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1 Introduction

This paper is an expanded version of the notes that were used for the series of lectures given
during the winter 2012–2013 at the Institute of Mathematics of the Romanian Academy
and based on P. G lowacki’s papers [2], [3] on Melin calculus for pseudodifferential operators
on homogeneous Lie groups. The aim of these two papers was to extend some of the Melin’s
results [6] on pseudodifferential operators on graded Lie groups to pseudodifferential oper-
ators on general homogeneous groups. The main G lowacki’s ideas were to use Hörmander’s
results on slowly varying metrics and to introduce an operator, which we called the re-
duction operator (see Proposition 6.7 for its definition). Using the reduction operator and
induction, one can reduce the study of pseudodifferential operators to commutative groups.
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During these lectures we detailed the proofs from G lowacki’s papers, using, partially, [4].
Also we introduced the notion of admissible metric (Definition 6.6), which, we think, may
help to clarify the statements and proofs. We have to mention that we were able to prove
the theorem on the continuity of Melin’s operator ([2, Prop. 5.1], [3, Thm. 5.1]) only in a
weaker form (Proposition 6.17 in the present paper). But we were able to prove the main
results from G lowacki’s papers (the theorem on the composition of symbols and the theorem
which asserts the L2-continuity of the pseudodifferential operators) using Proposition 6.17.

The structure of this paper is as follows. In Section 2, the definition of slowly varying
metrics, self-tempered metrics and weights in Hörmander’s sense [4] is given. An important,
for us, subclass of such metrics is described in Lemma 2.6 The spaces of symbols associ-
ated to slowly varying metrics are also defined and their properties needed in our notes
are proved. Section 3 deals with metrics and weights on homogeneous spaces. The basic
tools of Hörmander’s theory of Weyl calculus for pseudodifferential calculus are presented
in Section 4. In Section 5, one introduces the homogeneous groups and one specifies some
notations used in Section 6. Section 6 is the main section of this paper and corresponds to
the main sections of G lowacki’s papers. Here one proves the main propositions, Proposi-
tion 6.7, Proposition 6.15, and Proposition 6.17, used in the last section in the proofs of the
theorem on the composition of symbols (Theorem 7.1) and of the theorem which asserts
the L2-continuity of the pseudodifferential operators (Theorem 7.3).

As the present paper provides a self-contained approach to some results from Glowacki’s
papers, we freely reproduced some facts from these papers when we considered that no
completion or correction was needed.

The list of references is minimal.

2 Slowly varying metrics, weights, symbols

Let X be a real n- dimensional vector space. A family of Euclidian norms on X, g = (gx)x∈X

is called a varying metric on X or, simply, a metric on X. Ocasionally, in this section, we
fix an orthogonal basis {ej}j=1,...,n in X and, in this case, we denote x =

∑n
j=1 xjej =

(x1, . . . , xn).

Definition 2.1. A metric g on X is called slowly varying if there exist some positive
constant γ ∈ (0, 1] such that

∀x, y ∈ X, γ ≤ gx
gy

≤ 1

γ
if gx(x− y) ≤ γ. (2.1)

Remark 2.2. A metric g is slowly varying if and only if there exists some positive constant
γ ∈ (0, 1] such that

∀x, y ∈ X, γ ≤
(
gx
gy

)±1

≤ 1

γ
if gx(x− y) ≤ γ. (2.2)

Indeed, if (2.1) holds for some γ, then (2.2) holds also if we replace γ with γ2.
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Definition 2.3. Let g and G be two metrics on X. The metric g is G-tempered if there
exist some positive constants C and M such that(

gx
gy

)±1

≤ C(1 +Gx(x− y))M , ∀x, y ∈ X (2.3)

and if gx ≤ Gx, ∀x ∈ X.
The metric g is called self-tempered if it is g-tempered.

Remark 2.4. A self-tempered metric g is slowly varying. Indeed, let us assume that (2.3)
holds. If γ ∈ (0, 1] is such that C(1 + γ)M ≤ 1

γ , then

gx
gy

≤ 1

γ
and

gy
gx

≤ 1

γ
if gx(x− y) ≤ γ.

Lemma 2.5. If g is a self-tempered metric with the constants C and M , C ≥ 1, then for
every x, y, z ∈ X

1 + gx(x− y) ≤ C(1 + gy(x− y))M+1, (2.4)

1 + gx(x− y) ≤ C(1 + gz(x− z))M+1(1 + gz(z − y)), (2.5)

1 + gx(x− y) ≤ C2(1 + gx(x− z))M (1 + gy(z − y))M+1. (2.6)

Proof. First of all, we have

1 + gx(x− y) ≤ 1 + Cgy(x− y)(1 + gy(x− y))M ≤ C(1 + gy(x− y))M+1.

Then, from (2.4) and the definition of the self-tempered metric, we obtain (2.5):

1 + gx(x− y) ≤ 1 + gx(x− z) + gx(z − y)

≤ C(1 + gz(x− z))M+1 + Cgz(z − y)(1 + gz(x− z))M

≤ C(1 + gz(x− z))M+1(1 + gz(z − y)).

The inequality (2.6) is proved in a similar manner:

1 + gx(x− y) ≤ 1 + gx(x− z) + gx(z − y)

≤ 1 + gx(x− z) + Cgz(z − y)(1 + gx(x− z))M

≤ (1 + gx(x− z))M (1 + Cgz(z − y))

≤ C(1 + gx(x− z))M (1 + gz(z − y))

≤ C2(1 + gx(x− z))M (1 + gy(z − y))M+1.

Lemma 2.6. Let

g = (gx)x∈X , gx(z)2 =

n∑
j=1

aj(x)2z2j , ∀x, z ∈ X, aj : X → (0,∞), ∀j ∈ {1, . . . , n} .

Then the following assertions hold true:
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(a) The metric g is slowly varying if and only if there exists γ ∈ (0, 1] so that

∀x, y ∈ X, γ ≤ aj(y)

aj(x)
≤ 1

γ
, ∀j ∈ {1, . . . , n} if gx(x− y) ≤ γ.

(b) If the metric g is G-tempered with constants C and M , then(
aj(y)

aj(x)

)±1

≤ C(1 +Gx(x− y))M , ∀j ∈ {1, . . . , n} , ∀x, y ∈ X.

Proof. If we take z = ej , j = 1, . . . , n, then (b) and the “only if” part from (a) follow
straigtforwardly by the definitions. The “if” part of Assertion (a) is quite obvious.

Definition 2.7. A function m : X → (0,∞) is called a G-tempered weight with respect to
the G-tempered metric g if

∀x, y ∈ X,

(
mx

my

)±1

≤ C if gx(x− y) ≤ γ (2.7)

and (
mx

my

)±1

≤ C(1 +Gx(x− y))M , ∀x, y ∈ X. (2.8)

If g is self-tempered and m is a g-tempered weight with respect to g, we shall say simply
that m is a g-tempered weight.

Remark 2.8. Let m, n be G-tempered weights with respect to g and let k ∈ R. Then mk,
mn , m+ n and max(m,n) are G-tempered weights with respect to g.

Example 2.9. If g is a G-tempered slowly varying metric on X, if G is self-tempered and
if x0 ∈ X, then m : X → R+, m(x) = 1 + gx(x− x0), ∀x ∈ X is a G-tempered weight with
respect to g.

