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Abstract

Let A¢(n) denote the number of f-regular overpartitions of n. Quite recently, Ray
and Chakraborty investigated the arithmetic density properties on powers of primes
satisfied by A,(n). Utilizing an algorithm of Radu and Sellers, they proved a congru-
ence modulo 7 for A7(n). Moreover, they stated without proof a congruence modulo 5
for As(n) and a congruence modulo 11 for A11(n). For these three congruences, they
asked for an elementary proof. In this paper, we establish six congruence families for
these three partition functions, three of which are the corresponding generalizations
of three congruences considered by Ray and Chakraborty.

Key Words: Partitions, f-regular overpartitions, congruences, dissections, in-
ternal congruences.
2020 Mathematics Subject Classification: Primary 11P83; Secondary 05A17.

1 Introduction

The purpose of this paper is to establish several congruence families for ¢-regular overpar-
tition functions Ay(n) with £ € {5,7,11} by utilizing some g-series manipulations. This
not only answers a recent question posed by Ray and Chakraborty [14], but also greatly
generalizes some results of them.

A partition A of a positive integer n is a finite weakly decreasing sequence of positive
integers Ay > Ay > --- > A, such that ZZ:1 Ai = n. The numbers \; are called the parts
of the partition A. Let p(n) denote the number of partitions of n with the convention that
p(0) = 1. The generating function of p(n), derived by Euler, is given by

00 - 1
;p(n)q (69

where here and throughout the rest of this paper, we always assume that ¢ is a complex
number such that |¢| < 1 and adopt the following customary notation:

o0

(a; @)oo = [ J (1 = ag?).

j=0
In 1919, Ramanujan [12] discovered the following three celebrated congruences for par-
tition function p(n), namely,
p(bn+4) =0 (mod 5),
p(Tn+5) =0 (mod 7),
p(1ln+6) =0 (mod 11).
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For an integer £ > 2, a partition is called ¢-regular if all of parts are not divisible by £. In
order to prove a combinatorial proof of some classical g-series identities, Corteel and Lovejoy
[6] introduced the notion of overpartitions. An overpartition of n is a partition of n where the
first occurrence of each distinct part may be overlined. In 2003, Lovejoy [10] introduced the
f-regular overpartitions in order to provide certain overpartition analogues of combinatorial
generalizations of the Rogers—Ramanujan identities. An f-regular overpartition of n is an
overpartition of n in which all parts are not divisible by £. Let A;(n) denote the number of
(-regular overpartitions of n. The generating function of Ay(n) is given by

(=4 0)oo ("5 ¢") 0
ZAZ T (4 90)w(—d5 ) (1)

In 2015, Andrews [2] introduced the singular overpartition function Cy ;(n), which denotes
the number of overpartitions of n in which all parts are not divisible by k and only parts
congruent to 4i modulo k may be overlined. A simple calculation implies that C3 1 (n) =
As(n) holds for any n > 0. Since then, many scholars subsequently considered congruence
properties enjoyed by Ay(n); see, for example, Barman and Ray [3, 13], and Shen [15].

In a recent paper, Ray and Chakraborty [14, Corollary 1.2] derived the following powerful
result by utilizing the theory of modular forms.

Theorem 1.17(Ranyhakraborty). Let p > 5 be a prime number and let k be a positive
integer. Then Ap(n) is almost always divisible by p*, namely,

_ #Ho<n< X:A,(n)=0 (modp*)}
) ; - g

However, the theory of modular forms used to derive (2) is not constructive and it
does not give explicit Ramanujan type congruences. Therefore, Ray and Chakraborty [14,
Theorem 1.3] proved the following congruence modulo 7 for A7(n) by utilizing an algorithm
of Radu and Sellers [11]:

A7(16n+4) =0 (mod 7). (3)

At the end of their paper, they stated without proof the following two congruences:
A5(81n+27) =0 (mod 5), (4)
A1 (64n+48) =0 (mod 11). (5)

Ray and Chakraborty [14, p. 469] remarked that (4) and (5) can also be proved by utilizing
the algorithm of Radu and Sellers. Therefore, they asked whether there exists an elementary
proof of (3)—(5). In this paper, we not only provide such a proof, but also generalize (3)—(5)
to the corresponding congruence family.

