...,¢,) € T'. For 1 < s < h we have js + ¢s > js > Jn
and for every h +1 < s < n we have js +¢s < js+1 < jpo1 +1 < jp.

Hence the largest h entries of j + ¢ are, in some order, j; + ¢1,...,Jn + cp.
So, if o(j +¢) = k = (k1,...,kyn), then ky,... ky are j1 + c1,...,Jn + cp
written in decreasing order. For short, (k1,...,ky) = o0(j1 +c1,...,Jn + cp)-

Note that ¢y, ..., ¢, € {0,1}, but they cannot be all 1, since this would mean
(c1y...,¢n) = (1,...,1,0,...,0) ¢ T'. Therefore for every 1 < s < h we
have js + ¢s < js + 1 = 15 and at least one of these inequalities is strict.
It follows that in (N <) we have o(j1 + c1,...,7n + cn) < oli1,...,in),
ie., (ki,...,kp) < (i1,...,4y). But this implies that in (N, <) we have

(k1y... kn) < (i1,...,1n), ie., o(j + ¢) < i, as claimed. O
Lemma 2. Let i € N" such that deg X* > (}) and let o(i) = j =
(J1,---,Jn)- Then one of the following statements holds:
(1) i € N*™,

(2) There is some 1 < h < n — 1 such that j, — jr11 > 2.

3)j=a:=(n—1,n—2,...,1,0). In particular, deg X* = (g)

Proof. We have j; > --- > j, > 0. If 4, > 1 then {j1,...,jn} =
{i1,...,in} € N* s0 (1) holds. Therefore we will assume that j, = 0.

Suppose now that (2) does not hold, so j, < jp41+1for 1 <h<n-—1.
Since j, = 0, this implies inductively that j,—1 <1, j,—2 < 2,..., 71 <n—1.
Then we get

<Z> SdegXi:zh:ih:zh:th(n—1)+(n—2)+"'+1+02 <Z>

So all inequalities must be equalities, i.e., (ji,...,Jn) = (n—1,n—2,...,1,0),
hence we have (3). O

Now back to the proof, suppose that P = Y. ;X' € R[X],,, with

ieI(P)
degP = m > (5). Let j = (ji,...,jn) = f(P). We have P = P’ + P”,
with P’ = " @;X* and P” = Y a;X*, where I’ and I” are the sets of all
i€l iel”

indices i € I(P) such that o(i) = j and o(i) < j, respectively. Obviously,
f(P") <j(or P"=0,if I" =0). For every i € I, since deg X" =m > (}),
we are in one of the cases (1) and (2) of Lemma 2. Then, by Lemma 1, we
have that X" = @Q; (mod M,,) for some Q; € R[X],, with f(Q;) < o(i) = j.
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Then P’ = ) a;Q; (mod M,), so P = P'+ P”" = @Q (mod M,), where
iel’
Q= > a;Q;+ P". Since f(Q;) < j Vi € I' and f(P”) < j or they are 0,
el’
same will happen with Q.

If @ =0 then P € M,, and we are done. Otherwise we apply the same
procedure to @ and the invariant f(P) will decrease further. Since it cannot
decrease indefinitely, eventually we get P = 0 (mod M,), so P € M,, as
claimed. '

For the second statement, we will prove that X* ¢ M(n) if o(i) = a =

2
(n—1,n—2,...,1,0).

Let S, be the symmetric group on n letters. For any o € S, and
i = (i1,...,1n) € N" we denote i0 := (iy(1),---,i0(n)). (If we regard i and
o as functions i : {1,...,n} > Nand o : {1,...,n} = {1,...,n} then ic is
the composition i 0 ¢.) This is a right action of S, on N, i.e., (io)T =i(oT)
Yo, 7 € 5,.

Then for any ¢ € N” we have o(i) = « iff i = awo for some o € S,,. More-
over, since the entries of o are mutually distinct, o is uniquely determined.
So there is a bijection S,, — 0~!(a), given by o > ao. '

We define a linear map 1 : ]R[X](n) — Rby Y a; X" = > £(0)aae-

2 i oceSh
On monomials, ¥ is given by X% + (o) Vo € S, and X* + 0if i ¢ o~ L(a).
Lemma 3. We have M(n) C ker 1.
2 .
Proof. As a vector space, M(n) is generated by the products X7ey, with
2 .
1<h<nandj=(ji,...,Jn) € N” such that deg X7 = (g)—h. So it suffices
to prove that such products belong to ker ).

As seen in the proof of Lemma 1, we have e, = >  X€¢ where T' =
{(c1y--yen) € 10,13 | Yoes = h}, so Xiep = > Xj+g.€THence, if we put
A={oceS,| ac =7+ csfor some ¢ € T}, thencfe(TXjeh) = > (o).

Note that ji,...,J, cannot be mutually distinct since tﬁiesA would imply

that (g) —h=degX' =i1+ - 4ip>0+14+---+n—-1= (g) So there
are 1 < 51 < s3 < n such that js, = js,. We denote by 7 the transposition
(s1,82) € Sp. Then H = {1, 7} is a subgroup of S,, and S,, writes as a disjoint

nl/2 nl/2
union of left cosets from S,/H, S, = |J ovH = | {0,047}
t=1 t=1
Let 0 € A and let ¢ = (¢1,...,¢,) € T such that j + ¢ = ao. We
define ¢ = (c},...,¢),) by ¢, = ¢sy, ¢, = ¢, and ¢, = ¢ for s # 51, 52.
n n
Obviously ¢ € {0,1}" and > ¢, = > ¢s = h, so ¢ € T. We denote
s=1 s=1
i=(i1,...,ip) =j+cand ¢ = (#,...,i,) = j+ . Since js, = js,, we have

