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1 Introduction

Let R be a commutative Noetherian ring with identity, and let C be a semidualizing module
of R. We denote by AC(R) and BC(R) the Auslander and Bass classes of R with respect
to C, respectively. These classes are known as Foxby classes. Foxby equivalence states that
the functors C ⊗R − and HomR(C,−) provide inverse equivalences between the Auslander
and Bass classes. This fact is illustrated by the following diagram:

AC(R)
C⊗R− //

BC(R).
HomR(C,−)

oo (1)

Let I be a proper ideal of R, and let M be a finitely generated R-module. We say M
is Cohen-Macaulay with respect to I if either M = IM or M ̸= IM and grade(I,M) =
cd(I,M). Let n be a non-negative integer. We denote by CMn

I (R) the full subcategory of
Cohen-Macaulay R-modules M with respect to I such that cd(I,M) = n. Corollary 2.8 (cf.
[8, Theorem 6.3]) shows that the equivalence (1) restricts to an equivalence:

AC(R)
∩
CMn

I (R)
C⊗R− //

BC(R)
∩

CMn
I (R).

HomR(C,−)
oo (2)

Thus, the class of Cohen-Macaulay R-modules with respect to I behaves well with respect
to Foxby equivalence. Next, we will consider the class of sequentially Cohen-Macaulay R-
modules with respect to I as a generalization of the class of Cohen-Macaulay R-modules
with respect to I. Let I be a proper ideal of R, and let M be a finitely generated R-module.
A finite filtration F : 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mr = M of M by submodules Mi is called a
Cohen–Macaulay filtration with respect to I if each quotient Mi/Mi−1 is Cohen–Macaulay
with respect to I and 0 ≤ cd(I,M1/M0) < cd(I,M2/M1) < · · · < cd(I,Mr/Mr−1). If
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M admits a Cohen–Macaulay filtration with respect to I, then we say M is sequentially
Cohen–Macaulay with respect to I. Let (R,m) be a local ring. Then, one observes that
M is sequentially Cohen–Macaulay if and only if M is sequentially Cohen–Macaulay with
respect to m. This notion has been central in many papers in the literature since the late
1990s. Here are some of the key references, ([3], [5], [7], [14], [15]). For any non-negative
integer n, we denote by sCMn

I (R) the full subcategory of all sequentially Cohen-Macaulay
modules M with respect to I such that cd (I,M) = n. We may ask whether Equivalence
(2) extends to the following equivalence:

Question 1.1. Let C be a semidualizing module of R. Is there an equivalence of categories:

AC (R)
∩
sCMn

I (R)
C⊗R− //

BC (R)
∩
sCMn

I (R)?
HomR(C,−)

oo

There is a positive answer to Question 1.1 if M is a finitely generated R-module with
cd(I,M) ≤ 1, as shown in Remark 3.2. However, we provide an answer to Question 1.1 in
Proposition 3.6 and Proposition 3.8 by an extra assumption.

Let F : 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mr = M be the dimension filtration of M with respect
to I, and Mi ∈ AC(R) for i = 1, . . . , r, then the following conditions are equivalent:

(a) M is sequentially Cohen–Macaulay with respect to I;

(b) C ⊗R M is sequentially Cohen–Macaulay with respect to I.

See Proposition 3.6. Corollary 3.7 presents the ordinary case of this result when (R,m) is
a local ring. In addition, let G : 0 = N0 ⊊ N1 ⊊ · · · ⊊ Nr = N be the dimension filtration
of N with respect to I, and Ni ∈ BC(R) for i = 1, . . . , r, then the following conditions are
equivalent:

(a) N is sequentially Cohen–Macaulay with respect to I;

(b) HomR(C,N) is sequentially Cohen–Macaulay with respect to I.

See Proposition 3.8. The ordinary case of this result is provided by Corollary 3.9 when
(R,m) is a local ring.