Theorem 1.2. For any a > 0 and n > 0,

A5(3** " (3Bn+1)) =0 (mod 5), (6)
A5(3'(3n+12)) =0 (mod 5), (7)
A7(2°°"2(4n+1)) =0 (mod 7), (8)
A1 (29T (4n +3)) =0 (mod 11). (9)
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Remark. Two remarks on Theorem 1.2 are necessary.

(i) By connecting Ay(n) with r4(n) and rg(n), Chern [5, Theorem 2.2] proved the following
congruence families for A5(n), namely, for any o > 0 and n > 0,

As (p4a+3(pn +1)) =0 (mod 5),

where p is an odd prime, 1 < i < p—1, and r,(n) denotes the number of representations
of n by the sum of k squares. However, our proofs of (6) and (7) rely on an internal
congruence satisfied by As(n) (see (51) below). Therefore, our proof is different from
that of Chern. We will present the proofs of (6) and (7) for completeness.

(ii) Chern [5, Theorem 2.4] also proved that for any o« >0, n > 0and 1 <i<p-—1,
A (p6a+5(pn + z)) =0 (mod 7), (10)

where p is an odd prime such that p # 7. The congruence family (8) can be viewed
as a complement of (10).

Moreover, we also find two new congruence families modulo 11 enjoyed by Ajq(n).
Theorem 1.3. For any o > 0 and n > 0,
A1 (3°°M(3n+1)) =0 (mod 11), (11)
A (3"°"(3n+2)) =0 (mod 11). (12)

The rest of this paper is organized as follows. In Section 2, we collect and prove some
necessary identities, these are the main ingredients in proofs of Theorems 1.2 and 1.3. The
proofs of Theorems 1.2 and 1.3 are presented in Section 3. We conclude this paper with
two questions.

2 Some necessary identities

In order to prove Theorems 1.2 and 1.3, we first collect some necessary identities.
For notational convenience, we write

E(¢") = (¢":¢") -
We need the following 2-dissections and 3-dissections.

Lemma 2.1.

E 4\10 E 2 2E 8\4
Bla)" = E(CIQSZ’JE)(qg)4 o (qE)(q‘*)(Qq . 13)
1 B(H™ E(¢*)?E(¢®)*
B - B@VE@? T @) 14

Proof. The identities (13) and (14) follow from Berndt’s book [4, p. 40, Entry 25]; see also
[16, Lemma 2.3]. d
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E(q)?  E(¢%)? E(¢*)E(q"®)?

B~ E@®) UE@E) (15)
E(¢*)  E(¢®)'E(¢)° E(°)E(¢°)? 2 E(¢°)?E(¢"®)?

E@?  B@PEGE T B Mm@y o 19
E(q)  E(*)PE(¢)®  E(¢*)’E(¢"®)? E(¢®)'E(q'®)°

B - Ber 1 By ¢ B@FE@ )

Proof. The identity (15) follows from Berndt’s book [4, p. 49, Corollary (i)] and the fol-
lowing identity

n=—oo

The identity (16) was established by Hirschhorn and Sellers [8, Theorem 1.1]. The identity
(17) was proved by Hirschhorn and Sellers [9, Lemma 2.2]. d

Next, the U,,-operator is defined by
Um(Z a(n)q") = Z a(mn)q".
n=no n=[ng/m]|

Based on (13)—(17), we derive the following lemma which plays a vital role in the proof
of Theorem 1.2.

Lemma 2.3.