iy, = Js, + ¢ = Js, + Csy = is, and similarly il = is,. If s # 51,52 then
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is = Js +Cs = js + ¢s = is. In conclusion, i = i () Vs, ie., i’ = ir. This
means j + ¢ = (j +¢)7 = aoT, so o7 € A.
Hence if 0 € A then the whole left coset cH = {o,07} is contained

in A. It follows that A is a union of left cosets A = |J {0y, 047} for some
teB
B C{1,...,n!/2}. Hence

f(Xen) = elo) = (elor) + (o)) = 0=0.
o€A teB teB

(Since 7 is odd, oy and o;7 have opposite parities, so e(oy) = —¢(oy7).) O

As a consequence of Lemma 3, if i € N” with o(i) = a then i = ao
for some o € Sy, so P(X*) = P(X) = g(0) # 0, whence X* ¢ kere), so
X' ¢ M.

In particular X< = X?_IX;L_Q X1 ¢ M(n) O

2
We can actually prove that M(n) = kert. For this we need some
2

preliminary results.

Lemma 4. Let P € R[X](n).

2
(i) If f(P) < a then P € M(n)
2

(ii) If f(P) is arbitrary then there are b, € R, with o € Sy, such that
P= > b,X* (mod M(n)) and Y(P) = > €(0)b,.

O'GSn 2 O'GSn

Proof. Note that if f(P) # « then, by the same proof from the case
when deg P = m > (g), there is a polynomial Q € ]R[X](n) with P = Q

2
(mod M(n)), such that f(Q) < f(P) or @ = 0. When f(P) = « this no
2

longer applies because of the obstruction posed by the special case (3) of
Lemma 2.
If deg P < « then deg P # «, so there is Q with P = @ (mod M(n)),
2

such that f(Q) < f(P) or @ = 0. If @ = 0 then we are done. Otherwise
f(Q) < f(P) < «, so the procedure can be repeated. Since f(P) cannot
decrease indefinitely, eventually we get f(P) =0 (mod M(n)), ie., Pe€ M(n)
2 2
and we have (i).
For the proof of (ii) we show first that for any P € R[X] () we have P =

Q (mod M) for some Q € R[X] ) with £(Q) < a or Q —0. It f(P)<a
2 2
or P =0 then we just take Q = P. So we may assume that f(P) > a. Since
f(P) # «, we have P = @ (mod M(n)) for some @ € ]R[X](n) such that
2 2

f(Q) < f(P)or @ =0.If f(Q) < aor @ =0 then we are done. Otherwise
f(Q) > «a, so we can apply the same procedure to Q). At each step f(P)
decreases. Eventually we get some @ with f(Q) < « or Q = 0.

Let a; be the coefficient of X* in Q. Since f(Q) < a or Q = 0, every
X' that appears with non-zero coefficient in @ satisfies o(i) < a. Then
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Q= > X'+ Y a; X' Butif o(i) < a then f(X%) = o(i) < a so,

o(i)=a o(i)<a
by (i), X! € Mny. Hence P=Q = >, a; X'+ > a;X'= Y X'
(2) o(i)=a o(i)<a o(i)=a

Since {i € N" | 0(i) = a} ={ac | 0 € S,}, weget P= > ;X' =
o(i)=«
> b X (mod M(n)), where b, = aq,. By Lemma 3, we have P —
O'ESn 2

> by X € M(n) C ker ¢p. Therefore (P) =¢( > b, X )= > €(0)b,.
0ESH 2 0ESH 0ESh
]

Lemma 5. If 1 < h <n-1and 7 € S,, 7 = (h,h + 1), then
XCX‘FXCWEM(;).
Proof. Note that o = (aq,...,ay), with ag = n—s. Let j = (j1,...,Jn),
j:(Oq—1,...,Oéh—1,04h+1,...,05n)
=mn-2,n-3,....n—h—1n—h—1n—h—2,...,1,0).

We have deg X7 = deg X¢ — h = (”) — h. Then deg X7ej, is homogeneous of

) . \2 .
degree deg X7 + h = () and X7e, € M, so Xey, € M(n)
2
We write as usual ¢, = >, X¢ with T = {c = (¢1,...,¢,) € {0,1}" |
ceT
S cs = h}, so that XJe, = > Xi+e,
s ceT

Let /., eT,d=(1,...,1,0,...,0) and " = (1,...,1,0,1,0,...,0).
If ¢ = ¢ then for s < u we have js+ ¢, =as—1+1=as, and for s > u+1
we have js + ¢, = a5 +0 = a,. Hence j+¢ = a. If ¢ = ¢ note that ¢ = ¢,
SO jo+Cy =js+ s =asfor s#h h+1. Alsoj,+c) =ap —14+0=ap4
and jpi1+¢j ) = apy1+1 = ap. Hence js + ¢ = a ) Vs, ie, j+" =ar.
Since X7e, = 3. XJT¢ we have X 4+ X7 = Xi+¢' 4 xite" — Xie, —

ceT

S X7t We have X/ey, € M(n), so if we prove that > XJ*¢ ¢
ceT\{c,c"} 2 ceT\{c,c"}
M(n) then X + X7 € M(n) and we are done. By Lemma 4(i) it is enough
2

2
to prove that

f( Z Xt = max  o(j+e¢)<a.
ceT\{c,c"} c€T\{e e}

So we must prove that o(j +¢) < a Ve e T\ {c,"}.