Indeed, if g satisfies (2.1) and gx(x− y) ≤ γ, since

gx(x− x0) ≤ 1

γ
gy(x− x0)

and

gy(x− x0) ≤ gy(x− y) + gy(y − x0) ≤ 1

γ
gx(x− y) + gy(y − x0) ≤ 1 + gy(y − x0),

we have

1 + gx(x− x0)

1 + gy(y − x0)
=

1 + gx(x− x0)

1 + gy(x− x0)
· 1 + gy(x− x0)

1 + gy(y − x0)
≤

1 + 1
γ gy(x− x0)

1 + gy(x− x0)
· 2 + gy(y − x0)

1 + gy(y − x0)
≤ 2

γ
.
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Also, let as assume that (2.3) holds, without any loss of generality, with some constants
C ≥ 1 and M > 0. Then

1 + gx(x− x0)

1 + gy(y − x0)
=

1 + gx(x− x0)

1 + gy(x− x0)
· 1 + gy(x− x0)

1 + gy(y − x0)

≤ 1 + C(1 +Gx(x− y))Mgy(x− x0)

1 + gy(x− x0)
· 1 + gy(y − x0) +Gy(x− y)

1 + gy(y − x0)

≤ C(1 +Gx(x− y))M (1 +Gy(x− y)) ≤
≤ C(1 +Gx(x− y))M (1 + C(1 +Gx(x− y))M+1)

≤ 2C2(1 +Gx(x− y))2M+1.

Example 2.10. Let g = (gx)x∈X , gx(z)2 =
∑n

j=1 aj(x)2z2j , ∀x, z ∈ X be a slowly varying,
G-tempered metric. Then, from Lemma 2.6, it follows that the functions aj , j ∈ {1, . . . , n}
are G-tempered weights with respect to g.

We shall define now the symbol classes we are working with ([4], [3]). If f ∈ C∞(X)
and if g is a metric on X, then

gx(Dkf(x)) = sup
yj∈X,gx(yj)≤1,j=1,...,k

|Dkf(x)(y1, . . . , yk)|

= sup
yj∈X\{0},j=1,...,k

|Dkf(x)(y1, . . . , yk)|∏k
j=1 gx(yj)

, ∀x ∈ X. (2.9)

We denoted by Dkf(x) the Fréchet derivative of order k of f .

Lemma 2.11. Let f, g ∈ C∞(X).

(a) We have

gx(Dk(fg)(x)) ≤
k∑

j=0

(
k

j

)
gx(Djf(x))gx(Dk−jg(x)). (2.10)

(b) For every k ∈ N∗ there exists a positive constant Ck such that if f(x) 6= 0, then

gx(Dk(1/f)(x)) ≤ Ckf(x)k(gx(Df)(x)) + · · · + (gx(Dkf(x)))1/k)k (2.11)

if u(x) ≥ 1 and

gx(Dk(1/f)(x)) ≤ Ckf(x)(gx(Df)(x)) + · · · + (gx(Dkf)(x))1/k)k (2.12)

if u(x) < 1.

Proof. (a) (2.10) follows from (2.9) and the Leibniz’ rule:

Dk(fg)(x)(y1, . . . , yk) =

k∑
j=0

∑
α∈Fj,k

Djf(x)(yα)Dk−jg(x)(yC(α))

where Fj,k = {α = (α1, . . . , αj); 1 ≤ α1 < · · · < αj ≤ k}, yα = (yα1
, . . . , yαj

), C(α) is the

complement of α and card Fj,k =
(
k
j

)
.
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(b) We shall prove (b) for f(x) = 1. The general result will follow by homogenization.
Let h = 1 − f . Then, there exists a neighbourhood V of x such that |h(y)| ≤ 1/2, ∀y ∈ V .
Therefore 1

f(y) =
∑∞

i=0 h
i(y), ∀y ∈ V . Since h(x) = 0, Dkhi(x) = 0, ∀i > k. Therefore,

using (a), we obtain

gx(Dk(1/f)(x)) ≤
k∑

i=1

gx(Dkhi(x))

≤ Ck(gx(Dh(x)) + (gx(D2h)(x))1/2 + · · · + (gx(Dkh)(x))1/k)k

= Ck(gx(Df(x)) + (gx(D2f(x)))1/2 + · · · + (gx(Dkf)(x))1/k)k.

If m is a G-tempered weight with respect to the G-tempered metric g and f ∈ C∞(X),
then we put

|f |m(k)(g) = sup
x∈X

gx(Dkf(x))

m(x)

and

|f |mk (g) =

k∑
j=0

|f |m(j)(g).

The space of symbols of order m with respect to g is

S(m, g) = {a ∈ C∞(X); |a|mk (g) <∞, ∀k ∈ N} .

Example 2.12. Let g = (gx)x∈X , gx(z)2 =
∑n

j=1 aj(x)2z2j , ∀x, z ∈ X be a slowly varying
metric on X. If we fix a basis {e1, . . . , en} in X, then a function f ∈ C∞(X) is in Sm(X, g)
if and only if for every α ∈ Nn there exists a constant Cα so that

|∂αf(x)| ≤ Cαm(x)a(x)α, ∀x ∈ X. (2.13)

We have used the standard notations ∂α = ∂α1
1 . . . ∂αn

n , ∂j = ∂/∂xj , ∀j ∈ {1, . . . , n} and
a(x)α = a1(x)α1 . . . an(x)αn .

Proof. We shall give the proof only for derivatives of order 1. Derivatives of higher order
can be treated in a similar manner.

“⇒” For i ∈ {1, . . . , n}, gx(ei) = ai(x). If f ∈ Sm(X, g), then

∞ > sup
x∈X

gx(Df(x))

m(x)
≥ sup

x∈X

|(Df(x)(ei)|
gx(ei)m(x)

= sup
x∈X

|∂if(x)|
ai(x)m(x)

.

“⇐” If (2.13) holds, then

sup
x∈X

gx(Df(x))

m(x)
= sup

x∈X
sup

y∈X\{0}

|Df(x)(y)|
gx(y)m(x)

=

= sup
x∈X

sup
y∈X\{0}

|
∑n

i=1 yi∂if(x)|
(
∑n

i=1 ai(x)2y2i )
1/2

m(x)
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≤ sup
x∈X

sup
y∈X\{0}

(∑n
i=1 ai(x)2y2i

)1/2 (∑n
i=1 ai(x)−2∂if(x)2

)1/2
(
∑n

i=1 ai(x)2y2i )
1/2

m(x)
<∞.

Remark 2.13. Sm(X, g) with the family of norms | · |mk is a Fréchet space. If g is as in
Example 2.12, then

sup
x∈X

|∂αf(x)|m(x)−1a(x)−α, α ∈ Nn

is an equivalent family of seminorms.

3 Metrics and weights on homogeneous euclidean spaces

A triple (X, (X1 . . . , XR), (d1, . . . , dR)), where X = X1 ⊕ · · · ⊕ XR is an euclidean vector
space of dimension n, scalar product 〈·, ·〉 and norm ‖ · ‖ and d1, . . . , dR are real numbers,
1 = d1 < · · · < dR is called a homogeneous euclidean space. We shall denote with nk the
dimension of Xk. Thus the variable x ∈ X splits into x = (x1, . . . , xR). On X we introduce
a family of dilations

δtx = tx = (td1x1, . . . , t
dRxR), ∀x ∈ X, ∀t > 0.

This adhoc definition is justified by the fact that such a triple corresponds to the Lie algebra
of a Lie homogeneous group (see Section 5).

For x = (x1, . . . , xR) ∈ X we put

|x| =

R∑
k=1

‖xk‖1/dk .

| · | is a homogeneous norm ([1]), in the sense that

(a) |x| = 0 if and only if x = 0,

(b) | − x| = |x|, ∀x ∈ X, and

(c) |tx| = t|x|, ∀x ∈ X, ∀t > 0.

