2025 TEST 1 seniors— Solution to Problems 2, 3 and 4

Problem 2. Let ABC be a scalene acute triangle with incentre I and circumcentre O.
Let AI cross BC at D. On circle ABC, let X and Y be the mid-arc points of ABC and BCA,
respectively. Let DX cross CI at E and let DY cross BI at F. Prove that the lines FF X, FY
and 1O are concurrent on the external bisector of ZBAC.

DAVID-ANDREI ANGHEL

Solution. The argument hinges on the claim below:
Claim. The lines AF and BI are perpendicular; similarly, AF and CI are perpendicular

Proof. Let « = ZBAC, 8 = ZCAB and v = LACB. Let DX cross the circle ADC again
at D'. Note that ZECX = LZACX — ZACE =90°—(3/2—~/2=a/2=/DAC = /ZDD'C =
/XD'C. As Z/CXFE = /CXD', triangles XCD' and X EC are similar, so XD'- XE = XC?.
As XA = XC, it follows that XD'- XE = X A?, so triangles XD’A and X AE are similar,
so /ZXAE = /AD'X = /ZAD'D = ZACD = ~.
Finally, note that ZXAD = ZXAC — ZDAC = 90° — /2 — /2 = 7/2, so LIAE =
LDAE = /XAE — ZXAD = ~/2. As ZAIB = 90° + /2, the claim follows.

Let W be the mid-arc point of C AB and let I’ be the reflection of I across O. As W, X, Y
are the mid-arc points of CAB, ABC, BCA, respectively, their reflections across O are the
mid-arc points opposite. These latter form a triangle with orthocentre I, so I’ is the ortho-
centre of triangle W XY

Reflection across O maps lines XV, WY and W X to the perpendicular bisectors of AI, BI
and C1, respectively, so XY 1L AI, WY 1 BI and WX 1 CI. By the claim, AF 1 IF and
AF 1 IFE, so I is the orthocentre of triangle AEF and hence EF 1 Al as well.

Triangles AEF and W XY have therefore corresponding parallel sides, so they are homoth-
etic from some point R. This homothety maps I to I’, as they are corresponding orthocentres.
Hence the lines AW, EY, F'Y and I’ are concurrent at R. As I, O and I’ are collinear and AW
is the external bisector of ZBAC, the conclusion follows.

Problem 3. Determine all polynomials P with integer coefficients, satisfying 0 < P(n) < n!
for all non-negative integers n.

ANDREI CHIRITA

Solution. The required polynomialsare P =0, P =1, P = (X—1)2, P = X(X 1) --- (X —k)
and P = X(X —1)--- (X — k)(X — k — 2)? for some non-negative integer k. The verification
is routine and is hence omitted.

Let P be a polynomial satisfying the condition in the statement. Clearly, P(0) = 0 or
P0)=1.

We first deal with the case P(0) = 1. The polynomials P, = 1 and P» = (X — 1) both
satisfy the condition in the statement and P;(0) = P»(0) = 1.

We will prove that either P = P; or P = P,. Consider an index i such that P(1) = P;(1)
and let P = P — P;.

Induct on n to show that ]5(12) = 0 for all non-negative integers n. The base cases n =0
and n = 1 are clear. For the inductive step, assume P(m) = 0 for all non-negative integers
m <n. Then X(X —1)--- (X — (n—1)) divides P, so n! divides P(n). As 0 < Pi(n) < nl, it
follows that |P(n)| = |P(n) — Pi(n)| < n!, so P(n) = 0.



Consequently, P has infinitely many roots, so it vanishes identically; that is, P = P;, as
desired.

Finally, we deal with the case P(0) = 0. Assume P is non-zero. Let P(X) = XQ(X — 1),
where ) has integer coefficients. Then 0 < Q(n) < n! for all non-negative integers n. If
Q(0) = 0, repeat the argument for ) and so on and so forth, all the way down to some
polynomial with a non-zero constant term — this is clearly the case, as P is non-zero and
degrees strictly decrease in the process. By the preceding, such a polynomial is either 1 or
(X —1)2. An obvious induction then shows that P has one of the last two forms mentioned
in the beginning.

Problem 4. Determine the sets S of positive integers satisfying the following two conditions:
(a) For any positive integers a, b, ¢, if ab+ bc + ca is in S, then so are a + b + ¢ and abc; and

(b) The set S contains an integer N > 160 such that N — 2 is not divisible by 4.
BocpAaN BracA, UNITED KINGDOM

Solution. We will prove that .S is the set of all positive integers. The argument hinges on
the three facts below:

(1) The set S contains an integer M > 40 divisible by 4.
(2) If 4k belongs to S for some integer k > 2, then so does 4m for all positive integers m < k.
(3) The set S contains 4k for all integers k > 10.

Assume the three for the moment and argue as follows: By (1) and (2), S contains all
positive multiples of 4 at most 40, and by (3) it contains all multiples of 4 at least 40, so S
contains all positive multiples of 4.

Let a be any positive integer and let b = ¢ = 2. By the preceding, .S contains 4a + 4, so it
contains a + 4, by (a). Hence S also contains all positive integers congruent to a modulo 4.
Combine with the preceding paragraph to deduce that S contains all integers at least 4.

Let a =3 and let b = c = 1. As 7isin S, so is 3, by (a). Repeat the argument for
a =b=c =1 to deduce that S contains 1.

Finally, let a = 2 and let again b =c = 1. As 5 lies in S, so does 2. Combining with the
previous paragraphs, if follows that S exhausts all positive integers, as stated.

Proof of (1). If N is divisible by 4, choose M = N. If N =4k +1,set a =2k andb=c=1
in (a) to deduce that 2k and 2k + 2 are both in S. As N > 160, the numbers 2k and 2k + 2
are both at least 80 > 40. Note that exactly one of 2k and 2k + 2 is divisible by 4 and let M
be that number.

If N=4k+3,set a =2k +1and b=c=1in (a) to deduce that 2k + 1 and 2k + 3 both
lie in S. Next, set a = kork+1and b=c=1in (a) to deduce that k, k+ 1, k+2 and k + 3
are all in S. Exactly one of these numbers is divisible by 4. As k > 40, choose M to be that
number.

Proof of (2). Let b = ¢ = 2. By (a), if 4a + 4 is in S, then so is 4a. Beginning with M
provided by (1), statement (2) now follows by backward recursion.

Proof of (3). Let b = ¢ = 4. By (a), if 8a + 16 is in S, then so is 16a. Note that
16a = 8(2a — 2) 4+ 16 with 2a — 2 > a for a > 3.

As 40 € S, then we S contains a strictly increasing subsequence of multiples of 8 (and thus
of multiples of 4.

Reference to (2) concludes the proof and completes the solution.