UQ(E(qffg;)(”) )- E(q]fl(f;)(w)w”sq S 1)
" B®) = Fas )<0> 1000 g

t 12802 ZOLEWG) T ;(3(4(14)12, (20)

s (i) = M Ege o g @)

Us <q2 E(qQ;(f)(f“)”) _ qE(5532?Z4)4’ (22)

E(q)?*E(¢®)°\ , E(q)*E(¢°)°
Vs (qE<q2>3E<q3>> =M EEPE) (23)
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Proof. The proofs of (18)—(22) are highly similar, thus we only present the proof of (20).
From (14) we find that

E(q?)>° _ E(¢)* E(gh)" E(q")*B(¢*)*\°
0 pasm) - v ((E( i ) >

E(q2)20 2 q2)14E(q8)4 E(q2)10
B (¢%)% E(¢*)’E(¢")
= BB 160q7E(q)12E(q4)4 1 1280¢2 e

as desired.
Next we prove (23).
It follows from (15) and (17) that

5 E25 912 ESE 18
Ug(q (a)? <g)_ <?§U<< @7 _,, <q2<q>>

E(¢?)*E(q) q E(q'8) E(q°)E(¢”)
. (B@)E@)’ . E(¢®)°E(¢"®)° e E(¢®)*E(¢"®)°
E(¢5)° E(q°)7 E(¢®)*E(q°)?* ) |
After simplification, we obtain (23).
We therefore complete the proof of Lemma 2.3. 0

The following lemma is the main ingredient in the proof of Theorem 1.3.

Lemma 2.4. Let

E 20 3\20 E 3\15
"= Ho 3= B Y= R EE
5= L@’ E@) o 2B Ed") ¢ = g DB
E(¢*)*E(¢5)’ E(q)2E(¢*)* E(¢?)3E(¢%)°
Then
Us(a) = B+ 6(—960 + 13440¢ — 5120¢%), 24
Us(B) = a, 25
Us(v) = 6(3 — 24¢), 26
Us(v€) = 6(—2+ 17¢ — 8¢?), 27
b)

) (
) (
) (
) =0(- (
%) =6(1—19¢ + 7€), (
3(753) = (30 — 156 + 57¢?), (29
) = (3 — 48¢ + 192¢?), (
€) = v(—6 + 69¢ — 168¢?), (
):7(1 — 87 +147¢7 — 8¢?), (
e): (24 13¢ — 16¢7), (
€) =~(1—76+19¢%), (
) =( (

= 7(10¢ — 16¢* + &°).
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Proof. The proofs of (24)—(35) are more trickier than that of (23), and thus, we shall present
the details here.
Proof of (24). According to (15), we find that

Us(a) = Us ((E(Qg)2 _ 2qE<q3)E<q18)2)10>

E@q'®) ™ E(¢®)E(¢°)
_B(@* o BB
"B T EPER)
JE 6E(g3)2E(q5)8 E(q)°E(¢%)7
+ 13440¢q (@) E((qqz))e @) - 5120q3EECq]g)9E(1?(]2’)7.

Proof of (25). The identity (25) follows by the definitions of Us-operator, o and p.
Proof of (26). With the help of (16) and (17), we obtain that

0° ((B@PEQ ) B@EVEG | B
: U3<Q<E<q3>8E<qw>3 o )

E32E 9\3 E33E 18)\3 E34E 18\6
o (E@PEG | B@PEG E([]qa))w(ég))s))

Therefore, in order to prove (26), it suffices to prove that
E(q)’E(g°)"!
q
E(¢*)°E(¢°)

Now we recall Horschhorn’s version of parameterized identities (see [7, Chap. 35, Egs.
(35.1.1)—(35.1.6)]), which idea comes from [1].

Zi(q) = - 24q2E(Q)6]?E((q;);E(q6)8 - 3qE(q)U§EZZ§jE(q6)3 =0. (36)

E(q) = s 241 — 2qt) /2 (1 + qt)/3(1 + 2qt) /(1 + 4qt) /5, (37)

E(q?) = sY2tY12(1 — 2q) Y4 (1 + qt) Y4 (1 + 2¢t) /12 (1 + 4qt) V4, (38)

E(g®) = s 23(1 — 2gt)0(1 + qt)/? (1 + 2qt)"/2(1 + 4qt)"/*, (39)

E(qh) = sV26/5(1 — 2¢t)Y8(1 4 qt)/2(1 + 2qt) /%4 (1 + 4qt) /3, (40)