More than that, since (a+ b)µ ≤ aµ + bµ, ∀a, b ≥ 0, ∀µ ∈ (0, 1], | · | satisfies also the triangle
inequality |x+ y| ≤ |x| + |y|, ∀x, y ∈ X.

For 1 ≤ k ≤ R we define

|x|k =

R∑
j=k

‖xj‖1/dj , ∀x ∈ X.

|x|k are homogeneous seminorms, in the sense that they satisfy (b) and (c) from above, and
they satisfy also the triangle inequality. Let us remark that |x|1 = |x|. We shall also put
|x|R+1 = 0, ∀x ∈ X
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qk(x) = 1 + |x|k+1, ∀x ∈ X, ∀k ∈ {0, 1, . . . , R}

and

gk,δ(x) = δ + |x|k+1, ∀x ∈ X, ∀k ∈ {0, 1, . . . , R} , ∀δ > 0.

Let

gδx(z)2 =

R∑
k=1

‖zk‖2

gk,δ(x)2dk
, ∀x, z ∈ X, ∀δ > 0.

We shall also use the notation qx = g1x.
We shall prove now that the metrics gk(·; δ) are uniformly slowly varying and uniformly

self-tempered with respect to δ > 0.

Lemma 3.1. For every k ∈ {0, . . . , R} and for every δ > 0,

1

2
≤ gk,δ(x)

gk,δ(y)
≤ 2 if gδx(x− y) <

(
1

2R

)dR

. (3.1)

Proof. If gδx(x− y) < [1/(2R)]dR , then

‖xj − yj‖1/dj ≤ gj,δ(x)

2R
≤ gk,δ(x)

2R
, ∀j ∈ {k + 1, . . . , R} .

Therefore |x− y|k+1 ≤ gk,δ(x)/2 and consequently

gk,δ(x) = δ + |x|k+1 ≤ δ + |y|k+1 + |x− y|k+1 ≤ gk,δ(y) +
1

2
gk,δ(x)

and

gk,δ(y) = δ + |y|k+1 ≤ δ + |x|k+1 + |x− y|k+1 ≤ 3

2
gk,δ(x)

which implies (3.1).

Lemma 3.2. There exists a constant C > 0 so that

gk,δ(x) ≤ Cgk,δ(y)(1 + gδy(x− y)), ∀x, y ∈ X, ∀k ∈ {0, 1, . . . , R} , ∀δ > 0 (3.2)

and

gk,δ(x) ≤ Cgk,δ(y)(1 + gδx(x− y))R−k, ∀x, y ∈ X, ∀k ∈ {0, 1, . . . , R} , ∀δ > 0. (3.3)

Proof. We shall prove first (3.2). We have

gk,δ(x) ≤ gk,δ(y) + |x− y|k+1 = gk,δ(y)

(
1 +

|x− y|k+1

gk,δ(y)

)

≤ gk,δ(y)

1 +

R∑
j=k+1

‖xj − yj‖1/dj

gj,δ(y)

 .
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Using the inequality

R∑
j=k+1

aj ≤ R− k +

R∑
j=k+1

a
dj

j , ∀aj > 0, ∀dj ≥ 1,

we obtain that
R∑

j=k+1

‖xj − yj‖1/dj

gj,δ(y)
≤ R+

R∑
j=k+1

‖xj − yj‖
gj,δ(y)dj

.

Therefore
gk,δ(x) ≤ Cgk,δ(y)(1 + gδy(x− y))

for C = 2(R+ 1) and (3.2) is proved.
We shall prove (3.3) by induction. For k = R there is nothing to prove. We can take

C = 1 in this case. Let us assume that (3.3) holds for k + 1 with some constant C > 1.
Then

gk,δ(x) ≤ gk,δ(y) + |x− y|k+1 = gk,δ(y)

(
1 +

|x− y|k+1

gk,δ(y)

)
≤ gk,δ(y)

(
1 +

gk+1,δ(x)

gk+1,δ(y)
· |x− y|k+1

gk+1,δ(x)

)
.

By the induction hypothesis,

gk,δ(x) ≤ Cgk,δ(y)(1 + gδx(x− y))R−k−1

(
1 +

|x− y|k+1

gk+1,δ(x)

)

≤ Cgk,δ(y)(1 + gδx(x− y))R−k−1

R+ 1 +

R∑
j=k+1

‖xj − yj‖
gj,δ(x)dj


≤ C1gk,δ(y)(1 + gδx(x− y))R−k,

which proves that (3.3) holds with some new constant C1.

Corollary 3.3. The following assertions hold:

(a) The metrics gδk are uniformly slowly varying and uniformly self-tempered with respect
to δ > 0.

(b) gk,δ are gδk weights uniformly with respect to δ > 0.

(c) gk,δ′ is a gδk weight ∀δ, δ′ > 0.

Proof. All the assertions of the corollary follow from Lemmas 3.1, 3.2, and 2.6 if we put

(a1, . . . , an1
, . . . , an−nR+1, . . . , an) = (g−1

1,δ , . . . , g
−1
1,δ , . . . , g

−dR

R,δ , . . . , g
−dR

R,δ ).
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4 Hörmander’s lemmas

The following two results are essential tools in Hörmander’s theory of Weyl calculus [4].

Proposition 4.1. Let g be a slowly varying metric on X.

(a) If γ is the constant from formula (2.2) and 0 < ε < γ, then there exists a sequence
(xν)ν of points in X so that the balls

Bν = Bg
ν(xν , r) = {x ∈ X; gxν (x− xν) < r}

cover X and there exists some N so that card {ν;x ∈ Bν} ≤ N, ∀x ∈ X, ∀ε ≤ r ≤ γ.

(b) For every r ∈ (ε, γ), there exist ϕν ∈ C∞
0 (Bν), ∀ν ∈ N∗, so that (ϕν)ν is a bounded

sequence in S1(X, g) and
∑

ν ϕν(x) = 1, ∀x ∈ X.

(c) If g is a self-tempered metric, then there exist two positive constants C̃ and M̃ which
depend only on the constants C and M from (2.3), on ε and on the dimension of X so
that ∑

ν

(1 + dν(x))−M̃ ≤ C̃, ∀x ∈ X. (4.1)

Here dν(x) = gxν
(x− xν).

Proof. (a) First of all, let us remark that if K is a compact set in X, if F is a totally ordered
set of indices and if (xν)ν∈F is a family of points in K so that gxµ

(xν − xµ) ≥ ε, ∀ν > µ,
then F is finite. Else, since K is a compact set, there exists a point x ∈ K and a sequence
(xνj

)j convergent to x so that gxνj
(xνk

−xνj
) ≥ ε, ∀k > j. Let δ ∈ (0, γ). Then there exists

jδ ∈ N so that gx(xνj
− x) < δ if j ≥ jδ. Then

gxνj
(xνk

−xνj
) ≤ gxνj

(xνk
−x)+gxνj

(xνj
−x) ≤ 1

γ
gx(xνk

−x)+
1

γ
gx(xνk

−x) ≤ 2δ

γ
, ∀j, k ≥ jδ.

If we take δ < εγ/2, we obtain a contradiction.
Therefore, there exists a maximal sequence of points (xν)ν in X so that

gxµ
(xν − xµ) ≥ ε, ∀ν > µ. (4.2)

This sequence has all the required properties. Indeed, the balls (Bν)ν cover X when r = ε
since otherwise would be possible to add some point x to the sequence (xν)ν without
violating (4.2).