Let ¢ € T\ {d,d"} and let o(j +¢) = k = (k1,...,kn). We must
prove that £ < a. Assume first that ¢ = -+ = ¢,_1 = 1. Since ¢; +
-++ 4 ¢, = u there is precisely one index u < s < n such that ¢, = 1. This
index cannot be u or u + 1 since this would imply that ¢ = ¢ or ¢’. So
ey =Cyy1 =0. For 1 <s<wu—1wehave js +¢cs =as— 1+ 1= a,. Also
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Jut ey =y —14+0=0ay —1, jur1 + cut1 = @u+1 +0 = ay — 1 and if
s>u+2then jo+cs=as+cs <ayro+1l=a,—2+1=a,—1. Since

Q) > Qg > > a1 > q — 1, we have that kq, ..., k,, the largest u entries
of j + ¢ in decreasing order, are aq,as,...,ay_1,Q, — 1. This implies that
(kl,. .. ,kn) < (O[l,. .. ,Otn), ie., k< a.

If not all ¢1,...,¢c,_1 are 1 then let 1 < v < wu — 1 be minimal with the

property that ¢, = 0. For 1 < s <wv—1we have js+c¢; = as;—1+1 = a,. Also
Jotcy = ay—140 = ap,—1. For v+1 < s < n we use the fact that the sequence
j is decreasing and v+ 1 <wuso js+¢s < Jpr1+1=0apy1 —1+1 =0, — 1.

Since a; > g > -+ > ay—1 > ay — 1, we have that ki, ..., k,, the largest v
entries of j + ¢ in decreasing order, are oy, s, ..., a1,y — 1. This implies
that (ki,...,kn) < (a1,...,qn), L6, k < a. O

Lemma 6. For every o € S;, we have X = ¢(0)X*’ (mod M(n))
2
Proof. For ¢ € S, put Xy = (X¢(1), e ,X¢(n)). Ifi = (iy,...,1,) € N?
n - n
i _ Lo(s) _ it yi
then X, —sl;[lX¢(S) —t];[lX = X"

Then, as a consequence of Lemma 4, if ¢,7 € S, such that 7 is a
transposition of the form (u,u+ 1), with 1 <u <n—1, then ng) + X;”d) =
X4+ X € M(n) But M(n) is invariant to permutations of the variables

2 2
X1,...,X,, so ng) + X;Wd) € M(n) remains true if we replace X by X,-1,
2
which sends X4 to X. Hence we have X 4 Xoto ¢ M(n), ie.,
2
X% =X (mod M(n))
2

Let now o € S,,. Then o writes as ¢ = 7, --- 71, where each 7, € S,
is a transposition of the form (w,u + 1). Since each 7; is odd, we have
e(o) = (-D".

For 1 <[ < k we take 7 = 77 and ¢ = 7;_1---71 in the congruence
above. We get X@7-1"71 = — X711 (mod M(n)) Hence we have

2
XY= X9 = X = ... = (=1)* X" (mod M(n))

2
But 0 =74 --- 7 and e(0) = (—1)¥, so we have X = ¢(0)X*° (mod M(n))
2
We now prove our main result.
Proposition. M () = ker ¢. Equivalently, a homogeneous polynomial
2
of degree (g) belongs to M if and only if ¢(P) = 0.
Proof. The inclusion M B C ker 1 is just Lemma 3. Conversely, assume

2
that P € kerty. By Lemma 4(ii) there are b, € R for ¢ € S,, such that
P= > b,X% (mod M(n)) and 0 =¢(P) = > e(0)b,.
o€Sy 2 o€Sy,
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Then we have by = — Y £(0)bs, s0
ceSp\{1}
P=b X%+ ) bX* = <— > s(a)bo>X‘“+ > b X
oceSp\{1} oeSn\{1} oeSn\{1}
= Z b (X7 —e(0)X*) (mod M(n))
ceSa\{1} ’

But for every o € S, \ {1}, by Lemma 6, we have X — ¢(0) X € M(n),
2
S0 by (X7 — e(0)X?) = —(0)be(X* —e(0)X*) =0 (mod M(n)), whence
2
P=0 (HlOd M(n)), ie, Pe M(n) Il
2 2
Note. The first part of this problem was posted on math.stackexchange
at the address https://math.stackexchange.com/questions/84780.
In the original posting from 2011 the condition was that the degree is

> n(n — 1) but, in comments, it was improved to > @
oo
474. Calculate Z(Qn -1)

1+ 1 N 2
— n?  (n+1)? n?|

Proposed by Ovidiu Furdui and Alina Sintamarian, Technical Uni-

versity of Cluj-Napoca, Cluj-Napoca, Romania.

Solution by the authors. The series equals 3. We need Abel’s summation
by parts formula which states that if (a,),>1 and (by,),>1 are sequences of real
n n

n
or complex numbers and A,, = > ag, then > agby = Apbpi1+ > Ar(by —
k=1

k=1 k=1
bk+1), or Z akbk = lim Anbn—H + Ak(bk — bk+1).
k=1 n—ro0 k=1

We apply this formula for
1 1 S|
ap=2n—-1 and b, = (ﬁ—i_m—i_) -5
We have A,, = n? and

by bt = = (b —2 2 )]
ne T 2\ 2 T (n 1) (n+2)? (n+1)2 n2

It follows that

> 1 1 S|
2 (2n=1) <ﬁ+m+“'> ‘ﬁ]

. 1 1 2 1
= lim n* ((n+1)2+(n+2)2+'”> BCEDE




SOLUTIONS 45

n=1
BT T
B —[\n? (n+1)? (n+1)2 n?
o r o0
1 1 1 2 1 2n+1
S [t ) oS (2 A )
—\n* (n+1) n] = \n n* (n+l)
o r o0
1 1 1 2 2 1 1
-9 - 4 )z Z_ _
nz_:l_<712+(n—i-l)2+ ) n +nz_:<n n+1 (n+1)2 n2>
o ¢ -
1 1 1
—2 ) = 1
nz_:l_<712+(n—i-1)2+ ) n_+ (1)

We used in our calculations the limit

lim n?
n— 00

1 1 2 1
<(n+1)2 MCETIE +> CETE

2
= lim n? ! + ! +-) =1
n=so0 (n+1)2  (n+2)?
—0,

where the limit lim n (# + m - ) = 1 can be proved by an appli-

n— 00 (n+1)?
cation of Cesaro-Stolz lemma, the 0/0 case.