E(¢5) = s (1 — 2gt) Y2 (1 + qt) /(1 + 2qt) V(1 + 4qt) /2, (41)

B(q"?) = s'"212(1 — 2gt) /24 (1 + qt) /O (1 + 2qt)'/5(1 + 4qt)'/*, (42)

where
Eq2Eq42Eq615 EqQBEqSBEq126
Sz:s(q):E(2)5(3)6( 1)26 and  t:=t(g) = ) (4)2 (69)
(®)°E(¢®)°E(q'?) E(q)E(¢*)*E(q%)

Substituting (37)—(42) into the right-hand side of (36), upon simplification, we obtain that
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from which we obtain (26).
Proof of (27). From (17) we find that

Us(v€) = E(q)°E(¢°)°
2E32E 913 E33E 18\3 2E 34E 1816\ 2
><<q<<q> (¢") <q>6§3>+q (4") (q)))

E)° 1 E( E(¢°)°E()
L E(QUE@)PE()? |, E(q)"E(q®)™
=TT Ry @By

In order to prove (27), we consider the following function, given by

E SE 3)11 E GE 32E 68 . E 9E 6\17
= -2 TN g p POUEGPEGY o PP El)
E@"E@*)°E(°)° L E(q)"E(¢°)"
PRy U E@PEET )

Plugging (37)—(42) into the right-hand side of (43), we obtain that

Z>(q) = 0.

The identity (27) thus follows.
Proof of (28). It follows from (15) and (17) that

Uaie?) = B@)° <q3<E<q9>2 5 B)E q18>2>

E(q)? E(q'®) E(¢°)E(q°)
E(@®)’E(®)?  B(¢*)’B(¢") 6 ’
X( B T E@) )
_ E@’E(®)" 2E(q)GE(q?’)QE(qf")8 3 B (q6 1
“IE@PER) T B@p E( > B
This proves (28).
Proof of (29). According to (15) and (17), we derive that
E(g2)24 E(q?)2 E(a3)E(q'8 2
ey~ o (o (5 - it )
E(@)’E(°)?  E@®)?E(¢®)? L B(¢*)*E(¢*®)"
( @ T BT T EEFEG >>>
_ E(¢*)'E(¢°)* E(q)E(¢*)E(¢°)" +E(@)*E(¢®)*
=0 e T By BB

which is nothing but (29).
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Proof of (30). From (15) and (17) we find that

L (q(E(q9)2 g B0 B )

E(q?) E(q'®) E(q%)E(¢°)
E(®)PE()?  E(@®)PE(G"™)? 4 E(®*)*E(¢")°
E@e T BT Y E(q6>8E<q9>3>
. E(@YE(¢°)?°
= MR (@EE)

We next consider the following function, given by
E(9)"E(¢°)° ¢
E(@)9°E(¢®) " E(9)E(¢®)E(¢%)?
@PEGEG)S g, B0 B
E(q?)* E(¢*)"E(¢®)*

Substituting (37)—(42) into the right-hand side of (44), we conclude that

Z3(q) = 3q

E
+ 484>

Z3(q) = 0.

The identity (30) thus follows.
Proof of (31). In view of (15) and (17), we deduce that

9)2 ¢ 2
Uy (58) = Bla)*Bla?) Uy <q2 (Bt — 2t
x (E<q3>2E<q9>3 _B@PEGS 2E<q3>4E<q18>6)2>

B T By T EEPEP)?
E(q)"E(¢*)"E(¢°)

q E(q)"°E(¢°)"°
E(q?)°

E(¢?)3E(q3)?