Next, let x ∈ X and x ∈ Bν∩Bµ. We can always assume that µ < ν. Then gx(x−xν) ≤
r
γ ≤ 1 and gx(xν − xµ) ≥ γgxµ

(xν − xµ) ≥ γε. Therefore {y ∈ X; gx(y − xµ) < γε/2} ∩
{y ∈ X; gx(y − xν) < γε/2} = ∅. There is a fixed upper bound for the number of disjoint
open balls of a fixed radius which are included in a ball of radius 1 in a finite dimensional
normed space. This bound depends only on the dimension of the space and on the radius.
It does not depend on the norm. This remark ends the proof of Assertion (a).

(b) Let ψ ∈ C∞
0 (−r2, r2), ψ(t) = 1, ∀t ∈ (−ε2, ε2), ψν(x) = ψ(gxν (x − xν)2), ∀x ∈

X, ∀ν ∈ N∗, ϕν(x) = ψν(x)/
(∑

µ ψµ(x)
)

. It is clear that (ϕν)ν ∈ C∞
0 (Bν), ∀ν ∈ N∗ and∑

ν ϕν(x) = 1, ∀x ∈ X. Let us prove that (ϕν)ν is a bounded sequence in S1(X, g).
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We shall first prove that (ψν)ν is a bounded sequence in S1(X, g). We have

gx(Dψν(x)) = sup
y ̸=0

|Dψν(x)y|
gx(y)

= sup
y ̸=0

|Dψν(x)y|
gxν

(y)

gxν (y)

gx(y)
≤ 1

γ
· sup
y ̸=0

|Dψν(x)y|
gxν

(y)

since gxν (x − xν) < γ on suppψν . Let (aij)i,j=1,...,n be the matrix of the quadratic form
(gxν )2. Then

Dψν(x)y =

n∑
j=1

∂

∂xj
ψ(gxν

(x− xν)2)yj = 2ψ′(gxν
(x− xν)2)

n∑
i,j=1

yjaij(xi − xν;i).

Here x = (x1, . . . , xn), n = dimX.
Since

|
n∑

i,j=1

yjaij(xi − xν;i)| ≤ gxν
(y)gxν

(x− xν),

we have

|Dψν(x)y|
gxν

(y)
≤ 2r

γ
|ψ′(gxν

(x− xν)2)| ≤ 2Cr

γ
, ∀x ∈ X, ∀y ∈ X \ {0} , ∀ν ∈ N∗

for some positive constant C. Therefore |ψν |1(1)(g) are uniformly bounded with respect to

ν. One can prove in a similar manner that |ψν |1(k)(g) are uniformly bounded with respect
to ν, ∀k ∈ N.

Taking into account the uniform boundedness of the sequence (ψν)ν and the fact that
there exists some N so that card {ν;x ∈ Bν} ≤ N, ∀x ∈ X, ∀ε ≤ r ≤ γ, we obtain that∑

ν ψν ∈ S1(X, g). Lemma 2.11 ends the proof of Assertion (b).
(c) Let Mk = Mk(x) = {ν; dν(x) < k} , ∀x ∈ X, ∀k ∈ N. It is sufficient to prove that

there exist some constants c andm, which depend only on the constants C andM from (2.3),
on ε and on the dimension of X so that

card(Mk) ≤ c(1 + k)m, ∀x ∈ X, ∀k ∈ N. (4.3)

Indeed, if (4.3) is true and if M̃ = m+ 2, then∑
ν

(1 + dν(x))−M̃ =
∑
k≥0

∑
ν∈Mk+1\Mk

(1 + dν(x))−M̃ ≤
∑
k≥0

∑
ν∈Mk+1\Mk

(1 + k)−M̃

≤ c
∑
k≥0

(1 + k)−M̃+m = C̃ <∞.

We shall prove now (4.3). Let ν ∈Mk and

Vν = {z ∈ X; gx(z − xν) < rk}

where rk = r/(C(1 + k)M ) and C and M are the constants from (2.3).
Then

Vν ⊆ Bν . (4.4)
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Indeed, if z ∈ Vν and ν ∈Mk, then

gxν (z − xν) ≤ C(1 + gxν (x− xν)Mgx(z − xν) ≤ C(1 + k)M · r

C(1 + k)M
= r.

Also, for z ∈ Vν and ν ∈Mk, we have

gx(z−x) ≤ gx(z−xν)+gx(xν−x) < rk+Cgxν
(xν−x)(1+gxν

(xν−x))M ≤ rk+C(1+k)M+1.

Therefore
Vν ⊆ V = V (x, k) = {z ∈ X; gx(z − x) < Rk} , (4.5)

where Rk = rk + C(1 + k)M+1.
Let |Vν | = C1(x)rnk , n = dimX be the volume of Vν . Using (4.4) and (4.5), we obtain

C1(x)card(Mk)rnk =
∑

ν∈Mk

|Vν | ≤ N
∣∣∣ ⋃
ν∈Mk

Vν

∣∣∣ ≤ N |V | ≤ C1(x)NRn
k ,

where N is the constant from Assertion (a).
Therefore

cardMk ≤ Nr−n
k Rn

k = N(1 + C(1 + k)M+1r−1
k )n ≤ 2C2nNr−n(1 + k)(2M+1)n.

Proposition 4.2. Let (X, ‖ · ‖) be an Euclidean normed space, r1 > r > 0, x0 ∈ X and L
an affine function so that L(x) 6= 0, ∀x ∈ B(x0, r1). Then

‖Dk

(
1

L

)
(x)‖ ≤ k!r1

(r1 − r)k+1|L(x0)|
, ∀x ∈ B(x0, r), ∀k ∈ N. (4.6)

Proof. We may assume, without loss of generality, that x0 = 0 and that L(0) = 1. In this
case, there exists ξ ∈ X so that L(x) = 〈ξ, x〉 + 1, ∀x ∈ X. Since 〈ξ, x〉 + 1 > 0, ∀x ∈
X, ‖x‖ < r1, it follows that ‖ξ‖ ≤ 1/r1 and L(x) ≥ (r1 − r)/r1, ∀x ∈ B(0, r).

Since, for x ∈ B(0, r), L−1(x) =
∑

j≥0 (−1)j〈ξ, x〉j , we have

D(L−1)(x)y =
∑
j≥1

(−1)jj〈ξ, x〉j−1〈ξ, y〉 = −〈ξ, y〉L(x)−2.

We have used the fact that −(1 + a)−2 =
∑

j≥1(−1)jjaj−1, ∀a ∈ R, |a| < 1.

Using the formula Dkf(x)(y1, . . . , yk) = Dx[Dk−1f(x)(y1, . . . , yk−1)]yk, one can prove
by induction on k that

Dk(L−1)(x)(y1, . . . , yk) = 〈ξ, y1〉 · · · 〈ξ, yk〉 ·
(−1)kk!

L(x))k
, ∀x, y1, . . . , yk ∈ X.

Therefore

‖Dk(L−1)(x)‖ ≤ k!‖ξ‖k

|L(x)|k+1
≤ k!r1

(r1 − r)k+1
, ∀x ∈ B(0, r).
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5 Homogeneous groups

Let (g,+, [·, ·]) be a finite dimensional Lie algebra of dimension n endowed with a scalar
product 〈·, ·〉. A family of dilations on g is a family (δt)t>0 of algebra automorphisms
of g of the form δt = exp(A log t), where A is a positive definite operator on g. Let
0 < d1 < · · · < dR be the eigenvalues of A and

gk =
{
x ∈ g; δtx = tdkx

}
, ∀k ∈ {1, . . . , R} .

Since δtα = exp(αA log t), by adjusting α if necessary, we may assume that d1 = 1.

Proposition 5.1. If a Lie algebra g admits a family of dilations, then g is nilpotent.