— [/ 1 1 1
Now we calculate the sum Z [(ﬁ + CEE +. ) — _}

n
n=1
We apply yet again Abel’s summation formula, this time with a, = 1
and b, = (n—lg—i—m%—) —%, and we get
[/ 1 N N 1
n?  (n+1)2 n

1

n=1 +
I 1 n 1 . 1
= lim n AU
n—00 (n+ 1)2 (n+2)2 n—+1

+°° 1 1+ 1
nl—_2
f n? n n+1
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475. We say that a function f : R — R has the property (P) if it is continuous
and

2f(f(z)) =3f(xz) —x for all z € R.
a) Prove that if f has property (P) then M = {zx € R: f(z) ==z} is a
nonempty interval.
b) Find all functions with property (P).
Proposed by Dan Moldovan and Bogdan Moldovan, Cluj-Napoca, Roma-
nia.

Solution by the authors. a) We have that
f@)=[fy) = [(f(z) = f(fly) = z=y.

It follows that the function is injective and, being continuous, it is strictly

_ 2/(f(x) +a
3

sum of increasing functions).

Let xp € R. We define the sequence of iterates (z,)n>0" Tnt1 = f(Tn),
for all n € N. After replacing in the hypothesis, we get 2,19 = 3xp+1 — Zp,
meaning that

monotone. From f(z) it follows that f is increasing (as a

$n201‘2—n+02‘1n7
where c1 = 2$0 — 2f($0) and Cy = Qf(l’o) — .
We have lim z,, = ¢z and, because f is continuous, from z,+; = f(x,)
n—oo
it follows that co = f(c2). So the function f has co = 2f(z9) — xo as a

fixed point. Moreover, since xg has been chosen arbitrarily, it follows that
2f(x) — z is a fixed point of f, for all z € R, hence

2f(z) —x € M for all z € R. (1)
Now, let a,b € M and ¢ € (a,b). We define the function
h:R—=R, h(z)=2f(z)—z—c

Obviously, h is continuous, and h(a)h(b) = (a —¢)(b—c¢) < 0. So there exists
x1 € (a,b) such that h(z1) = 0, meaning that ¢ = 2f(z1) — x1, which by (1)
ensures that ¢ is a fixed point of f.

Concluding, M is a nonempty interval.

b) Consider o = inf M and = sup M. If @ = —oo and § = +o0, then

f(z) =z for all x € R, which clearly has property (P).
Assume next that 3 is finite and let xg > 3. Then

2f(x0) —x9 < 6 < Xy (2)

since 2f(xo) —xo € M by (1). It follows that the sequence (x,,)n>0 of iterates
defined above is strictly decreasing because ¢; > 0. Moreover, the sequence
decreases to co = 2f(xg) —x9 € M as n — oo. If ¢y # 3, then there exists
k € N such that z; € [c2,8) € M, hence x;, € M and then (x,),~, is
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constant, in contradiction with its strict monotonicity. Therefore, co =
which gives us f(zg) = I";’B (for all zg > ).
Similarly, if « is finite we consider zg < « and following the same

reasoning we get f(zo) = £ (for all zyp < ). In conclusion, the functions
verifying property (P) are:
e ifr<a
f(z) = x, ifzec(a,f) (reR)

oh ife>p

(easy to check that property (P) is satisfied), with the observation that «a, 3
may be infinite (cases when the corresponding branches are missing). ([

Solution by Leonard Giugiuc. If n > 1 denote by f, = fo---o f, where
the number of f’s is n. We also put fy(z) = x.

By replacing in the given relation x by f,,(x) one gets 2f, 12 = 3fn+1—fn
Vn > 0, so we have a second degree linear recurrence, from which we get

1 on—l_q 1 on—l_q
fa= <2n—_1>f1 - <W>f0 = (W)f_ (W)x

As a consequence, for every x € R we have lim,,_,~ fn(z) = g(z), where
g(x) = 2f(x) — x. Since f is continuous, ¢ is continuous too.

We have g(f(x)) = 2f(f(2)) = f(x) =3f(x) =z — f(x) = 2f(x) —z =
g(x), i.e., go f = g. By composing to the right with f; for some k > 0 we
get go fo fr =go fr,ie., go frr1 = go fr. It follows that for n > 0 we have
g=gof=gofa=--=gofa

Then for every n > 0 we have g(x) = g(f,(x)). Since g is continuous and
lim,, 00 fn(z) = g(x), we have g(g(x)) = limy, 00 g(fr(2)) = limy, 00 g(x) =
g(r),s0 gog=g.

If g is constant, say g(z) = a Vo € R, then 2f(z)—z = a, so f(z) = £

We assume now that g is not a constant function. Since g is continuous,
g(R) is a proper interval I C R. For every = € I we have z = g(y) for some
y € Rand we get g(z) = g(9(v)) = g9(y) =z, ie,2f(z)—x =z. So f(x) ==z
Ve el.

If I =R, i.e., if g is surjective, then g(z) = z Vo € R.