In our final section, we consider modules with maximal depth as a generalization of
sequentially Cohen-Macaulay modules, see [13] and [16]. Let (R,m) be a Noetherian local
ring and M a finitely generated R-module. We say M has maximal depth if there is
an associated prime p of M such that depthM = dimR/p. Let MD (R) denote the
full subcategory of R-modules with maximal depth. In terms of categories, there is an
equivalence:

AC (R) ∩ MD (R)
C⊗R− //

BC (R) ∩ MD (R) ,
HomR(C,−)

oo

as shown in Proposition 4.1. Finally, we consider unmixed R-modules with respect to I
as a generalization of Cohen–Macaulay R-modules with respect to I. As before, let I be
a proper ideal of R and M a finitely generated R-module. We say M is unmixed with
respect to I if cd(I,M) = cd(I,R/p) for all p ∈ AssR M . This concept behaves well with
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Foxby equivalence. Indeed, for any non-negative integer n, let U n
I (R) denote the full

subcategory of unmixed R-modules with respect to I such that cd (I,M) = n. Then there
is an equivalence of categories:

AC (R) ∩ U n
I (R)

C⊗R− //
BC (R) ∩ U n

I (R) ,
HomR(C,−)

oo

as proven in Proposition 4.1.

2 Background on Foxby classes and sequentially Cohen–
Macaulay

This section provides some background on Foxby classes and sequentially Cohen–Macaulay
modules used throughout the paper.

Definition 2.1. The R-module C is semidualizing if it satisfies the following conditions:

(a) C is finitely generated,

(b) the homothety map χR
C : R → HomR(C,C) is an isomorphism, and

(c) ExtiR(C,C) = 0 for all i ≥ 1.

Fact 2.2. Let C be a semidualizing R-module and M a finitely generated R-module. Then

(a) SuppR C ⊗R M = SuppR M = SuppR HomR(C,M) and hence,

(b) C ⊗R M ̸= 0 ⇐⇒ M ̸= 0 ⇐⇒ HomR(C,M) ̸= 0.

See [1, Lemma 3.1].

The classes defined next are known as Foxby classes.

Definition 2.3. Let C be a finitely generated R-module. The Auslander class AC(R) is
the class of all R-modules M satisfying the following conditions:

(a) the natural map γC
M : M → HomR(C,C ⊗R M) is an isomorphism, and

(b) TorRi (C,M) = 0 = ExtiR(C,C ⊗R M) for all i ≥ 1.

The Bass class BC(R) is the class of all R-modules N satisfying the following conditions:

(a) the evaluation map ξNC : C ⊗R HomR(C,N) → N is an isomorphism, and

(b) ExtiR(C,N) = 0 = TorRi (C,HomR(C,N)) for all i ≥ 1.

It is worth noting that R ∈ AC(R) and C ∈ BC(R). Moreover, there is an equivalence
of categories called Foxby equivalence:

AC (R)
C⊗R− //

BC (R) ,
HomR(C,−)

oo

as shown in [17, Theorem 3.2.1]. We also require the following property of Foxby classes.
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Fact 2.4. Let C be a semidualizing R-module, and consider an exact sequence of R-module
homomorphisms 0 → M1 → M2 → M3 → 0.

(a) If two of the Mi’s are in AC(R), then so is the third.

(b) If two of the Mi’s are in BC(R), then so is the third.

See, [17, Proposition 3.1.7].

Let I be an ideal of R and M an R-module. We denote by cd(I,M) the cohomological
dimension of M with respect to I which is the largest integer i for which Hi

I(M) ̸= 0.

Fact 2.5. The following statements hold:

(a) cd(I,M) = max{cd(I,R/p) : p ∈ SuppR M}, see [4, Corollary 4.6].

(b) The exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated R-modules yields
cd(I,M) = max{cd(I,M ′), cd(I,M ′′)}, see [4, Proposition 4.4].

Fact 2.2(a) together with Fact 2.5(a) yield

cd(I, C ⊗R M) = cd(I,M) = cd(I,HomR(C,M)). (3)

In particular, cd(I,R) = cd(I, C).
The following fact is derived from [1, Lemma 3.2].

Fact 2.6. Let C be a semidualizing module of R and I be an ideal of R. Assume that M
and N are two finitely generated R-modules with M ∈ AC(R) and N ∈ BC(R). Then

(a) AssR M = AssR C ⊗R M .

(b) grade(I,M) = grade(I, C ⊗R M).

(c) AssR N = AssR HomR(C,N).

(d) grade(I,N) = grade(I,HomR(C,N)).

In particular, we have AssR R = AssR C and grade(I,R) = grade(I, C).