Proof. If x ∈ gj , y ∈ gk, then δt[x, y] = [δtx, δty] = [tdjx, tdky] = tdj+dk [x, y]. Hence
[gj , gk] = {0} if dj + dk is not an eigenvalue of A and [gj , gk] ⊆ gl if dj + dk = dl for some
eigenvalue dl of A. Therefore, if we denote as usually, g(1) = g, g(j) = [g, g(j−1)], then
g(j) ⊆ gj ⊕ · · · ⊕ gR. Consequenly, g(j) = {0} for j ≥ dR and g is nilpotent.

A homogeneous group is a connected and simply connected nilpotent Lie group whose
Lie algebra is endowed with a family of dilations. In these notes we shall consider that the
Lie algebra g itself is a Lie group with the multiplication given by the Campbell-Hausdorff-
Baker formula

x ◦ y = xy = x+ y + r(x, y), ∀x, y ∈ g,

where

r(x, y) =
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + · · ·

is the finite sum of terms of order at least 2 in the Campbell-Hausdorff-Baker series for g.
We shall also assume that g is endowed with a fixed scalar product and we shall identify

the dual vector space g∗ with g by means of the scalar product.
Let us remark that according to the Campbell-Hausdorff-Baker formula, the inverse of

a vector x ∈ g with respect to the multiplication is −x. Therefore the Lebesgue measure is
a bi-invariant Haar measure for the group g and the convolution formula reads

f ∗ g(x) =

∫
g

f(xy−1)g(y) dy =

∫
g

f(x ◦ (−y))g(y) dy, ∀f, g ∈ S(g).

The Lebesgue measure on g will be normalized so that the inverse of the Fourier trans-
form on the Schwartz space S(g)

f̂(y) =

∫
g

e−i⟨x,y⟩f(x) dx

is

f̌(x) =

∫
g

ei⟨x,y⟩f(y) dy

and ∫
g

|f(x)|2 dx =

∫
g

|f̂(y)|2 dy, ∀f ∈ S(g).
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We shall also work with the notions of homogeneous degree of a multiindex and ho-
mogeneous degree of a polynomial function on g. If α = (α1, . . . , αR), αk ∈ Nnk , nk =
dim gk, ∀k ∈ {1, . . . , R} is a multiindex in Nn, then we denote with |α| its usual length (the
sum of all its n components). The homogeneous length of α is

d(α) =

R∑
k=1

dk|αk|.

If x = (x1, . . . , xR) = (x1;1, . . . , x1;n1
, . . . , xR;1, . . . , xR;nR

) ∈ g, then the homogeneous
degree of xα is d(α).

6 The Melin operator and the reduction operator

The Melin operator U on g is defined by the formula

Uf(y) =

∫∫
g×g

e−i⟨x,y⟩f̌(x)e−i⟨r(x),ỹ⟩ dx, ∀f ∈ C∞
0 (g× g),

where x = (x1, x2) ∈ g× g, y = (y1, y2) ∈ g× g, r(x) = r(x1, x2) and ỹ = y1+y2

2 .

Remark 6.1. If g is a commutative Lie algebra, then U is the identity operator.

Lemma 6.2. For every f, g ∈ C∞
0 (g)

f̂ ∗ g(y) = U(f̂ ⊗ ĝ)(y, y), ∀y ∈ g. (6.1)

Proof. For every f, g ∈ C∞
0 (g) we have

f̂ ∗ g(y) =

∫
g

e−i⟨y,z⟩f ∗ g(z) dz =

∫
g

e−i⟨y,z⟩ dz

∫
g

f(zu−1)g(u) du

=

∫
g

g(u) du

∫
g

e−i⟨y,z⟩f(zu−1) dz =

∫
g

g(u) du

∫
g

e−i⟨y,x1u⟩f(x1) dx1

=

∫∫
g×g

e−i⟨y,x1+x2+r(x1,x2)⟩f(x1)g(x2) dx1dx2

= U(f̂ ⊗ ĝ)(y, y),

for every y ∈ g.

Lemma 6.3. For every f ∈ C∞
0 (g× g),

DαUf(y) =
∑

d(β)=d(α)

cβαU(Dβf)(y)

for some constants cβα ∈ C.



M. Pascu 77

Proof. Let us denote with rk(x) the sum of terms of homogeneous degree k from r(x), for
k ∈ {1, . . . , R}. Then

〈r(x), y〉 =

R∑
k=1

〈rk(x), y〉, ∀x ∈ g× g, ∀y ∈ g.

Therefore

DαUf(y) =

∫∫
g×g

f̌(x)Dα
y

(
e−i⟨x,y⟩e−i⟨r(x),ỹ⟩

)
dx

=

∫∫
g×g

e−i⟨x,y⟩e−i⟨r(x),ỹ⟩P1(x)f̌(x) dx

=

∫∫
g×g

e−i⟨x,y⟩e−i⟨r(x),ỹ⟩(P (D)f )̌(x) dx,

where P1 and P are homogeneous polynomials of homogeneous degree d(α).

Let

g′ = g1 ⊕ · · · ⊕ gR−1.

The commutator

g′ × g′ 3 (x1, x2) 7→ [x1, x2]′ ∈ g′,

where ′ stands for the orthogonal projection of g onto g′, makes g′ into a Lie algebra
isomorphic to g/gR. The group multiplication in g′ is

x1 ◦′ x2 = x1 + x2 + r(x1, x2)′, ∀x1, x2 ∈ g′.

Proposition 6.4. Let f ∈ C∞
0 (g× g). Then

Uf(y, λ) = U ′ (Pλf(·, λ)) (y), ∀y ∈ g′ × g′, ∀λ ∈ gR × gR, (6.2)

where

Pλf(y) =

∫∫
g′×g′

e−i⟨x,y⟩f̌(x)e−i⟨r(x),λ̃⟩ dx, ∀f ∈ C∞
0 (g′ × g′)

is an integral operator on C∞
0 (g′ × g′) invariant under abelian translations and U ′ is the

Melin operator on g′.

Proof. Let us first remark that since gR is central,

r((x1, µ1), (x2, µ2)) = r(x1, x2), ∀(x1, µ1), (x2, µ2) ∈ g′ × gR

and

〈r((x1, µ1), (x2, µ2)), (ỹ, λ̃)〉 = 〈r(x1, x2), (ỹ, λ̃)〉 = 〈r(x1, x2)′, ỹ〉 + 〈r(x1, x2), λ̃〉

for all (x, µ), (y, λ) ∈ g× g.
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Therefore

Uf(y, λ) =

∫∫
g×g

e−i⟨x,y⟩e−i⟨µ,λ⟩f̌(x, µ)e−i⟨r(x)′,ỹ⟩e−i⟨r(x),λ̃⟩ dxdµ

=

∫∫
g′×g′

e−i⟨x,y⟩
(
f(x̌, λ)e−i⟨r(x),λ̃⟩

)
e−i⟨r(x)′,ỹ⟩ dx

where we denoted with f(x̌, λ) the partial inverse Fourier transform of f with respect to y.
The proof of (6.2) is concluded by the equality

(Pλf(·, λ))̌(x) = f(x̌, λ)e−i⟨r(x),λ̃⟩.

If we denote with τz the translation with z, (τzg)(y) = g(y + z), ∀y, z ∈ g′ × g′, ∀g ∈
C∞

0 (g′ × g′), then (τzg)̌(x) = e−i⟨x,z⟩ǧ(x) and (τz(Pλg))(y) = Pλ(τz(g))(y).

Remark 6.5. Since Pλ commutes with the translations, then it will commute also with
derivatives.

