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Abstract

We provide a self-contained approach to two of Glowacki’s theorems on convolution
operators on homogeneous groups, namely the continuity of the product symbol in
suitable symbol spaces, and sufficient conditions for L2-boundedness.
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This paper is an expanded version of the notes that were used for the series of lectures given
during the winter 2012-2013 at the Institute of Mathematics of the Romanian Academy
and based on P. Glowacki’s papers [2], [3] on Melin calculus for pseudodifferential operators
on homogeneous Lie groups. The aim of these two papers was to extend some of the Melin’s
results [6] on pseudodifferential operators on graded Lie groups to pseudodifferential oper-
ators on general homogeneous groups. The main Glowacki’s ideas were to use Hérmander’s
results on slowly varying metrics and to introduce an operator, which we called the re-
duction operator (see Proposition 6.7 for its definition). Using the reduction operator and
induction, one can reduce the study of pseudodifferential operators to commutative groups.
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During these lectures we detailed the proofs from Glowacki’s papers, using, partially, [4].
Also we introduced the notion of admissible metric (Definition 6.6), which, we think, may
help to clarify the statements and proofs. We have to mention that we were able to prove
the theorem on the continuity of Melin’s operator ([2, Prop. 5.1], [3, Thm. 5.1]) only in a
weaker form (Proposition 6.17 in the present paper). But we were able to prove the main
results from Glowacki’s papers (the theorem on the composition of symbols and the theorem
which asserts the L?-continuity of the pseudodifferential operators) using Proposition 6.17.

The structure of this paper is as follows. In Section 2, the definition of slowly varying
metrics, self-tempered metrics and weights in Hérmander’s sense [4] is given. An important,
for us, subclass of such metrics is described in Lemma 2.6 The spaces of symbols associ-
ated to slowly varying metrics are also defined and their properties needed in our notes
are proved. Section 3 deals with metrics and weights on homogeneous spaces. The basic
tools of Hormander’s theory of Weyl calculus for pseudodifferential calculus are presented
in Section 4. In Section 5, one introduces the homogeneous groups and one specifies some
notations used in Section 6. Section 6 is the main section of this paper and corresponds to
the main sections of Glowacki’s papers. Here one proves the main propositions, Proposi-
tion 6.7, Proposition 6.15, and Proposition 6.17, used in the last section in the proofs of the
theorem on the composition of symbols (Theorem 7.1) and of the theorem which asserts
the L2-continuity of the pseudodifferential operators (Theorem 7.3).

As the present paper provides a self-contained approach to some results from Glowacki’s
papers, we freely reproduced some facts from these papers when we considered that no
completion or correction was needed.

The list of references is minimal.

2 Slowly varying metrics, weights, symbols

Let X be a real n- dimensional vector space. A family of Euclidian norms on X, g = (¢ )zex
is called a varying metric on X or, simply, a metric on X. Ocasionally, in this section, we
fix an orthogonal basis {e;} in X and, in this case, we denote x = Y, xje; =

J=1yem i=1
((El, ce ,.’L‘n).

Definition 2.1. A metric g on X is called slowly varying if there exist some positive
constant v € (0,1] such that

A
Vx,yeX,vgg—g—lfgI(m—y)gfy. (2.1)
Y

Y

Remark 2.2. A metric g is slowly varying if and only if there exists some positive constant
v € (0, 1] such that

+1

1

Va,y € X,7 < (9) < ifgo(w—y) <. (2.2)
9y Y

Indeed, if (2.1) holds for some ~, then (2.2) holds also if we replace v with 2.
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Definition 2.3. Let g and G be two metrics on X. The metric g is G-tempered if there
exist some positive constants C' and M such that

+1
(g) < O+ Cale —y)M Vo € X (2.3)
Gy

and if g, < G,,Vx € X.
The metric g is called self-tempered if it is g-tempered.

Remark 2.4. A self-tempered metric g is slowly varying. Indeed, let us assume that (2.3)
holds. If v € (0, 1] is such that C(1+ 7)™ < %, then

1 1
g—zgfandg—ygfifgx(x—y)gv.
9y v 9z Y

Lemma 2.5. If g is a self-tempered metric with the constants C and M, C > 1, then for
every x,y,2 € X

Proof. First of all, we have
L+ ga(z —y) <1+ Cgyz —y)(1+ gy(x — )™ < C(L+ gy (x — )"
Then, from (2.4) and the definition of the self-tempered metric, we obtain (2.5):
1+gz(1’_y) < 1+gm(1’_z) +gx(z_y)
SC(1+g.(z— Z))M+1 +Cg:(z —y) (1 + g:(z — )M
< C+ga(z =) (1 +g2(2 — y)).
The inequality (2.6) is proved in a similar manner:
L+ go(z —y) <1+ gz —2) + gu(2 — y)
<14 golz —2)+ Cga(z — y)(1 + go(z — 2))M
< (1 + ga:(x - Z))M(l + ng(z
SO +gale—2)M(1+g.(2—y
< CP(L+ gola — 2))M (1 + gy (2 — )M

-y

Lemma 2.6. Let

n

9= (92)zex, 9o(2)? = Zaj(x)zz?,%s,z €X,a;: X —(0,00),¥5 €{1,...,n}.
j=1

Then the following assertions hold true:
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(a) The metric g is slowly varying if and only if there exists v € (0,1] so that

(y)

Ve, ye X,v <
a;(x

<

aq . .

=~

(b) If the metric g is G-tempered with constants C' and M, then

0\
(a](Z)) <O+ Gz —y)M,Vje{l,...,n},Va,y € X.

Proof. If we take z = e;,j = 1,...,n, then (b) and the “only if” part from (a) follow
straigtforwardly by the definitions. The “if” part of Assertion (a) is quite obvious. 0

Definition 2.7. A function m : X — (0,00) is called a G-tempered weight with respect to
the G-tempered metric g if

+1
v,y € X, <m> <Cifgu(z—y) <~ (2.7)
My
and
m +1
(mm> <C(+ Gz —y)M,Va,y € X. (2.8)
Y

If g is self-tempered and m is a g-tempered weight with respect to g, we shall say simply
that m is a g-tempered weight.

Remark 2.8. Let m, n be G-tempered weights with respect to g and let & € R. Then mF,
mn , m +n and max(m,n) are G-tempered weights with respect to g.

Example 2.9. If g is a G-tempered slowly varying metric on X, if G is self-tempered and
if xg € X, then m: X - Ry, m(z) =1+ g (x — 20),Vx € X is a G-tempered weight with

respect to g.
Indeed, if ¢ satisfies (2.1) and g, (x — y) < 7, since

1
gm(x - 1’0) < ;gy(x - I'O)
and
1
gy(x —x0) < gy(x —y) + gy(y — 20) < ;gz(a: —y)+ gy(y — xo) < 14 gy(y — x0),

we have

1+gw(x—x0):1+gg;(x—xo).1+gy(:v—xo)<1+%gy($—xo).2+gy(y—xo)
L+gyly—=z0) L14gyle—w0) 14+gy(y—20) = 14gy(x —z0) 1+49gy(y—z0)

2
<Z.
gl
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Also, let as assume that (2.3) holds, without any loss of generality, with some constants
C >1and M > 0. Then

1+ ge(x—x0) 1+ge(x—20) 1+49y(x—120)

T+g,(y—20) 1+g(w—m) 1+g,(y—x0)

1+ 01+ Go(z —y)Mgy(x —x9) 14 gy(y —x0) +Gy(z —y)
14 gy(x — o) 14 gy(y — o)

SO+ Golz —y)M (14 Gyl —y)) <
<CA+ Gz —y)MA+C(A+ Gu(z — y))MTh
<2C%(1+ Gz —y)) M+

Example 2.10. Let g = (92)zex, 92(2)? = Z?Zl aj(x)?23,Yz, 2 € X be a slowly varying,
G-tempered metric. Then, from Lemma 2.6, it follows that the functions a;,j € {1,...,n}
are G-tempered weights with respect to g.