Suppose now that I C R. Assume first that I is bounded from above
and let b = sup I. Then there is a sequence z,, in I with z,, — b. By taking
limits in the relation g(z,) = z,, we get g(b) = b, so b € I. As a consequence,
F(b) =

We claim that f(y) < b for every y > b. When y = b we have f(b) = b.
Suppose that there is y > b such that f(y) < b. Then (f(y),b) NI # (). Take
t € (f(y),b)nI. Since f(b) =b >t > f(y) and f is continuous, there is
z € (b,y) with f(x) =t. Since t € I we Have f(t) =t. Then

2f(f(z)) =3f(zx) —x=2f(t) =3t—oz=>2t=3t—x =0 =1
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But ¢t < b < z. Contradiction. Thus f(z) > b Va > b. Recursively f,(x) >b
Ve >bVn>0. (If f,(z) >bthen f11(z) = f(fu(z)) >b.)

It follows that for every x > b we have g(z) = lim, oo fn(z) > b. On
the other hand, g(z) € g(R) = I, so that g(z) < supl = b. Hence for every
x > b we have 2f(z) — x = g(x) = b, whence f(z) = rTH’.

If I is bounded from bellow and a = inf I then, by a similar reasoning,
we get a € I and for every z < a we gave 2f (z)—x = g(x) = a, so f(z) = L2

In conclusion, we have three cases: I = (—o00,b], I = [a,00) and I =
[a,b], where a,b € R are parameters, a < b. In each of these cases, we have

a different formula for f, namely

f(ﬂU):{aUH) if z <0, f(x):{% if z <a,
2

if x > b, x if x > b,

respectively
e if r < a,
flx)=<X=x ifa<axz<b,
ztbif o > b.
Together with these, we have the functions f(z) = z and f(z) = ££2,
previously obtained. Obviously all these functions satisfy the required con-
dition. ]

/°° arctan x
——dax.
0 xt+1

Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,
Romania.

Solution by the author. We denote

 arctan ° arcctan x
A=
0

——=dz and B = ——dx.
Vit +1 0o Vat4l

476. Calculate the integral

Then

A+B:/Ooarctanx—i-arcctanxdx:E/"O#dx'
0 rt+1 2 )y Vat+1
1
Vat41

To compute the integral C' = fooo dz we use the following formula for

Euler’s beta function
oo
B(p,q) =/ Y (1L + y)Prdy.
0
We make the change of variables 2% = % in the integral C' and we get

C = %/ y =31+ )Py = 33(1/4, 1/4).
0
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(g
T'(p+q)

1 T4 1
4 T(1/2) 47
It follows that A + B = 5C = @F(I/ZL)Q. But arctanz = arcctan L so,

We use the well known formula B(p,q) = and we get

C I'(1/4)2.

after making the change of variables t = %, we get A = B. Thus our integral
equals A = %P(l/él)? O

Solution by Moubinool Omarjee, Lycée Henri IV, Paris, France. We
denote by A our integral and we make the substitution y = % We get

A /00 arcmnxdx _ o arctan % dy = °° 5§ — arctan ydy
o Vaot+1 0o Vyt+1 0 Vyt+1
oo
1
_T / L ay-a
2Jo Vyrt+1
Hence -
1
A:f/ —_dn.
2 Jo i +1
But it is a well-known reiult that fooo \/x‘ll+1 dz = 4F(\5//E4)2 (see wolfram alpha.)
[ee]

We therefore get [ j}%dx = /7l2(5/4) = 1.4561.... O

We also received a solution from Daniel Vacaru, from Pitesti, Romania.
He proved that the integral is equal to 5 fol ﬁdw, but left the result in
this form.

477. For every complex matrix A we denote by A* its adjoint, i.e., the
transposed of its conjugate, A* = AT, If A is square and A = A* we say that
A is self-adjoint (or Hermitian). In this case for every complex vector = we
have z* Az € R. If A, B are self adjoint we say that A > B if 2* Az > z*Bx
for every complex vector x.

For a complex matrix A we denote |A|?> = AA*. Note that |A|? is
self-adjoint and > 0. (If A*z = y = (y1,...,yn)" then z*|AP2zx = y'y =
(gjla s agn)(yla s ayn)T = |y1’2 et |yn’2 > O)

Let A be a square matrix with complex coefficients and I the identity
matrix of the same order. Then the following statements are equivalent:

(i) [T+ zA|*> = |I — 2zA]? for all z € C;

(ii) [T + zA|? > I for all z € C;

(iii)) A =0.

Are these statements still equivalent if we replace “complex” by “real”
throughout?

Proposed by George Stoica, New Brunswick, Canada.



50 PROBLEMS

Solution by the author. Obviously (iii) = (ii), (i).
Let us prove that (i) = (iii). Since |[I 4+ 2A4[? = [+ 24+ zA* + |2]2|A]?,
the inequality | + zA|* > I writes as
2zA+ ZA* +|2)?|A]? > 0 for all z € C.

For natural m > 1 and z = 1/m,—1/m,i/m,—i/m, the above inequality
becomes
At A+ 2ar >0, A+a—Lap<o

m m

and
iA —iA* 4 l|Ay2 >0, iA—iA* - lyA|2 < 0.

m m
Letting m — oo in the first two inequalities, and then in the last two inequal-
ities, gives

A+ A" =0and 14 —iA" =0,

which imply that A =0, i.e., (iii) is proved.

Finally, let us prove that (i) = (iii). The relation |I + zA[? = |I — zA|?
for all z € C, writes as zA + ZA* =0 for all z € C. For z = 1,4, we conclude
that

A+ A" =0and iA —iA" =0,
which yield that A =0, i.e., (iii) is true.