= —6q + 21¢*

At this time, we consider the following function, defined by
E(q)"E(¢°)"E(¢%) 2 E(@)E(¢°)"
B@p T BEPEERE T BB B
2 E(9)’E(¢°)°E(¢°)° 3 E(9)°E(¢°)"
Bt BT EGT

Plugging (37)—(42) into the right-hand side of (45), we obtain that

Z4(q):= —6gq

— 69¢q

from which we obtain (31).
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Proof of (32). It follows from (15) and (17) that
E(g2)'7 E(q)2 E(3)E(a8)2\ >
Us(3¢7) = JE(C(]q§7 vs (q?’(EEZlg‘) e Jéc(]qg")g(]qgi )

y (E(q‘>2E< ) E@)PE@™) | 2E<q3>4E<q18>6>3
B E@T T E@EE)

(U E(9)*E(¢°)°E(¢°)°
E(q)E(¢*)E(¢5)3 E(g?)*
E(q)°E(¢°)" g E(q)*E(¢°)**
E(¢*)"E(¢%) E(g*)"0E(¢g3)12”

— 87¢>

+147¢3

which is nothing but (32).
Proof of (33). According to (16) and (17), we deduce that

Us(e) = E(q)"E(¢*)*
‘U ( ( E(@®)'E@)° |, , BGPEG@) 2E<q6>2E3§gw>2>2

E(q®)®E(q'®)? 2 E(q®)7 1T EQ

E(¢)?E(¢°)?  E(®)PE(q®)? | ,E(¢®)'E(¢"®)°\°
: < B@r 1 By B R ) )
)

_ E(¢*)" 2 E(q)*E(¢*)°E(¢°)°
=M EQE@EE? T T B

This proves (33).
Proof of (34). It follows from (16) and (17) that

Us(e€) = E(q)E(¢*)"
x U3< 3( E@VE@) o ECPECS 0 E(qG)QESngB)Q)

E(@PE@S? T B@) E(q
E(®)?E(®)®  E(P®)PE(@'®)? | ,E(®)*E(q*®)°\°
X( E@r T BT E(qG)SE(qg)g) )
_ E(¢*)' 2 EB(0)*E(¢*)°E(¢%) (9)°E(¢®)"
TIEQE@EG? L Bt U E@TEER

This is (34).
Proof of (35). By (17) we obtain that

E222 E32E 9\3 ESSE 18\3 E34E 1816 \ 4
T R )
. 2E(@?E(¢*)°E(¢°)° E(@E(%)"” | 4 E(@®E(¢®)*

B T T 77 P A P TP e

from which we obtain (35).
This completes the proof of Lemma 2.4.
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3 Proofs of Theorems 1.2 and 1.3

This section is devoted to the proofs of Theorems 1.2 and 1.3.
Now it is time to prove Theorem 1.2.

Proof of Theorem 1.2. Tt follows from (1) and (15) that

o 8 912 3 18y2\ 4
> As(n)g" = 5(2‘12))4 - (E(q )y Bl ZE(‘] ) > (mod 5). (46)

n=0

Picking out all terms of the form ¢®" in the right-hand side of (46), after simplification, we
find that

E(¢*)®
6

e 6\5
225(3n)q" = () g (mod 5). (47)
n=0

Applying the Us-operator on the both sides of (47) and utilizing (23), we derive that

& n_ Bl BE(q)*B(¢°)°
2 AOn" = e+ N )
C(E(@®? . E(@E@®*\' |, BB

B (E(qls) 2 E(¢°)E(¢?) > * TE(@PE®) (48)

where we have used (15) in the last equation of (48). Applying the Us-operator on the both
sides of (48) and using (23), upon simplification, we obtain that

(mod 5)

o0 318 37(,6)5 318
> " = Fl ~ S = Ee @ed%: (@
from which we further conclude that
As(81n +27)¢" = A5(8In +54) =0 (mod 5) (50)
and
o0 8
§Z5(81n)q" = 5((;2))4 (mod 5).
Thanks to (46), we have
As(81n) = As(n) (mod 5). (51)
By induction, one readily finds that for any o > 0,
A5(3%n) = A5(n)  (mod 5). (52)

The congruence families (6) and (7) follow from (50) and (51).
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From (1) and (13), we find that

oo 4\3
Z:()Zﬂn)q = (gggl)g (mod 7)