We shall define now the symbol classes we are working with ([4], [3]). If f € C*(X)
and if g is a metric on X, then

9o (D¥ f(z)) = sup |D* f(2) (Y1, - yk)]
Y; €X,92 (y;)<1,5=1,....k

[D*f(2)(y1, - -, yx)|

= sup Vo e X. (2.9)
yEX\(O =Lk 15—y 00 ()
We denoted by D f(x) the Fréchet derivative of order k of f.
Lemma 2.11. Let f,g € C*(X).
(a) We have
k
9o(D*(f9)(z Z( )gw DI f(z))gz(D* T g(z)). (2.10)

j=0

(b) For every k € N* there exists a positive constant Cy, such that if f(x) # 0, then

9:(DF(1/ f)(2)) < Crf ()" (g2(DF) (@) + -+ + (g2 (D¥ f(2))/*)F (2.11)
if u(z) > 1 and

9:(D(1/f)(2)) < Crf ()(92(Df)(w)) + - - + (gu(D* f) (@) /F)F (2.12)
ifu(z) <1

Proof. (a) (2.10) follows from (2.9) and the Leibniz’ rule:

D*(fg)(@)(y1, .- yk) = Z Z Dif D" g(x)(yc(a))

J=0 a€Fj

where Fjj = {a = (a1,...,a;);1 <a1 < <a; <k}, Yo = Ways---»Ya,), Cla) is the
complement of o and card F}j, = (’;)
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(b) We shall prove (b) for f(z) = 1. The general result will follow by homogenization.
Let h =1 — f. Then, there exists a neighbourhood V of z such that |h(y)| < 1/2,Vy € V.
Therefore ﬁ = 32, hi(y),Yy € V. Since h(z) = 0, D*hi(z) = 0,Vi > k. Therefore,
using (a), we obtain

A
9:(D*(1/f)(x)) <D g2(D*N' (2))

< Ci(g2(DA(@)) + (9o (D) (@) "? + -+ + (go(D*R) () /*)"
= Cilgo(Df (@) + (9(D* (@) /2 + - + (g2 (D* f) (@) /F)F.

If m is a G-tempered weight with respect to the G-tempered metric g and f € C°(X),
then we put

m " Dkf T
1y (9) = sup 22 1)
and
k
i (9) =D 1£1Th(9).
j=0

The space of symbols of order m with respect to g is

S(m,g) = {a € C*(X);]ali*(9) < oo, Vk € N}.

n

Example 2.12. Let g = (g2)zex, 92(2)° = Y_j_, a;(2)?z3,Va, 2 € X be a slowly varying
metric on X. If we fix a basis {e1,...,e,} in X, then a function f € C*(X) isin S™(X, g)
if and only if for every a € N™ there exists a constant C,, so that

|0% f(x)| < Com(x)a(x)* Ve € X. (2.13)

We have used the standard notations 9% = 0" ...9%", 9; = 0/0z;,Vj € {1,...,n} and
a(x)® = ar1(x)* ...ap(x)*".

Proof. We shall give the proof only for derivatives of order 1. Derivatives of higher order
can be treated in a similar manner.
“=” Fori € {1,...,n}, g=(e;) = a;(x). If f € S™(X,g), then

Cg(DF@) . (D@ 10:f(@)]
0> S @) R gem@) R w@m()’
“<” If (2.13) holds, then
wp ZDI@) _ D @)
zex  m(z z€X yeX\{0} 9= y)m(x)

L yi0if(x
B 5 077,53
eeX yex\{o} (32,2, ai(z)?y;) "~ m(z)
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1/2

" ai(@)202) Y (0 ai(z) 20 f (x)?
< sup sup (O ai@)?y?) " (i ailz) 20i f (2)?)

” /2 < Q0.
zeX ye X \{0} (21‘:1 a; (x)ny) m(l’)

Remark 2.13. S™(X,g) with the family of norms | - |} is a Fréchet space. If g is as in
Example 2.12, then

sup |0% f(x)|m(z) ta(z)™*, a € N"
reX

is an equivalent family of seminorms.

3 Metrics and weights on homogeneous euclidean spaces

A triple (X,(X1...,XR),(d1,...,dR)), where X = X; @ --- @ Xp is an euclidean vector

space of dimension n, scalar product {-,-) and norm || - || and dy,...,dg are real numbers,
1=dy <--- < dp is called a homogeneous euclidean space. We shall denote with ny the
dimension of Xj. Thus the variable € X splits into = (z1,...,2r). On X we introduce

a family of dilations
Spx =tr = (tYay,... ,t%"2R), Vo € X,Vt > 0.

This adhoc definition is justified by the fact that such a triple corresponds to the Lie algebra
of a Lie homogeneous group (see Section 5).
For x = (z1,...,2r) € X we put

R
ol =l
k=1

| - | is a homogeneous norm ([1]), in the sense that
(a) || = 0if and only if z = 0,
(b) | —z| = |z|,Vz € X, and
(¢) |tz| = t|z|, Ve € X,Vt > 0.

More than that, since (a +b)* < a* 4 b*,Va,b > 0,Vu € (0,1], | - | satisfies also the triangle
inequality |z + y| < |z| + |y|, Va,y € X.
For 1 < k < R we define

R
|| = Z HijI/dj,Vx e X.
Jj=k

|| are homogeneous seminorms, in the sense that they satisfy (b) and (c) from above, and
they satisfy also the triangle inequality. Let us remark that |z|; = |z|. We shall also put
|z|p+1 =0,z € X
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qr(z) =14 |2|g41, V2 € X,VE € {0,1,...,R}
and
Gro(x) =0 + |x|ks1, Vo € X,Vk € {0,1,...,R},V6 > 0.

Let
R

502 (BN
2(2)° = ————,Vz,z € X,V > 0.
92(2) ;gkﬁ(x)Qdk

We shall also use the notation ¢, = g..
We shall prove now that the metrics gi(-; ) are uniformly slowly varying and uniformly
self-tempered with respect to d > 0.

Lemma 3.1. For every k € {0,..., R} and for every § > 0,

9k,5(2)

<
~ 9ks(y)

<2ifgda—y) < (213> (3.1)

N |

Proof. 1f ¢%(z — y) < [1/(2R)]?%, then

o 41/dj<9j,6($) <gk,6($) . ka1
llz; — y,ll <SR <R ,Vjie{k+1,...,R}.