If g is a Lie algebra endowed with a family of dilations δt then on X = g × g we shall
consider the family of dilations δt(x) = δt(x1) ⊕ δt(x2), ∀x = (x1, x2) ∈ g× g.

Definition 6.6. We shall say that a self-tempered metric g on g is admissible if it satisfies
the conditions

gx(z)2 =

R∑
j=1

‖zj‖2

gj(x)2dj
,

gj(x) ≥ gj+1(x) ≥ δ, ∀x ∈ g, ∀j ∈ {1, . . . , R − 1} ,
gj(x) ≥ gj(0(j), x

(j)) ≥ δ + |x|j+1, ∀x ∈ g, ∀j ∈ {1, . . . , R − 1} ,

for some δ > 0. Here x(j) = (xj+1, . . . , xR).

Let us remark that the metrics gδk introduced in Section 3 are admissible metrics.
We also define a metric g on g× g by the formula

gx(z)2 = (g ⊕ g)x(z)2 =

R∑
j=1

‖z1,j‖2

gj(x1)2dj
+

R∑
j=1

‖z2,j‖2

gj(x2)2dj
, ∀x = (x1, x2), z = (z1, z2) ∈ g× g.

Then g is also self-tempered. For λ = (λ1, λ2) ∈ gR × gR we put

gλ
x(z) = gx,λ(z, 0), ∀x, z ∈ g′ × g′.

The metrics gλ = (gλ
x)x∈g′×g′ are uniformly self-tempered and, consequently, uniformly

slowly varying with respect to λ ∈ gR × gR. Let C, M (in (2.3)) and γ (in (2.1)) be
joint constants for all these metrics. We shall also use the following notations: gλj (x) =

gj(x, λ), ∀(x, λ) ∈ g, Bν = Bλ
ν = Bλ

ν (xλ
ν , r) ⊂ g′ × g′ for the covering of Proposition 4.1

for the metric gλ, λ ∈ gR × gR, xν = xλ
ν and dλν (y) = gλ

xν
(y − xν), ∀y ∈ g′ × g′, ∀λ ∈

gR × gR, ∀ν ∈ N∗.
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For an admissible metric g we put

g̃R−1(λ) = max

(
gR−1(0, λ1)

gR−1(0, λ2)
,
gR−1(0, λ2)

gR−1(0, λ1)

)
, ∀λ = (λ1, λ2) ∈ gR × gR.

From Remark 2.8 and Example 2.10 it follows that g̃R−1 is a g-tempered weight.

Proposition 6.7. Let g = g ⊕ g, g an admissible metric on g. Then ∀N ∈ N, ∃C > 0,
∃k ∈ N, ∀y ∈ g′ × g′, ∀λ ∈ gR × gR, ∀ν ∈ N∗, ∀f ∈ C∞

0 (Bλ
ν ) so that

|Pλf(y)| ≤ C|f |g̃R−1(λ)
NdR

k (gλ)
(
1 + dλν (y)

)−N
. (6.3)

Proof. For f ∈ C∞
0 (Bλ

ν ) we have

|Pλf(y)| =

∣∣∣∣∫∫
g′×g′

e−i⟨x,y⟩f̌(x)e−i⟨r(x),λ̃⟩ dx

∣∣∣∣ ≤ ∫∫
g′×g′

|f̌(x)| dx.

Let

fλν (y) = f(yλ
(ν)),

where

yλ
(ν) =

(
gλ1 (xν,1)d1y1,1, . . . , g

λ
R−1(xν,1)d1y1,R−1, g

λ
1 (xν,2)d1y2,1, . . . , g

λ
R−1(xν,2)dR−1y2,R−1

)
.

Then ∫∫
g′×g′

|f̌(x)| dx =

∫∫
g′×g′

|f̌λν (x)| dx.

If y ∈ suppfλν , then

1 ≥ γ2 > r2

≥ gλ
xν

(
gλ1 (xν,1)d1y1,1, . . . , g

λ
R−1(xν,1)d1y1,R−1, g

λ
1 (xν,2)d1y2,j , . . . , g

λ
R−1(xν,2)dR−1y2,R−1

)2
=

R−1∑
j=1

gλj (xν,1)2dj

∥∥∥∥y1,j − xν,1,j

gλ
j (xν,1)

dj

∥∥∥∥2
gλj (xν,1)2dj

+

R−1∑
j=1

gλj (xν,2)2dj

∥∥∥∥y2,j − xν,2,j

gλ
j (xν,2)

dj

∥∥∥∥2
gλj (xν,2)2dj

= ‖y − x̃ν‖2

for some x̃ν ∈ g× g.

Therefore suppfλν is included in a ball of radius 1 with respect to the fixed euclidean
norm on g × g. Hence we obtain from Sobolev’s lemma that there exists some positive
constant C so that ∫∫

g′×g′
|f̌λν (x)| dx ≤ sup

|α|≤2n+1

sup
y∈g′×g′

|Dαfλν (y)|.
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But, using Lemma 2.6, we have

∣∣Dαfλν (y)
∣∣ =

∣∣∣∣∣∣
R−1∏
j=1

gλj (xν,1)|α1,j |dj (Dα1f)λν (y) ·
R−1∏
j=1

gλj (xν,2)|α2,j |dj (Dα2f)λν (y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
R−1∏
j=1

gλj (xν,1)|α1,j |djDα1f(yλ
(ν)) ·

R−1∏
j=1

gλj (xν,2)|α2,j |djDα2f(yλ
(ν))

∣∣∣∣∣∣
≤
(

1

γ

)|α| R−1∏
j=1

gλj (yλ
(ν),1)|α1,j |dj

∣∣Dα1f(yλ
ν )
∣∣ · R−1∏

j=1

gλj (yλ
(ν),2)|α2,j |dj

∣∣∣Dα2f(yλ
(ν))
∣∣∣

≤ Ck|f |1k(gλ)

for |α| ≤ k.

Therefore for N = 0, (6.3) holds with k = n+ 1.

We shall prove (6.3) for N ∈ N by induction on N . So let us assume that (6.3) is true
for some N and let us prove it for N + 1. Let dλν (y) = a > 1 (otherwise the estimate is a
simple consequence of the estimate for N = 0).

Let ξ ∈ (g′ × g′)∗ be a vector of unit length with respect to the norm dual to gλ
xν

so
that ξ(y − xν) = a. Then, for r1 ∈ (r, γ) we have

ξ(y − x) = ξ(y − xν) − ξ(x− xν) ≥ a− |ξ(x− xν)| ≥ a− 1 > 0, ∀x ∈ Bλ
ν (xλ

ν , r1).

