
Test 2 — Solutions

Problem 1. Given positive integers k and m, show that m and
(
n
k

)
are

coprime for infinitely many integers n ≥ k.

Solution. Let n = k+ lmk!, where l is an arbitrary nonnegative integer, let
p be any prime factor of m, and let ph be the highest power of p that divides
k! — that is, ph divides k! but ph+1 does not. Notice that n ≡ k modulo
ph+1, to deduce that n(n − 1) · · · (n − k + 1) ≡ k! modulo ph+1, so ph is
also the highest power of p that divides the product n(n− 1) · · · (n− k + 1).
Consequently, p does not divide

(
n
k

)
, so m and

(
n
k

)
are indeed coprime.

Problem 2. Let ABC be an acute triangle, and let M be the midpoint of
the side AC. A circle through B and M meets the sides AB and BC again
at P and Q, respectively. The reflection T of B across the midpoint of the
segment PQ lies on the circle ABC. Evaluate the ratio BT/BM .

Solution. Te required ratio equals
√

2. To prove this, let S be the midpoint
of the segment PQ, and let B′ be the reflection of B across M . Clearly,
ABCB′ is a parallelogram, ∠ABB′ = ∠PQM , and ∠BB′A = ∠B′BC =
∠MPQ, so the triangles ABB′ and MQP are similar. Since AM and MS
are corresponding medians in these triangles,

∠SMP = ∠B′AM = ∠BCA = ∠BTA. (1)

Next, ∠ACT = ∠PBT and ∠TAC = ∠TBC = ∠BTP , so the triangles
TCA and PBT are similar. Since TM and PS are corresponding medians
in these triangles,

∠MTA = ∠TPS = ∠BQP = ∠BMP. (2)

If S does not lie on the segment BM , we may and will assume that S
and A both lie on the same side of the line BM , since the configuration
is symmetric in A and C. By (1) and (2), ∠BMS = ∠BMP − ∠SMP =
∠MTA − ∠BTA = ∠MTB, so the triangles BSM and BMT are similar,
whence BM2 = BS ·BT = BT 2/2; that is, BT/BM =

√
2.
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If S lies on the segment BM , then (2) shows that ∠BCA = ∠MTA =
∠BMP = ∠BQP , so (PQ,AC) and (PM,AT ) are pairs of parallel lines.
Consequently, BS/BM = BP/BA = BM/BT , so BT 2 = 2BM2, and again
BT/BM =

√
2.

Problem 3. Prove that:

(a) If (an)n≥1 is a strictly increasing sequence of positive integers such
that (a2n−1 + a2n)/an is constant as n runs through all positive integers,
then this constant is an integer greater than or equal to 4; and



(b) Given an integer N ≥ 4, there exists a strictly increasing sequence
(an)n≥1 of positive integers such that (a2n−1 + a2n)/an = N for all indices
n.

Solution. (a) Clearly, K = (a2n−1 + a2n)/an is a positive rational number.
In fact, K must be integral. To prove this, write K = p/q in lowest terms
to deduce that the an are all divisible by q. Divide them all by q to obtain
a new sequence whose corresponding ratios are again K. Repetition of the
process to the new sequence and its successors shows that the an are all
divisible by arbitrarily large powers of q, so q = 1 and K is indeed integral.

Since the an form a strictly increasing sequence, it follows that K > 2,
and since the latter is integral, it is at least 3.

To rule out the case K = 3, we consider the positive integers bn =
an+1 − an, show that for every index m there exists an index n > m such
that bn < bm and reach thereby a contradiction. Indeed, if K = 3, then
3bn = b2n−1 + 2b2n + b2n+1, so at least one of the three b’s in the right-hand
member must be less than bn. Consequently, K ≥ 4.

(b) If N = 4, let an = 2n− 1; in this case, the verifications are obvious.
If N ≥ 5, set a1 = 1 and let a2n−1 = b(Nan− 1)/2c and a2n = bNan/2c+ 1.
This sequence satisfies the required ratio condition, a2n−1 is obviously less
than a2n, and it is sufficient to prove that a2n < a2n+1. This can be done
by noticing that a2 < a3, and showing that if an < an+1, then a2n < a2n+1.
Indeed, a2n+1−a2n ≥ (Nan+1−2)/2− (Nan/2+1) = N(an+1−an)/2−2 ≥
N/2− 2 ≥ 1/2.

Problem 4. Given any positive integer n, prove that:

(a) Every n points in the closed unit square [0, 1] × [0, 1] can be joined
by a path of length less than 2

√
n + 4; and

(b) There exist n points in the closed unit square [0, 1]×[0, 1] that cannot
be joined by a path of length less than

√
n− 1.

Solution. (a) Let C be an n-point configuration in the closed unit square
[0, 1]× [0, 1], let m = b

√
nc, and consider the snake going horizontally from

0 × 0 to 1 × 0, then vertically up from 1 × 0 to 1 × 1/m, then horizontally
back from 1 × 1/m to 0 × 1/m, vertically up from 0 × 1/m to 0 × 2/m,
horizontally over to 1× 2/m, and so on and so forth all the way up to 1× 1
or 0 × 1, depending on whether m is even or odd. The length of the snake
is m + 1 + m · 1/m = m + 2 ≤

√
n + 2. Of course, the snake does not

necessarily pass through any point in C, but it comes within 1/(2m) of C.
Thus, in tracing the snake, visit each point of C by darting out, if necessary,
to the nearest points in C abreast within 1/(2m), and then dart back. This
increases the length by at most n ·2 ·1/(2m) = n/m <

√
n+2, so the length

of the visiting path is certainly less than 2
√
n + 4.

(b) Let again m = b
√
nc, and consider an n-point subconfiguration C

of the lattice {i/m× j/m : i, j = 0, 1, . . . ,m}. Since any two distinct points
in the lattice are at least 1/m distance apart, the length of a path through
all of C is at least (n− 1) · 1/m ≥ (n− 1)/

√
n ≥
√
n− 1.

Remark. The problem shows that the order of magnitude of the longest
shortest path through n points in a unit square is

√
n.
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