Therefore |z — ylr+1 < gr,s(x)/2 and consequently

1
Grs(@) =0+ |2|ppr <O+ Yl + 2 — ylerr < grs(y) + 5%,6(33)

and
3
k(W) =0+ ylet1 <0+ [2fi1 + |2 — Ylegr < 591@,6(37)
which implies (3.1). O

Lemma 3.2. There exists a constant C > 0 so that
gro(x) < Cgrs(y) (1 + gg(m —y)),Ve,y € X,Vk € {0,1,...,R} ,¥§ >0 (3.2)
and
9rs(®) < Cars()(1+ (@ —y) B Yo,y e X,Vk€{0,1,..., R} V6 >0.  (3.3)
Proof. We shall prove first (3.2). We have
|z — y|k+1)

9r.0(®) < gro(y) + |2 — ylesr = gr.6(y) (1 +
Ir,s(y)

yi || %

R
.
<oust) [ 1+ 30 B
G=ht1 95,6\Y
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Using the inequality

R R
S g <R—k+ Y af Va; >0,vd; > 1,
j=k+1 Jj=k+1

we obtain that " n
o |11/d; .
Z llz; — il <R+ Z |z, y;.||.
S 9sW) 5 9is(y)
Therefore
k() < Cgrs(y)(1+ g (z — y))

for C =2(R+ 1) and (3.2) is proved.

We shall prove (3.3) by induction. For k¥ = R there is nothing to prove. We can take
C =1 in this case. Let us assume that (3.3) holds for k + 1 with some constant C' > 1.
Then

|z —y|k+1)

9r,6(7) < grs(y) + |2 — ylerr = gr.s(y) (1 +
9r,5(y)

grr1.6(x) |z — y|k+1>

< g5y (1+
) Gk+1,6(Y)  Grr1,5()

By the induction hypothesis,

grs(x) < Cgrs(y)(1+ g)(x —y) 1 <1 T |9”_y|k+1>

Grt1,5(2)
o~ Ll — sl
< Cgrs(y)(1+g2(x —y)"F 1 (R 14 3 Ul
=kt gj.6(x) %
< Cugrs ()L + gz — )" F,
which proves that (3.3) holds with some new constant C;. 0

Corollary 3.3. The following assertions hold:

(a) The metrics g,‘i are uniformly slowly varying and uniformly self-tempered with respect
to § > 0.

(b) gk,s are g,‘z weights uniformly with respect to § > 0.
(¢) grs is a g} weight ¥5,6' > 0.

Proof. All the assertions of the corollary follow from Lemmas 3.1, 3.2, and 2.6 if we put

1 1 —d —dg
(@1 ey Oy ey Oppptds ey Qn) = (gl’é,...,gl’g,...,gR’éR,...,gR’(;R).
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4 Hormander’s lemmas

The following two results are essential tools in Hérmander’s theory of Weyl calculus [4].
Proposition 4.1. Let g be a slowly varying metric on X.

(a) If «y is the constant from formula (2.2) and 0 < € < =y, then there exists a sequence
(z,), of points in X so that the balls

B, = Bi(z,,r) ={r € X;9,,(x —x,) <r}
cover X and there exists some N so that card{v;x € B,} < N,Vzx € X,Ve <r <~.

(b) For every r € (e,7), there exist ¢, € C§°(B,),Vv € N*, so that (¢,), is a bounded
sequence in SY(X,g) and Y, ¢ (z) = 1,Vx € X.

(¢c) If g is a self-tempered metric, then there exist two positive constants C and M which
depend only on the constants C and M from (2.3), on € and on the dimension of X so
that ~

> (+d,(x) M<CVreX. (4.1)

v

Here d,(z) = ¢u, (v — x,).

Proof. (a) First of all, let us remark that if K is a compact set in X, if F'is a totally ordered
set of indices and if (z,),er is a family of points in K so that g,, (v, — x,) > &, Vv > p,
then F' is finite. Else, since K is a compact set, there exists a point € K and a sequence
(x,,); convergent to x so that Yoo, (y, —xy;) > &,Yk > j. Let 0 € (0,7). Then there exists
Js € N'so that g,(v,;, —x) <4 if j > js5. Then

1 1 20 . ,
9, (Cv,=0;) < Gu, (T —2)+Ga, (€0, —7) < ;gm(myk—x)Jr;gm(xyk—x) < ?,Vj,k’ > Js-

If we take 0 < €7/2, we obtain a contradiction.
Therefore, there exists a maximal sequence of points (z,), in X so that

Gz, (Ty —x) > €,YV > pu. (4.2)

This sequence has all the required properties. Indeed, the balls (B,), cover X when r =¢
since otherwise would be possible to add some point x to the sequence (z,), without
violating (4.2).

Next, let € X and « € B,NB,,. We can always assume that ;1 < v. Then g,(z—x,) <
2 < 1 and g,(v, — x,) > V9e, (x, — ) > ve. Therefore {y € X;9.(y — ) <ve/2} N
{y € X;9.(y — z,) <~ve/2} = (. There is a fixed upper bound for the number of disjoint
open balls of a fixed radius which are included in a ball of radius 1 in a finite dimensional
normed space. This bound depends only on the dimension of the space and on the radius.
It does not depend on the norm. This remark ends the proof of Assertion (a).

(b) Let o € Cgo(=r2,12), $(t) = LVt € (—2%,62), $(x) = (g, (v — 1,)%), ¥z €
X,V € N*, o (2) = ()] (zu wu(x)). It is clear that (¢,), € C5°(B,),¥r € N* and
>, ¢u(x) = 1,Va € X. Let us prove that (¢, ), is a bounded sequence in S*(X, g).
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We shall first prove that (¢,), is a bounded sequence in S'(X,g). We have

_Dd@yl DY@yl gs ) _ 1 |DY ()]
90(Dvu(@)) = sup = 0 S = SuD ) aw) =7 S o ()

since g, (x — x,) < v on suppt,. Let (a;;); j=1,. n» be the matrix of the quadratic form
(gz,)?. Then

n
0
le/ = Z 87 g;vu - xl/)Q) = 2¢ (gmu - Z y]aw — Ty, z)
: 7] 1
Here z = (21,...,2p,),n = dim X.
Since

| Z Yjaij(Ti — ui)| < 9o, (Y)9a, (v — 20),
i,j=1

we have

|D¢V(m)y| 2r, 2 2Cr "
—_ < — 2, (T — Ty, < — Vee X,Vye X\ {0},VveN
9o (y) [V (ga, ( )9 ~ Y \ {0}

for some positive constant C. Therefore |z/),,|%1)(g) are uniformly bounded with respect to

v. One can prove in a similar manner that |¢V|(1k)(g) are uniformly bounded with respect
to v, Vk € N.

Taking into account the uniform boundedness of the sequence (v,), and the fact that
there exists some N so that card {v;z € B,} < N,Vx € X,Ve < r < v, we obtain that
>,y € SY(X,g). Lemma 2.11 ends the proof of Assertion (b).