Definition 2.7. Let I be a proper ideal of R and M a finitely generated R-module. We say
M is Cohen–Macaulay with respect to I if either M = IM or M ̸= IM and grade(I,M) =
cd(I,M), as introduced in [10].

Let n be a non-negative integer. Let CMn
I (R) denote the full subcategory of Cohen-

Macaulay R-modules M with respect to I with cd (I,M) = n. In view of (3) and Fact 2.6,
if M ∈ AC(R), then M is Cohen–Macaulay with respect to I if and only if C ⊗R M is
Cohen–Macaulay with respect to I. Moreover, if N ∈ BC(R), then N is Cohen–Macaulay
with respect to I if and only if HomR(C,N) is Cohen–Macaulay with respect to I. In
particular, R is Cohen–Macaulay with respect to I if and only if C is Cohen–Macaulay
with respect to I. These observations, together with Foxby equivalence, yield the following
equivalence of categories:
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Corollary 2.8. Assume that C is a semidualizing module of R. Then the following cate-
gories are equivalent:

AC (R)
∩
CMn

I (R)
C⊗R− //

BC (R)
∩

CMn
I (R).

HomR(C,−)
oo

This result is also shown in [8, Theorem 6.3].
Let I be an ideal of R and M a non-zero finitely generated R-module. There is a unique

largest submodule N of M for which cd(I,N) < cd(I,M). To see this, let
∑

be the set of
all submodules K of M such that cd(I,K) < cd(I,M). As M is a Noetherian R-module,∑

has a maximal element with respect to inclusion, say N . Let T be an arbitrary element
in

∑
. Fact 2.5(b) implies that cd(I, T +N) < cd(I,M); hence, the maximality of N yields

T ⊆ N .

Definition 2.9. A filtration D : 0 = D0 ⊊ D1 ⊊ · · · ⊊ Dr = M of M by submodules Di

is called the dimension filtration of M with respect to I if Di−1 is the largest submodule of
Di for which cd(I,Di−1) < cd(I,Di) for all i = 1, . . . , r.

We recall the following fact which will be used in the sequel.

Fact 2.10. Let D be the dimension filtration of M with respect to I. Then

AssR Di/Di−1 = {p ∈ AssR M : cd(I,R/p) = cd(I,Di)}.

This fact is proved in the same way as the proof of [12, Lemma 1.5] by replacing the ring
R and the general ideal I with the polynomial ring S and the ideal Q, respectively.

Let I be a proper ideal of R and M a finitely generated R-module. A finite filtration
F : 0 = M0 ⊊ M1 ⊊ · · · ⊊ Mr = M of M by submodules Mi is called a Cohen–Macaulay
filtration with respect to I if each quotient Mi/Mi−1 is Cohen–Macaulay with respect to I
and 0 ≤ cd(I,M1/M0) < cd(I,M2/M1) < · · · < cd(I,Mr/Mr−1). If M admits a Cohen–
Macaulay filtration with respect to I, then we say M is sequentially Cohen–Macaulay with
respect to I. Note that if M is sequentially Cohen–Macaulay with respect to I, then the
filtration F is uniquely determined and it is just the dimension filtration of M with respect
to I, that is, F = D . The proof of this fact is the same as the proof of [11, Proposition
2.9] by replacing the ring R and the general ideal I with the polynomial ring S and the
ideal Q, respectively. If (R,m) is a local ring and M a finitely generated R-module, then
M is sequentially Cohen–Macaulay if and only if M is sequentially Cohen–Macaulay with
respect to m.

3 Sequentially Cohen–Macaulayness

Let n be a non-negative integer, I an ideal of R, and M a finitely generated R-module. We
denote by sCMn

I (R) the full subcategory of all sequentially Cohen-Macaulay modules with
respect to I such that cd (I,M) = n. In this section, we address the following question:

Question 3.1. Let C be a semidualizing module of R. Is there an equivalence of categories

AC (R)
∩
sCMn

I (R)
C⊗R− //

BC (R)
∩
sCMn

I (R)?
HomR(C,−)

oo
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Remark 3.2. Let M be a finitely generated R-module with cd(I,M) ≤ 1. Then, M is
sequentially Cohen–Macaulay with respect to I. To show this, we may assume that M
is not Cohen–Macaulay with respect to I. Thus grade(I,M) = 0 and cd(I,M) = 1. The
filtration 0 ⊊ H0

I(M) ⊊M , is a Cohen–Macaulay filtration with respect to I. Now, let C be
a semidualizing R-module. Based on (3), cd(I, C⊗RM) = cd(I,M). Thus, by using Foxby
equivalence ”M ∈ AC (R) and cd(I,M) ≤ 1” is equivalent to say that ”C ⊗R M ∈ BC (R)
and cd(I, C ⊗R M) ≤ 1”. Consequently, Question 3.1 has a positive answer in this case.