Let L(x) = ξ(x− y), ∀x ∈ g′ × g′. Then L(xν) = −a and L does not vanish on Bλ
ν (xλ

ν , r1).
Therefore, by Proposition 4.2, ∀k ∈ N, there exists a positive constant Ck = Ck(r, r1) so
that

gλ
x

(
Dk 1

L
(x)

)
≤ γ−kgλ

xν

(
Dk 1

L
(x)

)
≤ Ck

a
, ∀x ∈ Bλ

ν (xλ
ν , r). (6.4)

Another inequality we shall need follows from the fact that ξ ∈ (g′ × g′)∗ is a vector of unit
length with respect to the norm dual to gλ

xν
:

1 =

R−1∑
j=1

gλ1
j (xν,1)2dj‖ξ1,j‖2 +

R−1∑
j=1

gλ1
j (xν,2)2dj‖ξ2,j‖2

≥
R−1∑
j=1

gR−1(0, λ1)2dj‖ξ1,j‖2 +

R−1∑
j=1

gR−1(0, λ2)2dj‖ξ2,j‖2. (6.5)
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Let Ax = 〈x, ξ〉, ∀x ∈ g′ × g′. Then, since L(y) = 0, we have

Pλ(Lf)(y) =[Pλ, L]f(y) = [Pλ, A]f(y) =

∫∫
g′×g′

e−i⟨x,y⟩Af (̌x)e−i⟨r(x),λ̃⟩ dx

−
∫∫

g′×g′
〈y, ξ〉e−i⟨x,y⟩f̌(x)e−i⟨r(x),λ̃⟩ dx

= − i

∫∫
g′×g′

e−i⟨x,y⟩(〈ξ,D − iy〉f̌)(x)e−i⟨r(x),λ̃⟩ dx

= −
∫∫

g′×g′
〈y, ξ〉e−i⟨x,y⟩f̌(x)e−i⟨r(x),λ̃⟩ dx

+ i

∫∫
g′×g′

f̌(x)〈ξ,Dx〉
(
e−i⟨x,y⟩e−i⟨r(x),λ̃⟩

)
dx

=

∫∫
g′×g′

f̌(x)
(
〈ξ,Dx〉(〈r(x), λ̃〉)

)
e−i⟨x,y⟩e−i⟨r(x),λ̃⟩ dx

=

R−1∑
j=1

〈ξ1,j ,
∫∫

g′×g′
e−i⟨x,y⟩e−i⟨r(x),λ̃⟩〈Dx1,jr(x), λ̃〉f̌(x) dx〉

+

R−1∑
j=1

〈ξ2,j ,
∫∫

g′×g′
e−i⟨x,y⟩e−i⟨r(x),λ̃⟩〈Dx2,jr(x), λ̃〉f̌(x) dx〉

=

R−1∑
j=1

〈ξ1,j ,
∫∫

g′×g′
e−i⟨x,y⟩e−i⟨r(x),λ̃⟩(〈r1,j(iD), λ̃〉f )̌ (x) dx〉

+

R−1∑
j=1

〈ξ2,j ,
∫∫

g′×g′
e−i⟨x,y⟩e−i⟨r(x),λ̃⟩(〈r2,j(iD), λ̃〉f )̌ (x) dx〉

=

R−1∑
j=1

〈ξ1,j , Pλ(〈r1,j(iD), λ̃〉f)(y)〉 +

R−1∑
j=1

〈ξ2,j , Pλ(〈r2,j(iD), λ̃〉f)(y)〉, (6.6)

where ri,j(x) = Dxi,j
r(x) for i = 1, 2 and ∀j ∈ {1, . . . , R − 1} are homogeneous polynomials

of homogeneous degree dR − dj . Let us stress that here D stands for the partial derivatives
D = ∂.

Using the induction hypothesis, we obtain

∣∣∣Pλ(〈ri,j(iD), λ̃〉f)(y)
∣∣∣ ≤C ∣∣∣〈ri,j(iD), λ̃〉f

∣∣∣g̃R−1(λ)
NdR

k
(gλ)

(
1 + dλν (y)

)−N

≤Cg̃R−1(λ)NdR sup
|α|≤k,z∈g′×g′

∣∣∣Dα〈ri,j(iD), λ̃〉f(z)
∣∣∣

×

(
R−1∏
i1=1

gλ1
i1

(z1)di1
|α1,i1

|

)(
R−1∏
i2=1

gλ2
i2

(z2)di2
|α2,i2

|

)(
1 + dλν (y)

)−N

≤Cg̃R−1(λ)NdR sup
|α|≤k,z∈g′×g′,d(β)=dR−dj

∣∣Dα+βf(z)
∣∣ ‖λ̃‖
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×

(
R−1∏
i1=1

gλ1
i1

(z1)di1 (|α1,i1 |+|β1,i1 |)

)(
R−1∏
i2=1

gλ2
i2

(z2)di2 (|α2,i2 |+|β2,i2 |)

)
× gR−1(0, λ1)−d(β1)gR−1(0, λ2)−d(β2)

(
1 + dλν (y)

)−N
. (6.7)

Formulas (6.4)–(6.7), the fact that g is an admissible metric, Lemma 2.11(a) and Re-
mark 2.13 conclude the proof:

|Pλf(y)| =

∣∣∣∣Pλ

(
L · 1

L
f

)
(y)

∣∣∣∣
≤

R−1∑
j=1

∣∣∣∣〈ξ1,j , Pλ(〈r1,j(iD), λ̃〉
(

1

L
f

)
)(y)〉

∣∣∣∣
+

R−1∑
j=1

∣∣∣∣〈ξ2,j , Pλ(〈r2,j(iD), λ̃〉
(

1

L
f

)
)(y)〉

∣∣∣∣
≤Cg̃R−1(λ)(N+1)dR

∣∣∣∣ 1Lf
∣∣∣∣1
k′

(gλ)
(
1 + dλν (y)

)−N

≤Cg̃R−1(λ)(N+1)dR
Ck′

a
· |f |1k′ (gλ)

(
1 + dλν (y)

)−N

≤C ′
k′ g̃R−1(λ)(N+1)dR |f |1k′ (gλ)

(
1 + dλν (y)

)−N−1

for k′ ≥ k(N) + dR.

Remark 6.8. From the proof of Proposition 6.7 we can see that the conclusion of the
proposition is still true if we replace g̃R−1 with

q̃R−1(λ) = max

(
1 + ‖λ1‖
1 + ‖λ2‖

,
1 + ‖λ2‖
1 + ‖λ1‖

)
, ∀λ = (λ1, λ2) ∈ gR × gR.

Remark 6.9. If instead of the metric g⊕ g with g admissible we have on g× g a metric of
the form

gx(z)2 =

R∑
j=1

‖z1,j‖2

g1,j(x)2dj
+

R∑
j=1

‖z2,j‖2

g2,j(x)2dj
, ∀x = (x1, x2), z = (z1, z2) ∈ g× g,

with gi,j(x) ≥ δ + ‖xR‖1/dR , ∀x ∈ g × g, ∀i ∈ {1, 2} , ∀j ∈ {1, . . . , R − 1} , for some δ > 0,
then the conclusion of the Proposition 6.7 is still true if we replace g̃R with 1.

At this point we need to introduce the notion of double continuous mapping between
spaces of symbols. Let Sm(X, g) be a space of symbols on an euclidean space X, m a G-
tempered weight with respect to a G-tempered slowly varying metric g. Besides the Fréchet
topology on Sm(X, g) (see Remark 2.13), we introduce the weak topology [5] of the C∞

convergence on Fréchet bounded subsets.

Lemma 6.10. The weak convergence is equivalent to the pointwise convergence on Fréchet
bounded subsets of Sm(X, g).
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Proof. We shall apply Arzela-Ascoli theorem. First of all, if (fj)j is a bounded sequence in
Sm(X, g) and if K is a compact set in X, then (Dkfj)j is a sequence of uniformly bounded
functions on K.

Let us prove this assertion for k = 1. The balls (Bg(x, γ))x∈K are an open covering of
K. Therefore there exists a finite set {x1, . . . , xl} ⊂ K so that (Bg(xi, γ))i∈{1,...,l} is still a
covering of K. Each of the metrics gxi

, i ∈ {1, . . . , l}, is equivalent to the euclidean metric.
Hence there exists some positive constant C1 so that gxi(y) ≤ C1‖y‖, ∀i ∈ {1, . . . , l} , ∀y ∈
X. An arbitrary point x ∈ K belongs to some ball Bg(xi, γ). Therefore, from (2.1) we
obtain

gx(y) ≤ 1

γ
C1‖y‖, ∀x ∈ K, ∀y ∈ X.