1 E(@)"Y | BE(¢»’E()*’
= B <E<q2>2E<q8>4 By )

Taking all terms of the form ¢", after simplification, we find that

(53)

o n — E(q2)30 mo
> Ar(2n)q" = BB T B (mod 7). (54)

n=0

Applying the Us-operator on both sides of (54) and using (18) and (19), we get that

E(g?)30 E(g?)SE 4\4
ZA7 ()" = 5 )l(fE)(q4)12 1220 E) (q)iq " (mod 7). (55)

Thanks to (14), we have, modulo 7
E(a2)30 E(a*)14 E(d*)2E 8\4\ 3
ZA74” _ E(@) (¢) g (¢*)*E(q°)
E(gh)2 \ E(¢*)"*E(¢®)*
E(g)™

42 8
+2‘1E<q2>6E(q4)4(E<(12>14E<q@>4”" (QE?q )E ))' (56)

Collecting all terms of the form ¢?"*! in the right-hand side of (56), after simplification,
we deduce that

E(q4 12
;Om 8n + 4) TR (mod 7),
from which we get that
A7(16n+4)=0 (mod 7). (57)

Applying the Us-operator on both sides of (55) and utilizing (18) and (19), we have

oo 2130
ZZ7(8n)q" = E(qi(qu)(q‘l)m (mod 7). (58)

n=0

Applying the Us-operator on both sides of (58) and using (18), we find that

- Y n — E(q2)30
> Ar(16n)q" = OLLCOE + 6q Ok (mod 7). (59)

It follows from (54) and (59) that

A7(16n) = A7(2n)  (mod 7).
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By induction, we find that for any « > 0,
A7(2%*n) = 47(2n)  (mod 7). (60)

The congruence family (8) follows from (57) and (60).
According to (1) and (13),

o (B@Y°

nz::oAu(”)q = B0 (mod 11)
B 1 E(q4)14 E(q4)2E(q8)4 5
‘E<q2>10<E<q2>l4E<q8>4+4q B()" ) ' (61

Picking all terms of the form ¢?" in the right-hand side of (61), upon simplification, we find
that, modulo 11,

o F(q2)50 F(q2)26 E(a2)2E(q4)12
ZAll(Qn)qn = 2(0q ) nzo 104 Eg ) 7 +4d° ) (4q ) : (62)
= E(q)*E(q*) E(q)E(q") E(q)
Next, we utilize the Us-operator and (20)—(22) repeatedly to deduce that, modulo 11,
o E(2)50 E(q2)26 E(02)2E ()12
ZA11(4n)qn = 2(0q ) 5 + 5¢ gg ) ~ +3q2 (q ) (4(] ) ,
o E(¢)*°E(q*) E(¢)2E(q*) E(q)
o E(2)%0 F(q2)26 E(02)2E ()12
ZAll(Sn)qn = 2(0(1 ) oo T3¢ 5(2] ) i + o0 ) (4q )
= E(q)*E(q) E(q)"E(q*) E(q)
o~ E(¢*)™ E(g*)* 2 E(¢*)*E(¢*)"
A1(1 "=
2 Au6m" = g peym Mgy T By (63)
Thanks to (14), we find that, modulo 11,
o E(q2)50 E(g*)14 E(a2E (84 °
ZA“(lGn)qn = (q4)20< 2(1%1) 51 T 44 ) 2 Sg ) >
= E(g*)*° \ E(¢*)" E(¢®) E(q?)
E(g2)26 E(g4)14 E(a2E(q8)4\ 3
30D (G 0 )
E(g*)* \E(¢*)"E(¢®) E(q?)
B(g*)"™ E(¢")’E(¢®)*
2 242 (412
+ 9086 B0 gt 47 oy

Collecting all terms of the form ¢?"*! in the right-hand side of (64), upon simplification,
we deduce that, modulo 11,

- n_ B)® E(@®)“E(¢)* | ,E(q")>
§A11(32"+16>q = BoeE@E T B T E@D
CE(@)*(  E()* E(@)E(®)*\" L E(¢)®
‘E<q4>12<E<q2>14E<q8>4+4q B0 ) TR0
2\14 4N4 E(q4)14 E(q4)2E(q8)4 g
S0 BY (g 4 ) (9
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Taking all terms of the form ¢?"*! in the right-hand side of (65), we conclude that