We make an additional assumption in order to answer Question 3.1. First, we need to
prove the following lemmas. Note that the converse of Lemma 3.3 also holds, see Remark
3.5.

Lemma 3.3. Let C be a semidualizing R-module, and let F : 0 = M0 ⊊M1 ⊊ · · · ⊊Mr =
M be a filtration of M . Assume that Mi ∈ AC(R) for i = 1, . . . , r. If F is the dimension
filtration of M with respect to I, then C ⊗R F is the dimension filtration of C ⊗R M with
respect to I.

Proof. Since C is a semidualizing R-module, C ⊗R Mi ̸= 0 for i = 1, . . . , r by Fact 2.2(b).
Moreover, as Mi ∈ AC(R) for i = 1, . . . , r, the exact sequence 0 → Mi−1 → Mi →
Mi/Mi−1 → 0 yields Mi/Mi−1 ∈ AC(R) for i = 1, . . . , r by Fact 2.4(a). Thus, we have the
following exact sequence of R-modules

0 = TorR1 (C,Mi/Mi−1) → C ⊗R Mi−1 → C ⊗R Mi → C ⊗R (Mi/Mi−1) → 0. (4)

Consequently, we obtain the following filtration

C ⊗R F : 0 = C ⊗R M0 ⊊ C ⊗R M1 ⊊ · · · ⊊ C ⊗R Mr = C ⊗R M.

The strict inclusions follow from the fact that

cd(I, C ⊗R Mi−1) = cd(I,Mi−1) < cd(I,Mi) = cd(I, C ⊗R Mi).

Here, the first equality is by (3), and the second inequality follows from our assumption
that F is the dimension filtration of M with respect to I. Moreover, from (4), we obtain

(C ⊗R Mi)/(C ⊗R Mi−1) ∼= C ⊗R (Mi/Mi−1), (5)

for i = 1, . . . , r. To complete our proof, we need to show that C ⊗R Mi−1 is the largest
submodule of C ⊗R Mi such that cd(I, C ⊗R Mi−1) < cd(I, C ⊗R Mi). Let L be the
largest submodule of C ⊗R Mi for which cd(I, L) < cd(I, C ⊗R Mi). We want to show that
C ⊗R Mi−1 = L. By Fact 2.5(b), we have

cd(I, L+ (C ⊗R Mi−1)) = max{cd(I, L), cd(I, C ⊗R Mi−1)} < cd(I, C ⊗R Mi).

Thus, the maximality of L yields L = L+(C⊗RMi−1). Hence, C⊗RMi−1 ⊆ L ⊊ C⊗RMi.
On the contrary, suppose that C ⊗R Mi−1 ̸= L. Observe that

∅ ̸= AssR L/(C ⊗R Mi−1) ⊆ AssR(C ⊗R Mi)/(C ⊗R Mi−1)
= AssR C ⊗R (Mi/Mi−1)
= AssR Mi/Mi−1

= {p ∈ AssR M : cd(I,R/p) = cd(I,Mi)}.
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The exact sequence

0 → L/(C ⊗R Mi−1) → (C ⊗R Mi)/(C ⊗R Mi−1)

yields the first step in this sequence. The second step is by (5). Fact 2.6(a) implies the third
step. The last step follows from Fact 2.10. Thus, there exists q ∈ AssR L/(C ⊗R Mi−1)
such that cd(I,R/q) = cd(I,Mi). Observe that

cd(I, C ⊗R Mi) = cd(I,Mi)
= cd(I,R/q)
≤ cd(I, L/(C ⊗R Mi−1))
≤ cd(I, L).

