The median of an abstract cubic tree

In this work, is analyzed the problem of median finding for an abstract cubic tree. Is defined the abstract cubic tree T^{3} as a conex cubic complex, non-oriented and acyclic K^{3}, which satisfies the following conditions:

1) any k-dimensional cube $\mathrm{I}^{\mathrm{K}}, 0 \leq k \leq 2$, of the complex K^{3} belongs to at least one

3-dimensional cube from K^{3};
2) $\forall I^{k} \in \operatorname{int} \mathrm{~K}^{3}, 0 \leq k \leq 2$, belongs to at least $2^{3-k} \mathrm{k}$-dimensional cubes from K^{3};
3) if 0 -dimensional I^{0} elements exists in $b d \mathrm{~K}^{3}$ border, such that $s t(2) \mathrm{I}^{0}$ contains three 2dimensional cubes from $b d \mathrm{~K}^{3}$, then $\operatorname{st}(2) \mathrm{I}^{0}$ defines 3 -dimensional cube from K^{3}.

It is proven that the border of the cubic abstract tree is an abstract sphere \sum_{0}^{2}. The T^{3} tree is included in the m-dimensional space cube, where m represents the number of classes of parallel sides of the T^{3}. The problem of the median is solved in this m-dimensional space, without using the metrics of the space, and its solution determines the median of the T^{3} tree.