Zzu(ﬁﬁm +48)¢" =0 (mod 11),
n=0

or, equivalently,

A11(64n 4+ 48) =0  (mod 11). (66)
According to the Us-operator, (20)—(22) and (63), we obtain that, modulo 11,
o E(q2)5° F(q2)26 E(02)2E(q*)12
ZAll(?’Qn)qn = 2(0(] ) 2o T 14 E(QJ ) o1 947 ) (4(1 ) g
= E(q)*°E(q*) E(¢)*2E(q*) E(q)
> E(a2)50 E(a2)2E(g*)12
S T (64n)g" = 2(0q ) B (¢%) (461 )"
= E(q)*E(q) E(q)
0 E(g?)50 E(g?)26 E(a2)2E(a%)12
ZAU(H&LM” = 2(0q ) 2o T 14 Eg ) 40 ) (4q ) ,
= E(q)*E(q) E(q)"E(q*) E(q)
e E(g2)50 E(g?)26 E(02)2E(a%)12
ZA11(256n)q” = 2(0q ) 2o + 64 g;] ) ni T ) (4q ) ’
= E(q)*E(q") E(q)"E(q") E(q)
1 E(¢*)*° E(¢*)* 2 B(¢*)*E(q")"?
A 12n)q" = 2
2, Al = g pnm 2 s T pgr
> E(q2)50
A11(1024n)¢" = —FF—r
2 An (020" = G
T E(q*) E(¢*)* 2 E(¢*)?E(¢h)™?
A11(2048n)¢" = 6 4 . 67
nz:% (2048n)a BB " EQPE) E(q)* (©7)
Combining (62) and (67) yields that
By induction, we find that for any a > 0,
Ay (219%0) = 441(2n)  (mod 11). (68)
The congruence family (9) follows from (66) and (68).
This completes the proof of Theorem 1.2. 0
Finally, we turn to prove Theorem 1.3.
Proof of Theorem 1.3. From (1) and (24), we find that
Zzu(n)q" =a (mod 11), (69)
n=0

D AnBn)g" =B+ 68+ 9 +66%) (mod 11). (70)
n=0
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Next, we apply the Us-operator and utilize (24)—(35) repeatedly, after simplification, we

obtain that

> An(32n)q" = a+ (9 + £+ 462+ 7€) (mod 11),

n=0

D> A (3n)g" =B+ 0(4+95+4€%) + (1486 +3¢%)  (mod 11),
n=0

S A (3'0)q" = a +y(5+ 26 + 962 + 4€%)  (mod 11),

S "4 (3%0) " = B+ 6(6+ 5 +962) + (10 + 3¢ + 86%)  (mod 11),

n=0

2211(36@(]” =a+y(9+26+ 762 + 253) (mod 11),
n=0

> AN (3Tn)q" =B+ 5(5+26+66%) +e(5+TE+4€%)  (mod 11),

n=0

> A (3%n)¢" = a4+ y(4+ 46 +10¢2)  (mod 11),
n=0

Zzu (3%n)¢" =B (mod 11),

n=0

2211(31071)11” =a (mod 11).
n=0

It follows immediately from (69) and (72) that
A11(3"%n) = A11(n)  (mod 11).
By induction, we deduce that for any a > 0,
A11(3"n) = A11(n)  (mod 11).
Moreover, from (71) we have
A1 (3°(3n+1)) =411 (3°(3n+2)) =0 (mod 11).

The congruence families (11) and (12) follow from (73) and (74) immediately.

4 Concluding remarks

We conclude this paper with two questions.

First, a natural question is whether there exist some similar congruence families modulo

11 enjoyed by Aj1(n) with another prime p > 5.



D. Tang 107

Second, motivated by (2) and (6)—(12), it is natural to ask whether there exist some
similar congruence families modulo p enjoyed by A,(n), where p > 13 is a prime number.
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