The first step is by (3). The exact sequence

0 → R/q → L/(C ⊗R Mi−1)

yields cd(I,R/q) ≤ cd(I, L/(C⊗RMi−1)) by Fact 2.5(b). Thus, the third step follows. The
exact sequence

L → L/(C ⊗R Mi−1) → 0

yields cd(I, L/(C ⊗R Mi−1)) ≤ cd(I, L) again by Fact 2.5(b). So, the fourth step follows.
Consequently, cd(I, C ⊗R Mi) ≤ cd(I, L), a contradiction. Therefore, C ⊗R Mi−1 = L and
so the proof is complete.

Lemma 3.4. Let C be a semidualizing R-module, and let G : 0 = N0 ⊊ N1 ⊊ · · · ⊊ Nr = N
be a filtration of N . Assume that Ni ∈ BC(R) for i = 1, . . . , r. Then the following
conditions are equivalent:

(a) G is the dimension filtration of N with respect to I;

(b) HomR(C,G ) is the dimension filtration of HomR(C,N) with respect to I.

Proof. (a) ⇒ (b): Because C is a semidualizing R-module, HomR(C,Ni) ̸= 0 for i =
1, . . . , r by Fact 2.2(b). As HomR(C,−) is a left exact functor, the exact sequence 0 →
Ni−1 → Ni yields the exact sequence 0 → HomR(C,Ni−1) → HomR(C,Ni) for all i. Thus,
we have the following filtration

HomR(C,G ) : 0 = HomR(C,N0) ⊊ HomR(C,N1) ⊊ · · · ⊊ HomR(C,Nr) = HomR(C,N).

The following fact explains the strict inclusions.

cd(I,HomR(C,Ni−1)) = cd(I,Ni−1) < cd(Q,Ni) = cd(I,HomR(C,Ni)).

Here, the first equality is by (3), and the second inequality follows from our assumption
that G is the dimension filtration of N with respect to I. Next, we need to show that
HomR(C,Ni−1) is the largest submodule of HomR(C,Ni) for which cd(Q,HomR(C,Di−1)) <
cd(Q,HomR(C,Di)). Let L be the largest submodule of HomR(C,Ni) for which cd(I, L) <
cd(I,HomR(C,Ni)). We claim that HomR(C,Ni−1) = L. Based on Fact 2.5(b),

cd(I, L+HomR(C,Ni−1)) = max{cd(I, L), cd(I,HomR(C,Ni−1))} < cd(I,Ni).
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Thus, the maximality of L yields L = L+HomR(C,Ni−1). Hence, HomR(C,Ni−1) ⊆ L ⊊
HomR(C,Ni). Now, on the contrary suppose HomR(C,Ni−1) ̸= L. Observe that

∅ ̸= AssR L/HomR(C,Ni−1) ⊆ AssR HomR(C,Ni)/HomR(C,Ni−1)
= AssR HomR(C,Ni/Ni−1)
= AssR Ni/Ni−1

= {p ∈ AssR N : cd(I,R/p) = cd(I,Ni)}.

The imbedding

0 → L/HomR(C,Ni−1) → HomR(C,Ni)/HomR(C,Ni−1)

yields the first step in this sequence. The second step is shown as follows. As Ni ∈ BC(R),
the exact sequence 0 → Ni−1 → Ni → Ni/Ni−1 → 0 yields Ni/Ni−1 ∈ BC(R) by Fact
2.4(b). Thus, we have the following exact sequence of R-modules

0 → HomR(C,Ni−1) → HomR(C,Ni) → HomR(C,Ni/Ni−1) → Ext1R(C,Ni−1) = 0.

Consequently,

HomR(C,Ni)/HomR(C,Ni−1) ∼= HomR(C,Ni/Ni−1), (6)

for i = 1, . . . , r. Therefore, the second step follows. Fact 2.6(c) provides the third step.
The last step is by Fact 2.10. Thus, there exists q ∈ AssR L/HomR(C,Ni−1) such that
cd(I,R/q) = cd(I,Ni). Observe that

cd(I,HomR(C,Ni)) = cd(I,Ni)
= cd(I,R/q)
≤ cd(I, L/HomR(C,Ni−1))
≤ cd(I, L).