(c) Let My, = My(z) = {v;d,(z) < k},Ve € X,Vk € N. It is sufficient to prove that
there exist some constants ¢ and m, which depend only on the constants C' and M from (2.3),
on ¢ and on the dimension of X so that

card(My) < c(1+ k)™, Vz € X,Vk € N. (4.3)

Indeed, if (4.3) is true and if M = m + 2, then

S +d,@) ™M= Y (+d@)y ™My Y a+r ™
v k>0 VEMk+1\Mk k>0 IJEMk+1\Mk
< cZ(l—i—k)‘Mer =C < oo,
£>0
We shall prove now (4.3). Let v € M}, and
V, = {Z € X;gz(z_xu) < rk}

where r, = 7/(C(1+ k)™) and C and M are the constants from (2.3).
Then
V, C B,. (4.4)
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Indeed, if z € V,, and v € My, then

. _ < . _ M (., _ < M.;: .
9o, (2 =) SO+ go, (x — )" go(z — 7)) S C(1+ k) ca+hM ~"

Also, for z € V,, and v € My, we have
9e(z—2) < gu(z—2,)+gu(z,—2) < rk—kC’gmy(xU—x)(l—l—ng(:cy—x))M < rk—l—C(l—f—k)MH.

Therefore
V, CV=V(x,k)={z€ X;g9.(z —x) < R}, (4.5)

where Ry, = r, + C(1+ k)M+1L,
Let |V, | = Ci(z)r},n = dim X be the volume of V,,. Using (4.4) and (4.5), we obtain

Cy(z)card(My)ry = Z V.,

veMy vEM,,

| S N|V| < Ci(x)NRg,

where N is the constant from Assertion (a).
Therefore

cardMj, < Nrpy"Rif = N(1+ C(1+ k)M )" < 202" Ny (1 + k)M +Dn,

Proposition 4.2. Let (X, || -||) be an Fuclidean normed space, r1 >r >0, zg € X and L
an affine function so that L(x) # 0,Yx € B(xzg,r1). Then

k l T k!’f’l . -
19 (3) @)l < et Y € Blao ) Ve € 16)

Proof. We may assume, without loss of generality, that o = 0 and that L(0) = 1. In this
case, there exists & € X so that L(z) = (¢,z) + 1,Vx € X. Since ({,z) +1 > 0,Vx €
X, Hx|| < 1y, it follows that [[£[| < 1/ry and L(z) > (r1 —r)/r1, Vo € B(0,7).

Since, for z € B(0,7), L™ (x) = >iso (1) (€, 2)7, we have

D(Lil)(x)y = Z(i]‘)j]<£ax>J71<£7y> = 7<€7y>L($)72
j=1

We have used the fact that —(1 + a) =2

Using the formula D¥ f(z)(y1, ..., yx)
by induction on k that

21— 1)7ja?=1,Va € R, |a] < 1.
= DD () (gn, )], ome can prove
(—1)kk!

DMET) @) o) = (6w) {6 wn) - p o

Ve, y1,.. .,y € X.

Therefore | Hk |
k! € klry
D¥ <
H ( )(x)H = |L(m)|k+1 - (7’1 _r)k+1’

Vo € B(0,r).
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5 Homogeneous groups

Let (g,+,[,-]) be a finite dimensional Lie algebra of dimension n endowed with a scalar
product (-,-). A family of dilations on g is a family (d;):~o of algebra automorphisms
of g of the form §; = exp(Alogt), where A is a positive definite operator on g. Let
0 < dy <--- < dpg be the eigenvalues of A and

gk = {x € g;0x :td*":zz},Vk e{l,...,R}.
Since 0z = exp(aAlogt), by adjusting « if necessary, we may assume that dq = 1.
Proposition 5.1. If a Lie algebra g admits a family of dilations, then g is nilpotent.

Proof. If © € gj,y € gk, then &z, y] = [§ix,0py] = [thz,tty] = tditdr[z, y]. Hence
[9;,9x] = {0} if d; + dj, is not an eigenvalue of A and [g;, gx] C g; if d; + d = d; for some
eigenvalue d; of A. Therefore, if we denote as usually, gy = g, 9¢;) = [9,9¢—1)], then
9y € 95 D @ gr. Consequenly, g(;) = {0} for j > dr and g is nilpotent. 0

A homogeneous group is a connected and simply connected nilpotent Lie group whose
Lie algebra is endowed with a family of dilations. In these notes we shall consider that the
Lie algebra g itself is a Lie group with the multiplication given by the Campbell-Hausdorft-
Baker formula

zoy=ay=x+y+r(zy) vy eg,

where

r,9) = glel + 35 (o opl) + o ) +

is the finite sum of terms of order at least 2 in the Campbell-Hausdorff-Baker series for g.
We shall also assume that g is endowed with a fixed scalar product and we shall identify
the dual vector space g* with g by means of the scalar product.
Let us remark that according to the Campbell-Hausdorff-Baker formula, the inverse of
a vector x € g with respect to the multiplication is —x. Therefore the Lebesgue measure is
a bi-invariant Haar measure for the group g and the convolution formula reads

fgla) = / Fay™V)g(y) dy = / f(x o (—9))g(w) dy.¥1.g € S(g).
g g

The Lebesgue measure on g will be normalized so that the inverse of the Fourier trans-
form on the Schwartz space S(g)

fly) = *i<w,y>f d
v) / e~ f(z) da
is
f(z) = =) £y) d
(x) / o f(y) dy
and

/ @) da = / F@)P dy,vf € S(g).
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We shall also work with the notions of homogeneous degree of a multiindex and ho-
mogeneous degree of a polynomial function on g. If @« = (aq,...,ar),ar € N n, =
dimgx, vk € {1,..., R} is a multiindex in N", then we denote with || its usual length (the
sum of all its n components). The homogeneous length of « is

R
d(a) = de|ak\-
k=1

Ifx=(z1,...,2r) = (@11, -, T1nys -, TRy - - -, TRinp) € G, then the homogeneous
degree of z% is d(a).
6 The Melin operator and the reduction operator

The Melin operator U on g is defined by the formula
USy) = [[ e e I ax s e o x 0,
axg

where x = (z1,22) € g X g, y = (y1,%2) € § X g, 7(X) = r(21,22) and y = L1522,
Remark 6.1. If g is a commutative Lie algebra, then U is the identity operator.

Lemma 6.2. For every f,g € C§°(g)

—

Fraly) =Uf 29 (y.y),Yy € g. (6.1)

Proof. For every f,g € C§°(g) we have

Frow) = [0 g de = [ 09 dz [ feuglu) du
9 9 9

= /g(u) du/e_i<y’z>f(zu_1) dz = /g(u) du/e_“y’“wf(xl) day

0 9 9 g
N // e a2 £ (g g (@) daiday
g%g

=U(f®9)(,y),

for every y € g. 0

Lemma 6.3. For every f € C§°(g x g),

DUf(y)= Y. caaUMDf)(y)
d(B)=d()

for some constants cg, € C.
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Proof. Let us denote with 74 (x) the sum of terms of homogeneous degree k from r(x), for
ke{l,...,R}. Then

R
(r(x),y) =Y (re(x),y),Vx €gx g,y € g.

k=1
Therefore
DUf(y) = / f(x)D§ (e—i<xay>e—i<r(x>,y>) dx
gxg
= / 6—i<x,y>6—i<r(x),y>P1(X)f:(x) dx
gxg
= / e~ HXY) o—i(r(x),y) (P(D)f)(x) dx,
gxg
where P; and P are homogeneous polynomials of homogeneous degree d(c). 0
Let

=019 Pgr-1.

