2025 TEST 1 seniors— Solution to Problems 2, 3 and 4

Problem 2. Let ABC be a scalene acute triangle with incentre I and circumcentre O. Let AI cross BC at D. On circle ABC, let X and Y be the mid-arc points of ABC and BCA, respectively. Let DX cross CI at E and let DY cross BI at F. Prove that the lines FX, EY and IO are concurrent on the external bisector of $\angle BAC$.

DAVID-ANDREI ANGHEL

Solution. The argument hinges on the claim below:

Claim. The lines AE and BI are perpendicular; similarly, AF and CI are perpendicular

Proof. Let $\alpha = \angle BAC$, $\beta = \angle CAB$ and $\gamma = \angle ACB$. Let DX cross the circle ADC again at D'. Note that $\angle ECX = \angle ACX - \angle ACE = 90^{\circ} - \beta/2 - \gamma/2 = \alpha/2 = \angle DAC = \angle DD'C = \angle XD'C$. As $\angle CXE = \angle CXD'$, triangles XCD' and XEC are similar, so $XD' \cdot XE = XC^2$.

As XA = XC, it follows that $XD' \cdot XE = XA^2$, so triangles XD'A and XAE are similar, so $\angle XAE = \angle AD'X = \angle AD'D = \angle ACD = \gamma$.

Finally, note that $\angle XAD = \angle XAC - \angle DAC = 90^{\circ} - \beta/2 - \alpha/2 = \gamma/2$, so $\angle IAE = \angle DAE = \angle XAE - \angle XAD = \gamma/2$. As $\angle AIB = 90^{\circ} + \gamma/2$, the claim follows.

Let W be the mid-arc point of CAB and let I' be the reflection of I across O. As W, X, Y are the mid-arc points of CAB, ABC, BCA, respectively, their reflections across O are the mid-arc points opposite. These latter form a triangle with orthocentre I, so I' is the orthocentre of triangle WXY.

Reflection across O maps lines XV, WY and WX to the perpendicular bisectors of AI, BIand CI, respectively, so $XY \perp AI$, $WY \perp BI$ and $WX \perp CI$. By the claim, $AE \perp IF$ and $AF \perp IE$, so I is the orthocentre of triangle AEF and hence $EF \perp AI$ as well.

Triangles AEF and WXY have therefore corresponding parallel sides, so they are homothetic from some point R. This homothety maps I to I', as they are corresponding orthocentres. Hence the lines AW, EY, FY and II' are concurrent at R. As I, O and I' are collinear and AWis the external bisector of $\angle BAC$, the conclusion follows.

Problem 3. Determine all polynomials P with integer coefficients, satisfying $0 \le P(n) \le n!$ for all non-negative integers n.

Andrei Chiriță

Solution. The required polynomials are P = 0, P = 1, $P = (X-1)^2$, $P = X(X-1)\cdots(X-k)$ and $P = X(X-1)\cdots(X-k)(X-k-2)^2$ for some non-negative integer k. The verification is routine and is hence omitted.

Let P be a polynomial satisfying the condition in the statement. Clearly, P(0) = 0 or P(0) = 1.

We first deal with the case P(0) = 1. The polynomials $P_1 = 1$ and $P_2 = (X - 1)^2$ both satisfy the condition in the statement and $P_1(0) = P_2(0) = 1$.

We will prove that either $P = P_1$ or $P = P_2$. Consider an index *i* such that $P(1) = P_i(1)$ and let $\tilde{P} = P - P_i$.

Induct on n to show that $\tilde{P}(n) = 0$ for all non-negative integers n. The base cases n = 0and n = 1 are clear. For the inductive step, assume $\tilde{P}(m) = 0$ for all non-negative integers m < n. Then $X(X-1) \cdots (X - (n-1))$ divides \tilde{P} , so n! divides $\tilde{P}(n)$. As $0 < P_i(n) < n!$, it follows that $|\tilde{P}(n)| = |P(n) - P_i(n)| < n!$, so $\tilde{P}(n) = 0$. Consequently, \tilde{P} has infinitely many roots, so it vanishes identically; that is, $P = P_i$, as desired.

Finally, we deal with the case P(0) = 0. Assume P is non-zero. Let P(X) = XQ(X-1), where Q has integer coefficients. Then $0 \le Q(n) \le n!$ for all non-negative integers n. If Q(0) = 0, repeat the argument for Q and so on and so forth, all the way down to some polynomial with a non-zero constant term — this is clearly the case, as P is non-zero and degrees strictly decrease in the process. By the preceding, such a polynomial is either 1 or $(X-1)^2$. An obvious induction then shows that P has one of the last two forms mentioned in the beginning.

Problem 4. Determine the sets S of positive integers satisfying the following two conditions: (a) For any positive integers a, b, c, if ab + bc + ca is in S, then so are a + b + c and abc; and

(b) The set S contains an integer $N \ge 160$ such that N - 2 is not divisible by 4.

Bogdan Blaga, United Kingdom

Solution. We will prove that S is the set of all positive integers. The argument hinges on the three facts below:

- (1) The set S contains an integer $M \ge 40$ divisible by 4.
- (2) If 4k belongs to S for some integer $k \ge 2$, then so does 4m for all positive integers m < k.
- (3) The set S contains 4k for all integers $k \ge 10$.

Assume the three for the moment and argue as follows: By (1) and (2), S contains all positive multiples of 4 at most 40, and by (3) it contains all multiples of 4 at least 40, so S contains all positive multiples of 4.

Let a be any positive integer and let b = c = 2. By the preceding, S contains 4a + 4, so it contains a + 4, by (a). Hence S also contains all positive integers congruent to a modulo 4. Combine with the preceding paragraph to deduce that S contains all integers at least 4.

Let a = 3 and let b = c = 1. As 7 is in S, so is 3, by (a). Repeat the argument for a = b = c = 1 to deduce that S contains 1.

Finally, let a = 2 and let again b = c = 1. As 5 lies in S, so does 2. Combining with the previous paragraphs, if follows that S exhausts all positive integers, as stated.

Proof of (1). If N is divisible by 4, choose M = N. If N = 4k + 1, set a = 2k and b = c = 1 in (a) to deduce that 2k and 2k + 2 are both in S. As $N \ge 160$, the numbers 2k and 2k + 2 are both at least 80 > 40. Note that exactly one of 2k and 2k + 2 is divisible by 4 and let M be that number.

If N = 4k + 3, set a = 2k + 1 and b = c = 1 in (a) to deduce that 2k + 1 and 2k + 3 both lie in S. Next, set a = k or k + 1 and b = c = 1 in (a) to deduce that k, k + 1, k + 2 and k + 3 are all in S. Exactly one of these numbers is divisible by 4. As $k \ge 40$, choose M to be that number.

Proof of (2). Let b = c = 2. By (a), if 4a + 4 is in S, then so is 4a. Beginning with M provided by (1), statement (2) now follows by backward recursion.

Proof of (3). Let b = c = 4. By (a), if 8a + 16 is in *S*, then so is 16*a*. Note that 16a = 8(2a - 2) + 16 with 2a - 2 > a for $a \ge 3$.

As $40 \in S$, then we S contains a strictly increasing subsequence of multiples of 8 (and thus of multiples of 4.

Reference to (2) concludes the proof and completes the solution.