The first step is by (3). The exact sequence

0 → R/q → L/HomR(C,Ni−1)

yields cd(I,R/q) ≤ cd(I, L/HomR(C,Ni−1)) by Fact 2.5(b). Thus, the third step holds.
The exact sequence

L → L/HomR(C,Ni−1) → 0

yields cd(I, L/HomR(C,Ni−1)) ≤ cd(I, L) again by Fact 2.5(b). So, the fourth step follows.
Consequently, cd(I,HomR(C,Ni)) ≤ cd(I, L), a contradiction. Therefore, HomR(C,Ni−1) =
L and so the proof is compelte.

(b) ⇒ (a): Suppose HomR(C,G ) is the dimension filtration of HomR(C,N) with respect
to I. Thus, by Lemma 3.3, C ⊗R HomR(C,G ) ∼= G is the dimension filtration of C ⊗R

HomR(C,N) ∼= N with respect to I, as desired.

Remark 3.5. Notice that the converse of Lemma 3.3 holds. In fact, suppose that C ⊗R

F is the dimension filtration of C ⊗R M with respect to I. Lemma 3.4 implies that
HomR(C,C⊗R F ) ∼= F is the dimension filtration of HomR(C,C⊗RM) ∼= M with respect
to I, as desired.
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In the following, we provide an answer to Question 3.1 under an extra assumption.

Proposition 3.6. Let C be a semidualizing R-module, and let F : 0 = M0 ⊊ M1 ⊊ · · · ⊊
Mr = M be the dimension filtration of M with respect to I. Assume that Mi ∈ AC(R) for
i = 1, . . . , r. Then the following conditions are equivalent:

(a) M is sequentially Cohen–Macaulay with respect to I;

(b) C ⊗R M is sequentially Cohen–Macaulay with respect to I.

Proof. (a) ⇒ (b): We first assume that M is sequentially Cohen–Macaulay with respect
to I. Thus, the dimension filtration F is a Cohen–Macaulay filtration of M with respect
to I. By Lemma 3.3,

C ⊗R F : 0 = C ⊗R M0 ⊊ C ⊗R M1 ⊊ · · · ⊊ C ⊗R Mr = C ⊗R M

is the dimension filtration of C ⊗M with respect to I. We claim that C ⊗R F is a Cohen–
Macaulay filtration with respect to I for C⊗RM . We first show that (C⊗RMi)/(C⊗RMi−1)
is Cohen–Macaulay with respect to I for all i. Observe that

grade(I, (C ⊗R Mi)/(C ⊗R Mi−1)) = grade(I, C ⊗R (Mi/Mi−1))

= grade(I,Mi/Mi−1)

= cd(I,Mi/Mi−1)

= cd(I, C ⊗R (Mi/Mi−1))

= cd(I, (C ⊗R Mi)/(C ⊗R Mi−1)).

The first step follows from (5). As Mi/Mi−1 ∈ AC(R), Fact 2.6(b) implies the second step.
Our assumption explains the third step and the fourth step follows from (3). The last step
is again by (5).

Next, we want to show that

cd(I, (C ⊗R Mi)/(C ⊗R Mi−1)) < cd(I, (C ⊗R Mi+1)/(C ⊗R Mi)) for all i.

Observe that

cd(I, (C ⊗R Mi)/(C ⊗R Mi−1)) = cd(I, C ⊗R (Mi/Mi−1))

= cd(I,Mi/Mi−1)

< cd(I,Mi+1/Mi)

= cd(I, C ⊗R (Mi+1/Mi))

= cd(I, (C ⊗R Mi+1)/(C ⊗R Mi)).

As, F is a Cohen–Macaulay filtration of M with respect to I, the third step follows, and
the other steps are standard. Thus, C ⊗R F is a Cohen-Macaulay filtration of C ⊗R M
with respect to I, which implies that C ⊗R M is sequentially Cohen-Macaulay with respect
to I. Therefore, we have shown that (a) ⇒ (b).

(b) ⇒ (a): Suppose C ⊗R M is sequentially Cohen–Macaulay with respect to I. As
F is the dimension filtration of M with respect to I, Lemma 3.3 says that C ⊗R F : 0 =
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C⊗RM0 ⊊ C⊗RM1 ⊊ · · · ⊊ C⊗RMr = C⊗RM is the dimension filtration of C⊗RM with
respect to I. Hence, our assumption implies that C ⊗R F is a Cohen–Macaulay filtration
of C ⊗R M with respect to I as well. We claim that F is a Cohen–Macaulay filtration of
M with respect to I. Observe that

grade(I,Mi/Mi−1) = grade(I, C ⊗R (Mi/Mi−1))

= grade(I, (C ⊗R Mi)/(C ⊗R Mi−1))

= cd(I, (C ⊗R Mi)/(C ⊗R Mi−1))

= cd(I, C ⊗R (Mi/Mi−1))

= cd(I,Mi/Mi−1).