The commutator
g/ X g, > (131,.%2) — [1‘1,172]/ S 917

where ’ stands for the orthogonal projection of g onto g', makes g’ into a Lie algebra
isomorphic to g/gr. The group multiplication in g’ is

210 29 =21 + 22 + (21, 22) V1,72 € ¢
Proposition 6.4. Let f € C§°(g x g). Then
Uf(y,\) =U"(Paf(,0) (v),Vy € ¢ x ¢',VA € gr X g, (6.2)
where

Puf(y) = / / e fx)e TN g Vi € Co (g x o)
o' xg’

is an integral operator on C§°(¢' x ¢') invariant under abelian translations and U’ is the
Melin operator on g'.

Proof. Let us first remark that since gp is central,

r((z1, 1), (T2, p2)) = r(@1, x2),V(x1, 1), (T2, 142) € ¢’ X 9R

and

<T(($1>:u1)7 ($2,M2)), (577 /\)> = <’I“($1, 1‘2), (S’v ;\)> = <T($1,$2)/,}~’> + <7“(.131,$2), ;\>

for all (x, ), (y,A) € g x g.
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Therefore

Uf(yd)z// e~ IY) =i BN F(x, 1)) 3) =i 0N qudy
axg

) // ey (f(fv )‘)efw(xm) im0 9 dx
9’'xg’

where we denoted with f(x, A) the partial inverse Fourier transform of f with respect to y.
The proof of (6.2) is concluded by the equality

(PAF( NG = Flo6, A)e 009D,

If we denote with 7. the translation with 2, (7.9)(y) = g(y + 2),Vy,z € ¢ x ¢',Vg €
Cie (g’ x g'), then (1.9)(x) = e ™= g(x) and (7.(Prg))(y) = Pa(7-(9))(y)- 0

Remark 6.5. Since P, commutes with the translations, then it will commute also with
derivatives.

If g is a Lie algebra endowed with a family of dilations §; then on X = g x g we shall
consider the family of dilations d;(x) = d:(x1) @ d¢(x2),Vx = (1, 22) € g X g.

Definition 6.6. We shall say that a self-tempered metric g on g is admissible if it satisfies
the conditions
R
125112
92(2)% = ) — Ao,
jz::l g;(x)>%

for some § > 0. Here 2\9) = (z;41,...,2R).

Let us remark that the metrics g,‘i introduced in Section 3 are admissible metrics.
We also define a metric g on g x g by the formula

R 2 R 2
Z1.4 29 4
B()” = (96 g)(z)? = 3 L 3 “)”zdj Vx = (e1,m2),2 = (21, 2) €0 % 8

= 9i(x1) = gj(x2
Then g is also self-tempered. For A = (A1, \2) € gr X gr we put

gx(z) = gx,A(2,0),Vx,z € g’ x g'.

The metrics g* = (gi)xeg/x o are uniformly self-tempered and, consequently, uniformly
slowly varying with respect to A € gr X gg. Let C, M (in (2.3)) and v (in (2.1)) be
joint constants for all these metrics. We shall also use the following notations: g]’\(x) =
g;(z,\),¥(z,\) € g, B, = By = B)(x),7) C ¢’ x g for the covering of Proposition 4.1
for the metric g*, A € gr X gr, x, = x) and dj(y) = g% (y —x,),Vy € ¢ x g/,VA €
gr X gR, Vv € N*.
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For an admissible metric g we put

9r-1(0,A1) gr-1(0,A2)
gr-1(0,X2)" gr—1(0, A1)

gr—1(\) = max ( ) VA= (A1,A2) €gr X gr-

From Remark 2.8 and Example 2.10 it follows that gr_1 is a g-tempered weight.

Proposition 6.7. Let g = g @ g, g an admissible metric on g. Then YN € N, 9C > 0,
Jk €N, Vy € ¢’ x g,V € gr X gr, Vv € N* Vf € C5°(B)) so that

IPAf(y)] < CLAZ Y (@) (1+ dd(y) (6.3)

Proof. For f € C§°(B;) we have

|Pyf(y)| = ‘// e‘“"’wf(X)e—NT(x),i) dx
g’ xg’

</ / el ax

Let
) = Fi)
where
yz\u) = (@) vrs - 91 (@) M YR -1, 00 (@02) M2 9R 1 (02) T 2R 1) -
Then

// 760l dx = // 2] dx.

If y € suppf?, then

1>+%>0?
2
>gx, (0 (@) My 9m 1 (@) Y1 r1, 90 (@02) M Y20 - 91 (@02) T Y2 Ro1)
2 2
A 2d; L Ty,1,j A 2d,; L Tv,2,5
= 95 (@,1)*Y ||y, 79;(;%11)(1]. N R-1 95 (20,2) ||y2,5 79?(;“2’)%
ot 9; (zy,1)% = 97 (20,2)%%
=y - x|

for some x, € g X g.

Therefore suppf; is included in a ball of radius 1 with respect to the fixed euclidean
norm on g X g. Hence we obtain from Sobolev’s lemma that there exists some positive
constant C so that

J[ 1Relacs s s R,
o' xg’

la|<2n+1y€g’ xg’
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But, using Lemma 2.6, we have

R—1 _
D2 (y)| = g; (1)1 1% (D f)) H 2)l0241% (D22 ) (y)
j=1 j=1
R—1 _
_ g])\(x 1)\a1 jld; Dalf Y(l,) H .CC 2 |a2J\d Dagf( )
j=1 j=1
o] R—1 —
< 1 H Ay, g )lerilds }Dalf( )\)| H My o)l ezilds (y),)
= 95 Yy 1 Y 95 \Y )2 Y
v j=1 j=1
< Crl fli(gY)

for |a| < k.
Therefore for N =0, (6.3) holds with k =n + 1.

We shall prove (6.3) for N € N by induction on N. So let us assume that (6.3) is true
for some N and let us prove it for N + 1. Let d)(y) = a > 1 (otherwise the estimate is a
simple consequence of the estimate for N = 0).

Let £ € (g' x ¢')* be a vector of unit length with respect to the norm dual to g3 so
that £(y — x,) = a. Then, for 1 € (r,7) we have

£y —x) =&y —x) —E(x—x) > a—[{(x— %) > a—1>0,Yx € B)(x),r1).

Let L(x) = &(x —y),Vx € ¢ x ¢'. Then L(x,) = —a and L does not vanish on B (x),71).
Therefore, by Proposition 4.2, Vk € N, there exists a positive constant Cy = Ci(r,71) so
that

g (D' 00) <ed, (D5 0) < Fovxe B, (6.4

Another inequality we shall need follows from the fact that £ € (g’ x g’)* is a vector of unit
length with respect to the norm dual to g3 :

R—1 R—1
= g (@) e + Z 93 (20,2)% [|€2, 17
J=1 Jj=1
R—1 R—1
> gr-1(0, M) 115117+ D gr-1(0,A2)7% [1€2,511° (6.5)

1 j=1

<.
Il
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Let Ax = (x,€),Vx € g’ x g’. Then, since L(y) = 0, we have

Py(Lf)(y) =[Px, LI f(y) = [Px, A // x¥) A f(x)e 0N qx

] gt oo
:‘i// ‘o eV (¢, D — iy) ) (x)e TN dx

— [ e e
] o
//g ‘y g >(<T(X),5\>)) i (xy) =i (r ()N e

(&1,5, / / e xRy} milr(x), A><Dz1] (x), A f(x) dx)
glxgl

j=1
R-1 i )

3 (e / =ie3) =N (D (), R F(x) dx)
=1 g/><g/

R-1 i )

=3 (e / ¢~ OV () (D), V) ) () dx)

=1 g’ xg’
R71 . B N ~

£ o / eI (1,5(6D), ) () )
=1 g’ xg’

R—1

j=1

<.

where 7; j(x) = D, ;r(x) fori =1,2and Vj € {1,..., R — 1} are homogeneous polynomials
of homogeneous degree dr — d;. Let us stress that here D stands for the partial derivatives
D =0.