The statements are no longer equivalent if one replaces “complex” by
“real” in the problem. If we try to reproduce the proof from the complex
case then we can no longer give z the values z = +i/m or i. So, by a
similar reasoning, we obtain that (i) is equivalent to A + A7 = 0 and that
(ii) implies A+ AT = 0. But in fact (ii) is equivalent to A+ AT = 0. Indeed,
if A+ AT = 0 then |I + 24]> = I + 22|A]?> > I. So both (i) and (ii) are
equivalent to A + AT = 0, but they do not imply (iii).

E.g., for A = {_01 (1)] we have [[+2A[? = (1+22) > I,but A# 0. O

478. Determine the largest positive constant k such that for every a,b,c > 0
with a? + b% + ¢ = 3 we have
(a+b+c)+kl(a—b)b-c)c—a)<9.
Proposed by Leonard Giugiuc, Traian National College, Drobeta
Turnu Severin, Romania.

Solution by the author. We denote by ku,ax the required largest constant.
The inequality can also be written as

21 p2 2 2 4 p2 2\ 3/2
(a+b+c)2\/% FEa—b)b—c)(c—a) <9 <%> ,
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Since this new form of the inequality is homogeneous it should hold for every
a,b,c >0 with a® + b> 4+ ¢ # 0.

By homogeneity, we may assume that a4+b+c = 3. Then 0 < ab+bc+
ca < M =3, 80 ab + bc + ca = 3(1 — q) for some ¢ € [0,1]. Together
with a + b+ ¢ = 3, this implies W =14 2q.

Then the required equality becomes

El(a —b)(b—c)(c —a)| <18¢\/1+ 2q.

We denote x = a—1,y =b—1, z=c—1. Then 0 < a,b,c < 3,
a+b+c=3and ab+ bc+ ca = 3(1 — q) translate to —1 < z,y,z < 2,
r+y+z=0and 2y + yz + zx = —3¢q. (We have xy + yz + zz = ab+ bc +
ca —2a+b+c)+3=3(1—-q)—2-3+3=-3q.)

We also have (a —b)(b—c¢)(c—a) = (x —y)(y — 2)(z — x).

If we put Pj = 2/ +y/ + 27 (j € N) then P =0, P, = 6¢, P3 = 3zyz
and Py = 18¢%. We denote p = zyz.

Lemma. (z—y)(y—2)*(2—2)? = 3P2P4+2P, Py Ps—(P3+3P;+PEPy).

This result is well known so we won’t prove it.

By the above considerations and notations, we get (x —)?(y — 2)?(z —
r)? = 27(4¢® — p?). Therefore, our inequality writes as

k4¢3 — p? < 2v/3q\/1+ 2¢.

Note that if g = 0 then P, = 224+ 1y?+22 =6 =0,s0x =y = 2 = 0. If
q = 1then ab+bc+ca =3(1—q) =0. Since a,b,c > 0 and a+b+ ¢ = 3, this
implies that two of the numbers a, b, ¢ are 0 and the third is 3. Hence z,y, 2z
are, in some order, —1, —1,2. In both cases 4¢> — p? = 0, so the inequality

k\/4¢3 — p2 < 2¢/3¢\/T + 2¢ holds for k > 0 arbitrary. So we may assume
that ¢ € (0,1).

As we will see, if ¢ € (0,1) then 2, v, z can be chosen such that 4¢%—p? #
0. In this case our inequality writes as

p< 230V
T Vie -
Note that for ¢ fixed the above upper bound is big when p? is large. So if
pg =min{p? | 3-1<z,9,2 <2, 24+y+2=0, zy+yz+z2x = —3q, Tyz = p}
then k should satisfy the inequalities k& < f(q) for every ¢ € (0,1), where

f:(0,1) = R,
_ 2V3qvT+2g

\/44° =}

In conclusion, kmax = ming<g<1 f(q).
Apparently, the smallest possible value of pg is 0. But, as we will see,

f(q)

this happens only when ¢ < % So we discuss two cases.
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Case 1. 0 < g < % We take © = —/3q, y = 0, 2 = /3q. Then the
conditions —1 < z,y,2 < 2, x +y+ 2z = 0, and 2y + yz + zx = —3q are
fulfilled. We also have p = zyz = 0. Hence p, = 0 and we have f(q) =

PO = 3\/qTT 2. Then mingegys /() = 1(5) = V5.

Case 2. + < g <1. We have 0 < (z+1)(y + 1)(z + 1) = zyz + (2y +
yz+zr)+(x+y+2)+1=p—3¢+1,s0p>3¢—1>0andp?> (3¢—1)%
We prove that this lower bound for p? can be attained for every % <qg<l.

We must have (z+1)(y+1)(2+1) = 0so, say, z = —1. Then x+y+z =0
and zy + yz + zx = —3q write as —1 +y+ 2z =0 and —1(y + 2) + yz = —3q,
which are equivalent to y +2 = 1 and yz = 1 — 3q. Thus y, z are the roots of
X2 - X+4+1-3¢so, say, y = 17v3te—l) ”32(4(]_1) and 7 = 2 32(4q_1 Slnce <qg<1,

we have 1 < 3(4¢g—1) < 9,80 -1 <y<0and 1 <z< 2 In conclusmn
—-1<z,y,2,< 2, s0 x,y, z satisfy all the required conditions.
Hence pg = (3¢ — 1)2, and we get

) = 2v/3q\/T+2q
v A% — (3¢ — 1)

Note that

VA — (B¢ —1)2 = /(¢ —1)2(4g — 1) = (1 — ¢)\/4q — 1,

therefore we have
V2 1
flg)=2v3—Ivatl
(I—q)vig—1
We make the substitution v = 2q+1 Then u € (1,1/5] and we have

q= 72(5;_11). It follows that f(q) = h(u ), with h : (1,/5] — R defined by

2 w+tu
hu) = — . LY
(U) \/§ U2 —1
We have h/(u) = %%. The only zero of A’ in the interval (1,/5]

s V24 /5. We have that &' is < 0 on the interval (1, V2+ \/3] and > 0
on [\/ 24+ \/3, \/3] In conclusion,

min  f(g) = min h(u) = h(\/2+V5) = 1?[ 2+ V5.