These steps follow by a similar argument as in the first display.

Next, we want to show that cd(I,Mi/Mi−1) < cd(I,Mi+1/Mi) for all i. Notice that

cd(I,Mi/Mi−1) = cd(I, (C ⊗R Mi)/(C ⊗R Mi−1))

< cd(I, (C ⊗R Mi+1)/(C ⊗R Mi))

= cd(I,Mi+1/Mi).

As, C ⊗R F is a Cohen–Macaulay filtration of C ⊗R M with respect to I, the second step
follows, and the other steps are standard. Therefore, the proof is complete.

Corollary 3.7. Let (R,m) be a local ring, and C a semidualizing R-module. Let F : 0 =
M0 ⊊M1 ⊊ · · · ⊊Mr = M be the dimension filtration of M . Assume that Mi ∈ AC(R) for
i = 1, . . . , r. Then M is sequentially Cohen–Macaulay if and only if C⊗RM is sequentially
Cohen–Macaulay.

In the following, we address Question 3.1 with an additional assumption.

Proposition 3.8. Let C be a semidualizing R-module, and let G : 0 = N0 ⊊ N1 ⊊ · · · ⊊
Nr = N be the dimension filtration of N with respect to I. Assume that Ni ∈ BC(R) for
i = 1, . . . , r. Then the following conditions are equivalent:

(a) N is sequentially Cohen–Macaulay with respect to I;

(b) HomR(C,N) is sequentially Cohen–Macaulay with respect to I.

Proof. (a) ⇒ (b): Suppose N is sequentially Cohen–Macaulay with respect to I. Thus, the
dimension filtration G is a Cohen–Macaulay filtration of N with respect to I. By Lemma
3.4,

HomR(C,G ) : 0 = HomR(C,N0) ⊊ HomR(C,N1) ⊊ · · · ⊊ HomR(C,Nr) = HomR(C,N),

is the dimension filtration of HomR(C,N) with respect to I. We claim that HomR(C,G ) is
a Cohen–Macaulay filtration of HomR(C,N) with respect to I. We set Li = HomR(C,Ni)
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for all i. We first show that Li/Li−1 is Cohen–Macaulay with respect to I for all i. Observe
that

grade(I, Li/Li−1) = grade(I,HomR(C,Ni/Ni−1))

= grade(I,Ni/Ni−1)

= cd(I,Ni/Ni−1)

= cd(I,HomR(C,Ni/Ni−1))

= cd(I, Li/Li−1).

The first step follows from (6). As Ni/Ni−1 ∈ BC(R), Fact 2.6(d) provides the second step
in this sequence. Our assumption explains the third step and the fourth step follows from (3).
The last step is again by (6). Next, we want to show that cd(I, Li/Li−1) < cd(I, Li+1/Li)
for all i. Observe that

cd(I, Li/Li−1) = cd(I,HomR(C,Ni/Ni−1))

= cd(I,Ni/Ni−1)

< cd(I,Ni+1/Ni)

= cd(I,HomR(C,Ni+1/Ni))

= cd(I, Li+1/Li).

Our assumption explains the third step, and the other steps are standard.
(b) ⇒ (a): Suppose HomR(C,N) is sequentially Cohen–Macaulay with respect to I. As

G : 0 = N0 ⊊ N1 ⊊ · · · ⊊ Nr = N is the dimension filtration of N with respect to I, it
follows from Lemma 3.4 that

HomR(C,G ) : 0 = HomR(C,N0) ⊊ HomR(C,N1) ⊊ · · · ⊊ HomR(C,Nr) = HomR(C,N),

is the dimension filtration of HomR(C,N) with respect to I. Hence, our assumption implies
that HomR(C,G ) is a Cohen–Macaulay filtration of HomR(C,N) with respect to I. We
claim that G : 0 = N0 ⊊ N1 ⊊ · · · ⊊ Nr = N is a Cohen–Macaulay filtration of N with
respect to I. As before, we set Li = HomR(C,Ni) for all i. Observe that

grade(I,Ni/Ni−1) = grade(I,HomR(C,Ni/Ni−1))