Using the induction hypothesis, we obtain

. gr-1(N)NVIR _N
(rij(iD), \) f

(8") (1+d3(y))
*(rij(iD),\) f(2)

Pr({ri,GD). M F)()| <C

<Cgp_1(\)Nr sup
la|<k,zcg’xg’

R-1 R-1
~ (H gi)\ll(zl)diﬂoq,z‘l) (H gi)\zz(z2)di2|042,z‘2> (1+dﬁ(y))_N

11=1 i2=1

<Cgr-1(N)" sup [ D+ f(2)] Al
|a|<k,zeq’ x g d(8)=dr—d;
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R—1
( H g d11(|a1 i |F+181,iq )) ( H gi);z (ZQ)di2(|a2,i2 [+182,i5 ))

i1=1 12=1
_ _ N
X gr-1(0,A1) " P gp_1(0,X2) ") (1 +d)(y)) . (6.7)

Formulas (6.4)—(6.7), the fact that g is an admissible metric, Lemma 2.11(a) and Re-
mark 2.13 conclude the proof:

P =[P (2 1) )

R—-1

<3 [(6 a2, 3 (7))
R—-1

3 |tees Prttra 208 (1))

<Car (NN L] () (14 ()
.
<Car N7 () (14 ady)
<L A8 () (14 )
for ¥ > k(N) + dg. 0

Remark 6.8. From the proof of Proposition 6.7 we can see that the conclusion of the
proposition is still true if we replace gr—1 with

L+ Al T+ A2l
L+ [ A2l 1+ (| A

Gr—1(\) = max ( ) ;YA = (A1,A2) € gr X gR.

Remark 6.9. If instead of the metric g ® g with g admissible we have on g X g a metric of
the form

R 2 R 2
21,4 zZ9 5
gx(z)2 _ 2 : ” 17J|| -+ E : “ 21]” : Vx — (x17x2)7z _ (21722) €gxg,
j J

91 (XD ga (%)

with g; ;(z) > 6 + xg|Y/ % Vx € g x g,Vi € {1,2},Vj € {1,...,R— 1}, for some § > 0,
then the conclusion of the Proposition 6.7 is still true if we replace gz with 1.

At this point we need to introduce the notion of double continuous mapping between
spaces of symbols. Let S™(X,g) be a space of symbols on an euclidean space X, m a G-
tempered weight with respect to a G-tempered slowly varying metric g. Besides the Fréchet
topology on S™(X,g) (see Remark 2.13), we introduce the weak topology [5] of the C'*°
convergence on Fréchet bounded subsets.

Lemma 6.10. The weak convergence is equivalent to the pointwise convergence on Fréchet
bounded subsets of S™(X, g).
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Proof. We shall apply Arzela-Ascoli theorem. First of all, if (f;); is a bounded sequence in
S™(X,g) and if K is a compact set in X, then (Dkfj)j is a sequence of uniformly bounded
functions on K.

Let us prove this assertion for k = 1. The balls (BY(z,7)).ck are an open covering of
K. Therefore there exists a finite set {x1,...,2;} C K so that (BY(z:,7))ieq1,...1) is still a
covering of K. Each of the metrics g,,,7 € {1,...,1}, is equivalent to the euclidean metric.
Hence there exists some positive constant C; so that g.,(y) < Ci|ly|l,Vi € {1,...,1},Vy €
X. An arbitrary point € K belongs to some ball BI(x;,v). Therefore, from (2.1) we
obtain

1

Now our assertion in case k = 1 follows from the fact that m beeing a g weight is bounded
on K and from the boundedness in S (X, g) of the sequence (f;);. Its proof for the other
values of k is similar.

From Arzela-Ascoli theorem it follows that every sub-sequence of (D*f;); contains a
sub-sub-sequence uniformly convergent on K. If f; — f pointwise, then, in case £ = 0, this
limit is always equal to f. Therefore f; — f uniformly on K. For k£ > 0, in order to obtain
the same conclusion we have to use also either the fact that f; — f in the distribution
sense, or the classical theorem of derivation of sequences of functions. 0

Lemma 6.11. Let m be a G-tempered weight with respect to a G-tempered slowly vary-
ing metric g, f € S™(X,g) and (¢v), the partition of unity from Proposition 4.1. Then
S _ o f — [ weakly in S™(X, g) when j — co.

Proof. This lemma is a straightforward consequence of the definitions, of Propositions 4.1(b)
and of Lemma 2.11(a). O

Remark 6.12. Let m be a G-tempered weight with respect to the slowly varying metric
g on g x g and m*(x) = m(x,\),Vx € g’ x ¢,V\ € gr x gr. Then m* is a G -tempered
weight with respect to the slowly varying metric g*, uniformly with respect to .

Remark 6.13. Let g be a slowly varying metric on g x g and g*(x) = g(x, \),Vx € g’ x
g',Y\ € gr x gr. Then the partition of unity (¢7), in the conclusion of Proposition 4.1(b)
can be selected so that the sequences (¢,), are uniformly bounded in S'(g’ x ¢’), with
respect to A € gr X gr. This assertion follows from the proof of Proposition 4.1(b), since
the constant v in (2.2) does not depend on .

Remark 6.14. Let g be a self-tempered metric on g X g. Then the constants C and M in
the conclusion of Proposition 4.1(c), corresponding to the metrics g* can be selected the
same for all A € gr x gr. This assertion follows from the proof of Proposition 4.1(c), since
the constants v in (2.2) and C and M in (2.3) do not depend on .

Proposition 6.15. Let g = g © g, g an admissible metric on g and m be a g-tempered
weight. Then for N € N, sufficiently large there exists a double continuous extension of P
to a map
m* s oA m*gr_1(MNNVNIR oA
Py:S™ (¢ x g g") —» ™9 (¢ xg'.g")

and the estimates are uniform with respect to A € gr X ggr-
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Proof. We shall apply Proposition 6.7. Let (¢7), be a partition of unity as in Remark 6.13.
We shall denote with C; a constant which may depend on the constant + in (2.2), on the
constants C and M in (2.3), on N € N and on r in Proposition 4.1, but does not depend

on A € gg X gg and on v € N*, Then VN € N, Vf € Smk(g’ x g, g")
—N «
IPAG)()] < CuA IO (@) (1+ d)(y) ™ Wy € o x g/, YA € gr X g, Vv € N,

Since m is a g tempered weight and ¢, are uniformly bounded in S'(g’ x g’), with respect
to A € gr X gr and to v € N* | we have

()7 PN < Cam () 1+ ) PG 3)
< Cimy(x,)” 1|¢Af\g’* T @) (14 ()M
< GBI I O (@) (1 4 d(y)M Y
< Oy T @ (1 d ()M, (6.8)
If N is sufficiently large so that
D A+dy)M N <Co< oo,y €g x g, VAEgr X o

then, accordingly to (6.8),

Zua (B21)3)] < Gl 7V (@)ma(v), ¥y € o x g, YA € gr % gr

and Vf € S™ (g x g/, g").
Therefore the operator

[ (HIA)_1 Gra(N) NS PA(e) f)

is an extension of (m*) - Gr(\)~N4R Py to a continuous operator defined on sm’ (¢'xg’,g")
and L*> valued. The estimates are uniform in A.