1/3<q<1 1<u<y/5

If ¢ is the golden ratio ¢ = 1+2\/g7 then note that 2 + /5 = ¢?, so we

2
have miny /3<,<1 f(q) = 2‘;5\/_;)/5_
From Case 1 we have ming,<;/3 f(¢) = V15 > min; ;3<4<1 f(q). Hence

. 2
Fmax = ming<q<1 flq) = mlnl/d<q<1 flg) = 2¢\/—},/5' O
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Note from the editor. The proof of the formula for (x — y)?(y —
2)?(z — x)? given by the author is unnecessarily complicated. The product
A = (z—y)%*(y—2)?(z—x)? is the discriminant of the polynomial (X —x)(X —
Y)(X —2)=X3—-3¢X —p. Wehave z+y+2=0, vy +yz+ 20 = -3¢
and zyz = p.)

It is known that the discriminant of the polynomial X2 + c¢X + d is
—4¢3—27d?. In our case, ¢ = —3qand d = —p, so A = —4(—3¢)> —27(—p)? =
27(4q3 — p?).

Solution by Mihai Cipu. We may assume without loss of generality that
b=a+z, c=0b+y for some x, y > 0. Since

a+b+c=3a+2zx+y, a®+b*+c =30 +202z+y)a+22° + 2zy + v,

3(a* + 07+ %) — (a+b+¢)” = 2(2” + xy + ¢,
the desired inequality is equivalent to

V3ay(x +y)k < 2(x? + zy + y?)\/3a% + 2(2x + y)a + 222 + 2y + 2.

As the right hand side of the previous inequality decreases with a, we may
assume that ¢ = 0. When we denote t = y/z, we deduce that the maximal
value of k is

2
max — inf — ;
b = 04 7570

(2 +t+ 1)VE2 + 2t + 2

whi t) =
ere f(t) e+ D)
Routine computations give
t+2)(tr +13 -2t —1

2E+1)2VEe2F2+2

The polynomial P(t) = t* + t3 — 2t — 1 has unique positive zero u, takes
negative values for ¢ < u and positive values for t > u. Therefore, one has

kmax = 2f(u)/\/§
The wanted value v = f(u) can be computed by noting that u is a
common zero for the polynomials P(t) and Q(t), where

Q) = (P +t+ 1212 + 2t +2) —*2(t + 1)

Therefore, v is a positive zero for their resultant. Using a package like
PARI/GPY), one easily finds Res(P, Q) = (v* — 11v% — 1)2, whence

11 +5V5
V= .
\/ 2

Then the value kpax is determined as in the first solution.

DThe package is a widely used computer algebra system freely downloadable from the
address https://pari.math.u-bordeaux.fr/download.html.
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479. Let p be an odd prime number and A € M,(Q) a matrix such that
det(AP 4 I,) = 0 and det(A + I,,) # 0. Prove that:

a) Tr(A) is an eigenvalue of A + I,,.

b) det(A+1,) —det(A—1,) = (p—1)Tr(A) + 2.

Proposed by Vlad Mihaly, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Solution by the author. a) Let —1,&1,&2,...,&,—1 be the complex roots
of —1 of order p. Because det(A? + I),) = 0 and det(A + I,) # 0, we obtain
that there exists £ € {£1,&2,...,&—1} an eigenvalue of A. Let py be the
characteristic polynomial of A and let P(X) = XP~! — XP=2 4 ... — X +1.
Since pa, P € Q[X], € is a root for both p4 and P, while P is an irreducible
polynomial over Q[X], it follows that P | pa. So, all the roots of P are
eigenvalues of A, hence

U(A) = {5752’ R 7£p_17r}’
where 7 is an eigenvalue of A.
We have Tr(A) =r + &+ €2+ -+ &L =7 +1 € Q. Since r is an
eigenvalue of A, we have that Tr(A) = r 4 1 is an eigenvalue of A + I,,.

b) From
det(A—T,) = (€~ 1)(E = 1) ... (@1 = 1)(r—1) = BO)(r—1) =1 — 1,
det(A+ L) = €+ DE +1) .. (€ + D(r+1) = B(=1)(r + 1)
= (r+1p,

and Tr(A) = r + 1, we find
det(A +I,) —det(A—I) = (p — 1) Tr(A) + 2.
O

480. Let k,n be natural numbers, x1, zs, ..., x; be distinct complex numbers
and a matrix A € M,,(C) such that (A—x11,)(A—xoly,) - (A—xl,) = O,.
Prove that rank(A —z1 ;) + rank(A —xo1,) + - - - +rank(A—zx [,,) = n(k—1).

Proposed by Dan Moldovan and Vasile Pop, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania.

Solution by the authors. We proceed step by step.

1) If X\ is an eigenvalue of matrix A and P € C[X] such that P(A) = O,,
then P(\) = 0 (AX = \X, X £ O = P(A)X = P(NX = P(\)X =0 =
P(\) = 0).

Therefore if A\i,Aa,..., A, are all the distinct eigenvalues of A, then
{AM, Ao 0 € {x1,29,..., 2} and we may assume that one has
Al =21, 2 =9,...,\p, =1p and p < k.