= grade(I, Li/Li−1)

= cd(I, Li/Li−1)

= cd(I,HomR(C,Ni/Ni−1))

= cd(I,Ni/Ni−1),

and

cd(I,Ni/Ni−1) = cd(I, Li/Li−1)

< cd(I, Li+1/Li)

= cd(I,Ni+1/Ni),

for all i. Therefore, the proof is complete.
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Corollary 3.9. Let (R,m) be a local ring, and C a semidualizing R-module. Let G : 0 =
N0 ⊊ N1 ⊊ · · · ⊊ Nr = N be the dimension filtration of N . Assume that Ni ∈ BC(R)
for i = 1, . . . , r. Then N is sequentially Cohen–Macaulay if and only if HomR(C,N) is
sequentially Cohen–Macaulay.

4 Maximal depth and unmixedness

Let (R,m) be a Noetherian local ring and M a finitely generated R-module. A basic fact
in commutative algebra states that

depthR M ≤ min{dimR/p : p ∈ AssR M},

see [2]. We define mdepthR M = min{dimR/p : p ∈ AssR M}. We say M has maximal
depth if the equality holds, i.e., depthR M = mdepthR M. In other words, there is an
associated prime p of M such that depthR M = dimR/p. The maximal depth property
generalizes the concept of sequentially Cohen-Macaulayness. In fact, sequentially Cohen-
Macaulay modules have maximal depth, see [13, Proposition 1.4], see also [16, Theorem
6.4.23] where the ring R is a polynomial ring. Let MD (R) denote the full subcategory of
all R-modules with maximal depth. Note that sCMdimM

m (R) ⊆ MD (R).

Proposition 4.1. For any semidualizing module C of R, there exists an equivalence of
categories:

AC (R) ∩ MD (R)
C⊗R− //

BC (R) ∩ MD (R) .
HomR(C,−)

oo

Proof. Consider the Foxby equivalence

AC (R)
C⊗R− //

BC (R) .
HomR(C,−)

oo

For any R-module L ∈ BC (R), we have HomR(C,L) ∈ AC (R), and L ∼= C⊗RHomR(C,L).
Hence, to complete the proof, it suffices to show that a finitely generated R-module M ∈
AC (R) ∩ MD (R) if and only if C ⊗R M ∈ BC (R) ∩ MD (R). Based on Fact 2.6(a), we
have

mdepthR M = min{dimR/p : p ∈ AssR M}
= min{dimR/p : p ∈ AssR C ⊗R M}
= mdepthR C ⊗R M.

On the other hand, Fact 2.6(b) implies that depthR M = depthR C ⊗R M . Therefore, M
has maximal depth if and only if C ⊗R M has maximal depth, as desired.

Let I be a proper ideal of R and M a finitely generated R-module. We say M is unmixed
with respect to I if cd(I,M) = cd(I,R/p) for all p ∈ AssR M . Note that if I is contained in
the Jacobson radical of R and M is Cohen–Macaulay with respect to I, then M is unmixed
with respect to I (see [9, Proposition 2.11], also [6, Corollary 1.11]). For any non-negative
integer n, let U n

I (R) denote the full subcategory of unmixed R-modules with respect to I
with cd (I,M) = n. Note that CMn

I (R) ⊆ U n
I (R).
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Proposition 4.2. Let C be a semidualizing module of R. Then there exists an equivalence
of categories:

AC (R) ∩ U n
I (R)

C⊗R− //
BC (R) ∩ U n

I (R) .
HomR(C,−)

oo

Proof. Based on the proof of Proposition 4.1, we only need to show that a finitely generated
R-module M ∈ AC (R) ∩ U n

I (R) if and only if C ⊗R M ∈ BC (R) ∩ U n
I (R). Notice that

cd(I,M) = cd(I, C ⊗R M) by (3), and AssR M = AssR C ⊗R M by Fact 2.6(a). Therefore,
M ∈ U n

I (R) if and only if C ⊗R M ∈ U n
I (R), as desired.
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