The uniqueness of this extension follows from Lemma 6.11 if we prove that the linear
form

S (g xg.g") s f Y PA@M)(y) €C

is weakly continuous Vy € ¢’ X g’,V\ € gr X gg.

Let (f;); be a bounded sequence in sm* (¢ x ¢',g") so that f; — f in the C°° topology,
M; = M;(y,\) be sets as in the proof of Proposition 4.1(c) and let m be the constant
in (4.3). Then

() " Gror )N [PA@ (f — ()]

)MfN

<G YIS — DI (&Y (1+ dd(y)
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<Gy Y e - DI A+ )M

I1>0 veM; 41\ M,

L
A
<o Y IR - DY)
1=0 vEM 41\ M,
+ 02 Z(l + Z)M+mfN'
I>L

We denoted by C5 a constant which may depend on A and on the norms of the functions
f; also.
If we first select L sufficiently large and if we next remark that ¢ fi — @) f, Vv, in the

topology of sm* (¢' x g/,g") we see that
ZPA o )y ZPA (62f)

Estimates for the derivatives of P, f are obtained from the fact that P, and, consequently,
its extension, commute with differentiation.
Finally, the weak convergence is now a consequence of Lemma 6.10. 0

Remark 6.16. For the proof of Proposition 6.17 below we shall need a slightly different
version of Proposition 6.15. Before stating this version we have to introduce some more
notation. Starting fom this point, for j € {1,..., R —1} we put g¢;) = g1 ©--- @ g; (in
the proof of Proposition 5.1, g(;) denoted a different object) , and gl) = gj+1 @ D gr-
If £ = (x1,...2g5) € gand j € {1,...,R— 1} then we put z(;) = (xl,. .x;) and 20) =
(xj41,...,xr). Also, if g is a metric on g, then we define a metric g Y on g(;) by the
formula .
\G . . .
9z (2()) = g(zm,xm(z(j)’0(3))7%3(3-),2(]-) € g9(j), VAW € ¥

and if g is an admissible metric, then VAU) = ()\gj), )\éj)) € g x g vje{l,...,R—1},

5,09 = max 9,01 9,00\
’ 9;(0,097) " g;(0,A9)

The functions g(j11) X g¢j+1) 2 (0¢), Ajr1) = gj( )Y are (g ® g))‘(Hl) tempered weights,
uniformly with respect to )\(H‘l) and gxg> (O(J),)\U)) — §;(A\9)) are g @ g tempered
weights. In this context, (g ® g) = gdg.

On C§°(g(;) X 8(j)), for \0) e g(j) x g we define an operator Py(;, by the formula

Py fy // x(J)vy(J)>f( e —i(rjr1(x())Aj+1) dx(;),Vf € CF° (9(; X g(; ))
g(J)><g(J)

where 7;11(x(;)) is the projection of r(x;)) on g¢j11)-
Finally, for m a g & g tempered weight, we put

,\m( ()

m* (x() = m((x), A1), Vx(5) € 85) % 8(5), VAP € g9 x g
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Then, for N sufficiently large, Py¢) can be extended to a continuous operator

A ) A (5 AN )
Py : S (8G) X 8¢y, (9@ 9)*") = 8™ @O (g x gy, (9@ 9)™)

and the estimates are uniform with respect to A7) e gl9) x g0,

Proposition 6.17. Let g be an admissible metric on g and m a g ® g tempered weight.
Then the Melin operator U admits a unique weakly continuous extension

U:S"(gxg,9®g) = C (gxg)

so that Yo = (aq,a9) € N?7 | there exist Ny €N, ko € N and C,, > 0 such that

R R
0°U f(x)| < Coam(x H ) Ne H gy (1)~ Hnloral H Gin (x2) 2122 FI0 (g),

Jj=1 i1=1 19=1
(6.9)
forallx € g x g and for all f € S™(gx g,9Dg).

Proof. We shall prove (6.9) by induction on j. We shall denote with U; the Melin operator
defined on CSO(Q(J) X 9(]))

If j =1, then g(1) = g1 is an abelian algebra, U; = I and there is nothing to prove. Let
us assume that the assertion is true for j and let us prove it for j+1. For f € S™(gx g, g®Dg)
and \9) € gU) let us put

Fror (%)) = (257, A1), ¥x(5) € 8y X 97)-

Then .
A SmW) . 4 AG)
fro € (86) X 8G), (9@ 9)" )

uniformly with respect to A
Therefore, accordingly to Remark 6.16, to the induction hypothesis and to the formula

Ujr1.f(x(), A9) = Uj(Pyoy Fron ) (X)), V(% (), A9)) € g x g

k € Nand C,

we obtain that Ya;) = (aq,(;), a2,(;)) € € NXhon 2ne , there exist NV, i

Qg e
so that

J
o . (J) Na
|0 ('7)Uj+1f(X(j),)\(j))| < C’%.)m/\ (x¢) H (x(j)> A 7Yk Ve

Jj+1 Jj+1

< ] grlor 5, AP dinlenl T 9x (22, (s AS)) dizle, ‘2||f|ka< (8),
i1=1 io=1

(G+1
for all X(j) € 96G) X 90) and for all f € SmA )(g(H_l) X G(+1)> (g@g
are uniform with respect to A9,
We have to estimate the derivatives of Ujy1f(-,A\)) with respect to ;41 also. In
order to simplify the notations we shall assume that g;i1 has dimension 1 and A;1; =

)’\(Hl) ). The estimates
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()\1J+1, A2,j+1). We consider only the derivative of order 1 with respect to Ay j11. Similar
estimates for derivatives of greater order will follow by induction on the order of derivation.
We have

) 0 . 0 .
——Uj1f(y), \) = Uj (P F (AN (y()) = Ui(5——Paor F( M) (v )
ah,jﬂ AL,j41 a/\l,j+1
and

0
P mef( )(y j
AlLj41

// Gy f Fxiys )\(J)) —i{rjp1(x()) A +1) dx(j)

8>\1 FES!
9(5) X 98@)
- // e~ xm ) g F(xgy s A)e i), Aoe) dx(j)
Al,j41
93) X 83)
_% // e~ RGO (57, AD )P+ () )e 1 ) A dx )
9(5) X 83)
b ) 1 ; ) j
=P (5= NN ) = 5Po 07 (D) A )
1,541

:‘p{,\m (yi) + ‘P;,\m ¥))-

We denoted by r/+!(x(;)) the sum of terms of homogenecous degree d;41 from 741 (x(;)).
Now the operators

0 ) mA(.7'+1) ))\(jJrl))

(B(+1) X 8419 D g —

M

j+1
m>‘(J+ )

(9741 (AT~ AU

9(+1) X 8G+1), (9@ 9)

are continuous and the estimates are uniform with respect to AU+, Therefore, using
again the induction hypothesis and Remark 6.16, we obtain that Vo) = (ay ¢y, a2,;)) €