2) If p < k, then for all i € {p+1,...,k}, x; is not an eigenvalue of
A so the matrix A — \;I,, is invertible and rank(A — \;I,) = n, hence the
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problem can be reduced to the problem with the first p values x;:
prove that if holds (A — z11,)(A — x21,,) - - - (A — 2,1y,) = Oy, then
rank(A — x11,) 4+ rank(A — x21,,) + - - - + rank(A — ,1,,) = n(p — 1).

3) It is sufficient to consider instead of A its Jordan canonical form
J4 = P7'AP and again the problem can be further reduced to the follow-
ing one: show that if (J4 — xlfn)(JA —xoly) - (JA I,) = O,, then
rank(J4 — x11,) + rank(J4 — x21,,) + - - - + rank(J4 — ) =n(p—1).

4) We will show that J4 is a dlagonal matrix: if J \, is the direct sum
of all Jordan blocks from J4 corresponding to the eigenvalue A\; and its
dimension is m x m, then (Jx, — x1Ipn)(Jx, — z2lm) - (Jy, — 2plm) = Oy

and the matrices Jy, —x2ly,, ..., Jy, —xpl,, are invertible, hence Jy, = A1 1.
Similarly for Ag, ..., \,. Thus, J4 is a diagonal matrix.
5) When Jy = diag[A11y,|,. .., [A\pIx,], then rank(Ja — A\ 1,) = n — k1,

., rank(Ja — Apl,) = n — kp and hence rank(J4 — A1) + rank(Ja — Aa1y,)
+---Frank(Ja —A\ply) =pn— (ki +ka+---+ky) =pn—n=(p—1)n. O

Solution by Moubinool Omarjee, Lycée Henri IV, Paris, France. Since
in C[T| we have ged(T —x;, T —x;) = 1 Vi # j, the relation (A—xz11,,)--- (A—
zrl,) = 0 implies that

C" =ker(A—x11,) ® - ®ker(A — xpl,).

We take dimensions and we get

n= Zdlmker —x;l,).

By the rank theorem, this implies

k
Z n —rank (A — z;1,)).
7j=1

This gives rank (A — x11,,) + - - - + rank (A — 23 1,,) = n(k — 1). O
We also received a solution from Leonard Giugiuc.

481. Let K be a field and let n > 1. Let A, B € M, (K) such that [A, B|
commutes with A or B.

If char K = 0 or char K > n then it is known that [A, B] is nilpotent,
ie., [A,B]" =0.

Prove that this result no longer holds if 0 < char K < n.

(Here by [-,:] we mean the commutator [A, B] = AB — BA.)

Proposed by Constantin-Nicolae Beli, IMAR, Bucuresti, Romania.

Solution by the author. First we give a proof of the already known result
so that we can see what doesn’t work when 0 < char K < n.
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Let C' = [A, B]. We prove that every positive power of C' writes as the
commutator of two matrices, so its trace is 0. (In general, tr XY = trY X,
sotr (XY —YX)=0.,)

Let i > 1. We have C* = C'""Y(AB — BA) = C*"'AB — C""'BA.
If C commutes with A then so does C*~! and we have C* = AC"'B —
C'71BA = [A,C*71B]. If C commutes with B then so does C*~! and we
have ' = C*"1AB — BO""'A = [C*"'A, B]. So, in both cases, C? is the
commutator of two matrices and we have tr (C*) = 0.

Let aq,...,a, be the roots of the characteristic polynomial Po(X) in
a certain extension L of K. Then the roots of Pri(X) are af,...,al, so
tr (C*) = 0 writes as af + -+ af, = 0.

Let Sy, ..., S, be the elementary symmetric polynomials in n variables
and let I1; (X1, ..., X,) = Xi+- -+ X! . We have the Newton-Girard formulae

k

kS, = > (—1)718,_II;. Let s; = Si(au,...,qy,). We have II;(aq, ..., ap) =
i=1

0 Vi > 1, so if we take (Xi,...,X,) = (aq,...,q,) in the Newton-Girard

formulae then we get ks, = 0 V1 < k < n, so s = 0. Here we used the

fact that either char K = 0 or char K > n > k, so that &k € K*. Then

Po(X)=X"—51 X"+ 4+ (=1)"s, = X", s0 C" = 0, as claimed.

The proof doesn’t work when char K = p < n because in this case
psp = 0 does not imply s, = 0. Note that it is enough to consider the case
n = p. Indeed, if A,B € M,(K) are a counter-example in the case n = p
then for n > p we have a counter-example given by the matrices

A= (A L Oy ) g o (o B Oy )
On—pp | On—pn—p On—pp | On—pn—p
Suppose now that n = p = char K. With the notations above, ks = 0
implies s, = 0 for 0 < k < p—1, so Po(X) = XP + (=1)Ps, = XP — s,

(Even when p = 2, because in characteristic 2 we have 1 = —1.) If a = {/s,
then Po = XP — o = (X —a)P, so a1 = -+ = a, = a and the minimal

polynomial of C' has the form (X — a)i for some 1 < ¢ < p. We will provide
a counter example with ¢ = 1 and o = 1, i.e., when the minimal polynomial
is X — 1 and we have [A, B] = C = I,. Then obviously C' commutes with
both A and B.

For convenience, we index the rows and columns of the p x p matrices
not by 1,...,p, but by Z, = Z/pZ. Let e; ; with i, j € Z, be the canonical
basis of M,(K), where e; ; has 1 on the (7, j) position and 0 everywhere else.
We have e; jer; = 6j e Then we take A= 3 €541 and B = ) iejy1,.

i€y =
(Note that, since char K = p, we have Z, C K, so B € My,(Z,) C Mp(K).)
Then AB = ) ie;; and BA= ) iejq1,i11 = » (i —1)ej,.
i€y i€y i€y
Hence [A,B] = AB — BA=)¢;; = I, as claimed. O
7