N k=1 2k , there exist N, k!’ €N and C’ > 0 so that

Q)7 Vo)

0 .. AG) d g
’ <a}\ a (J)U](pl )\(1)) ( )‘ C(IX( ) x(]) H (k)) <2
1,j+1 k=1
J+1 Jtl1
x H gr(wy (jy)~Halorl H Gk (w2,(j)) " Hizl2 2]
i1=1 iz=1

X (7011, M) ORI (@)

and the estimates are uniform with respect to A7),
Since g is an admissible metric, we obtain, as in the final part of the proof of Propo-

sition 6.7, that Vo = (ay,),a2,)) € NZt—12  there exist Nogy: ko, € N and
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c” agy > 0 so that
0 (;) J
'< aa(j)Uj‘Pg,vj))( )‘ <C7;,m m* H (%), A(J k)) @
A1,j+1 ’ el
Jj+1 J+1
« H gk(IL(j))*dillal,ill H gk(llig,(j))idm‘a”zl
i1=1 =1

% (g1 (21, AN B GO BIAR (g)

and the estimates are uniform with respect to A7),
The weak continuity follows from the induction hypothesis and from Proposition 6.15.
0

7 Symbolic calculus and L?>— continuity

We shall prove first the continuity of the operation of composition of two symbols.

Theorem 7.1. Let g be an admissible metric on the homogeneous Lie group g and let my
and my be two g-tempered weights. Then the product

C5°(9) x C5°(g) 2 (a,b) = aftb = (axb) € S(g)
admits a unique double continuous extension

#: 5" (g,9) x §™(g,9) = 5™ (g, 9)-
Proof. We have

(a#b)(z) = U(é +b)(z, ) = U(a ® b)(z,2), ¥z € g.

For the estimation of the derivatives of a#b we shall apply Proposition 6.17. Let us remark
that if z; = 9 € g, then §;(x\9)) = 1,Vj € {1,..., R — 1}. Therefore Va € N" there exist
ko € N and C, > 0 such that

R

0°U(a @ b)(z,2)| < Camu(@)ma(@) [T gi(@) =41 |ali (9) b5 (9),

i=1

for all z € g,a € S™(g,g) and b € S™2(g, g). ]

We pass now to the proof of the L2-continuity of the pseudodifferential operators for
the metric ¢ on g. Remark that ¢ is clearly an admissible metric. Let ¢, be a partition of
unity for ¢ as in Proposition 4.1. We put ®,,(x) = ¢, (z1)0,(x2),Vx = (z1,22) € g X g.
Since ¢ is a self-tempered varying metric, by (2.5) we have

1+ qo, (zp —2) SO+ gz, — )M (1 + gy, — ), Vr,p €N Vy €g.  (7.1)

We shall use the notation q = ¢ & gq.
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Lemma 7.2. If

Fuw(y) = U(@uu f)(y,y), Vv, u € N*,Vy € g,Vf € S (g x g.q).

then VN € N, 3k € N,3C > 0 so that

I |z (8) < ClF1R(@) (L + ga, (2 — 2,)) N, Vi, p € N*.

Proof. If m and n are two ¢-tempered weights, then m®n is a g-tempered weight. Therefore,
according to Example 2.9, the function

my,, (y) = (1+ gy, (@p — 1)) VM (A + gy, (20 — 92) V. Vy = (y1,92) Ea x g

is a g-tempered g-weight. If y; € B, and y» € B, then

Qo (Y1 — @) < V5 Qa, (Y2 — 70) <7
and therefore, by (2.1)

Gy, (Y1 — ) < 1,qy, (Y2 — ) < 1.
Hence m;l

, is uniformly bounded on the support of ®,, and, consequently, there exists
some constant C' > 0 so that

|q)uyf‘;cn}w (q) S Clq)ul/.ﬂllc(q)

. Therefore, according to Proposition 4.1,

D f € 5™ (g xg,q)

and the estimates are uniform with respect to p and v. More precisely, for all k € N there
exists a positive constant Cj so that

1D, 1 (@) < Crlfli(q), Y, v € N*,Vf € S*(g x g, q).

Therefore, if we apply Proposition 6.17, we obtain that Yo = (a1, ) € N?7, there exist
N, €N, k, € Nand C, > 0 such that

R-1 R
0°U (@ £)(%)| <Camnyy, (%) [T 39N T iy (1)~ Halonl
j=1

i1=1

R
X H Gi, (12)~H2l220 N FIL (q),

ip=1

for all x € g x g, for all p,v € N* and for all f € S'(g x g,9® q).
As we already remarked, (jj(y(j),y(j)) = 0,Vy € g. Hence for all & € N" there exist
ko € N and C, > 0 so that

R
10° fuw )] < Camy(y.9) [T as(y)= 1| £1}, (@) < Camyu (3, 9)I £, (a)

i=1
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for all y € g, for all yu,v € N* and for all f € S*(g x g, ® q).
By (7.1)
mul/(yvy) < C(l + qz, ('rlt - xl/))iN
for all y € g, for all u,v € N*. So, finally we obtain that for all £ € N there exist k; € N
and C) > 0 so that

0% fuv )| < Ciel fli, (@A + g, (0 — 7)™

for all y € g and |a| < k. If k is large enough, the conclusion of the lemma follows from
Sobolev inequality, as in the proof of Proposition 6.7. 0

Theorem 7.3. Leta € S'(g,q). Then the linear operator C§°(g) > f — Af = fxa € L?(g)
extends to a unique bounded mapping of L*(g). More precisely, there exist k € N and C' > 0
so that

IAf L2 () < Clali (@l fllz2 (), VF € C5°(g).-

Proof. We shall apply Cotlar’s lemma: if A;,..., Ay are bounded operators in a Hilbert
space H such that, for some constant M, Y27 [|A%A,[|'/2 < M and 37 [|A,Ap)'/? <

M, then | % _, Al < M.
Let
Ay f =[x (dva),Vf € L*(g).
The operators A, are bounded operators in L?(g) since ¢,a € C§°(g) and (¢,a) € S(g) C
L'(g). The adjoint of A, is given by the formula A*f = f * (¢,a). Therefore, if we apply
Lemma 6.2, we obtain that
ALALS =[x ((gva) x (u0)) = [+ (U(bra ® ¢pa)a) = fx ((a@a)u) "
For a function h defined on g x g we put ha(y) = h(y,y).
From Lemma 7.2 we obtain that VNV € N, 3k € N, 4C > 0 so that
* 2 — *
1AL A < C (lali(@)” (1 + go, (2 — 2,)) "N, Vv, p € N™.

Similar estimates hold for A, A}. So, choosing N sufficiently large, we obtain from Propo-
sition 4.1 that

i i
D IALAY? < Clali(q) and ) A, A7[1? < Clali(a), ¥j € N (7.2)

v=1 v=1

for some C > 0 and some k € N.
On the other hand

0= tun
v
in the sense of weak convergence in S*(g, q) so that, by Theorem 7.1,

Af =Y A fVf € C(g) (7.3)

in the sense of weak convergence in S(g, q) of the Fourier transforms.
Cotlar’s lemma, (7.2), and (7.3) conclude the proof. O
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