Now our assertion in case k = 1 follows from the fact that m beeing a g weight is bounded
on K and from the boundedness in Sm(X, g) of the sequence (fj)j . Its proof for the other
values of k is similar.

From Arzela-Ascoli theorem it follows that every sub-sequence of (Dkfj)j contains a
sub-sub-sequence uniformly convergent on K. If fj → f pointwise, then, in case k = 0, this
limit is always equal to f . Therefore fj → f uniformly on K. For k > 0, in order to obtain
the same conclusion we have to use also either the fact that fj → f in the distribution
sense, or the classical theorem of derivation of sequences of functions.

Lemma 6.11. Let m be a G-tempered weight with respect to a G-tempered slowly vary-
ing metric g, f ∈ Sm(X, g) and (ϕν)ν the partition of unity from Proposition 4.1. Then∑j

ν=1 ϕνf → f weakly in Sm(X, g) when j → ∞.

Proof. This lemma is a straightforward consequence of the definitions, of Propositions 4.1(b)
and of Lemma 2.11(a).

Remark 6.12. Let m be a G-tempered weight with respect to the slowly varying metric
g on g× g and mλ(x) = m(x, λ), ∀x ∈ g′ × g′, ∀λ ∈ gR × gR. Then mλ is a Gλ-tempered
weight with respect to the slowly varying metric gλ, uniformly with respect to λ.

Remark 6.13. Let g be a slowly varying metric on g × g and gλ(x) = g(x, λ), ∀x ∈ g′ ×
g′, ∀λ ∈ gR × gR. Then the partition of unity (ϕλν )ν in the conclusion of Proposition 4.1(b)
can be selected so that the sequences (ϕλν )ν are uniformly bounded in S1(g′ × g′), with
respect to λ ∈ gR × gR. This assertion follows from the proof of Proposition 4.1(b), since
the constant γ in (2.2) does not depend on λ.

Remark 6.14. Let g be a self-tempered metric on g× g. Then the constants C̃ and M̃ in
the conclusion of Proposition 4.1(c), corresponding to the metrics gλ can be selected the
same for all λ ∈ gR × gR. This assertion follows from the proof of Proposition 4.1(c), since
the constants γ in (2.2) and C and M in (2.3) do not depend on λ.

Proposition 6.15. Let g = g ⊕ g, g an admissible metric on g and m be a g-tempered
weight. Then for N ∈ N, sufficiently large there exists a double continuous extension of Pλ

to a map

Pλ : Smλ

(g′ × g′,gλ) → Smλg̃R−1(λ)
NdR

(g′ × g′,gλ)

and the estimates are uniform with respect to λ ∈ gR × gR.
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Proof. We shall apply Proposition 6.7. Let (ϕλν )ν be a partition of unity as in Remark 6.13.
We shall denote with C1 a constant which may depend on the constant γ in (2.2), on the
constants C and M in (2.3), on N ∈ N and on r in Proposition 4.1, but does not depend

on λ ∈ gR × gR and on ν ∈ N∗. Then ∀N ∈ N, ∀f ∈ Smλ

(g′ × g′,gλ)

|Pλ(ϕλνf)(y)| ≤ C1|ϕλνf |
g̃R−1(λ)

NdR

k (gλ)
(
1 + dλν (y)

)−N
, ∀y ∈ g′×g′, ∀λ ∈ gR×gR, ∀ν ∈ N∗.

Since m is a g tempered weight and ϕλν are uniformly bounded in S1(g′ × g′), with respect
to λ ∈ gR × gR and to ν ∈ N∗ , we have

mλ(y)−1|Pλ(ϕλνf)(y)| ≤ C1mλ(xν)−1(1 + dλν (y))M |Pλ(ϕλνf)(y)|

≤ C1mλ(xν)−1|ϕλνf |
g̃R−1(λ)

NdR

k (gλ)(1 + dλν (y))M−N

≤ C1|ϕλνf |
mλg̃R−1(λ)

NdR

k (gλ)(1 + dλν (y))M−N

≤ C1|f |m
λg̃R−1(λ)

NdR

k (gλ)(1 + dλν (y))M−N . (6.8)

If N is sufficiently large so that∑
ν

(1 + dλν (y))M−N ≤ C0 <∞, ∀y ∈ g′ × g′, ∀λ ∈ gR × gR

then, accordingly to (6.8),∑
ν

|Pλ(ϕλνf)(y)| ≤ C1|f |m
λg̃R−1(λ)

NdR

k (gλ)mλ(y), ∀y ∈ g′ × g′, ∀λ ∈ gR × gR

and ∀f ∈ Smλ

(g′ × g′,gλ).
Therefore the operator

f 7→
(
mλ
)−1

g̃R−1(λ)−NdR

∑
ν

Pλ(ϕλνf)

is an extension of
(
mλ
)−1

g̃R(λ)−NdRPλ to a continuous operator defined on Smλ

(g′×g′,gλ)
and L∞ valued. The estimates are uniform in λ.

The uniqueness of this extension follows from Lemma 6.11 if we prove that the linear
form

Smλ

(g′ × g′,gλ) 3 f 7→
∑
ν

Pλ(Φλ
νf)(y) ∈ C

is weakly continuous ∀y ∈ g′ × g′, ∀λ ∈ gR × gR.

Let (fj)j be a bounded sequence in Smλ

(g′×g′,gλ) so that fj → f in the C∞ topology,
Mj = Mj(y, λ) be sets as in the proof of Proposition 4.1(c) and let m be the constant
in (4.3). Then(

mλ(y)
)−1

g̃R−1(λ)−NdR

∑
ν

|Pλ(ϕλν (fj − f))(y)|

≤C2

∑
ν

|ϕλν (fj − f)|m
λ

k (gλ)
(
1 + dλν (y)

)M−N
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≤C2

∑
l≥0

∑
ν∈Ml+1\Ml

|ϕλν (fj − f)|m
λ

k (gλ)(1 + l)M−N

≤C2

L∑
l=0

∑
ν∈Ml+1\Ml

|ϕλν (fj − f)|m
λ

k (gλ)

+ C2

∑
l>L

(1 + l)M+m−N .

We denoted by C2 a constant which may depend on λ and on the norms of the functions
fj also.

If we first select L sufficiently large and if we next remark that ϕλνfj → ϕλνf, ∀ν, in the

topology of Smλ

(g′ × g′,gλ) we see that∑
ν

Pλ(ϕλνfj)(y) =
∑
ν

Pλ(ϕλνf)(y).

Estimates for the derivatives of Pλf are obtained from the fact that Pλ and, consequently,
its extension, commute with differentiation.

Finally, the weak convergence is now a consequence of Lemma 6.10.

Remark 6.16. For the proof of Proposition 6.17 below we shall need a slightly different
version of Proposition 6.15. Before stating this version we have to introduce some more
notation. Starting fom this point, for j ∈ {1, . . . , R − 1} we put g(j) = g1 ⊕ · · · ⊕ gj (in

the proof of Proposition 5.1, g(j) denoted a different object) , and g(j) = gj+1 ⊕ · · · ⊕ gR.

If x = (x1, . . . xR) ∈ g and j ∈ {1, . . . , R − 1} then we put x(j) = (x1, . . . xj) and x(j) =

(xj+1, . . . , xR). Also, if g is a metric on g, then we define a metric gλ
(j)

on g(j) by the
formula

gλ
(j)

x(j)
(z(j)) = g(x(j),λ(j))(z(j), 0

(j)), ∀x(j), z(j) ∈ g(j), ∀λ(j) ∈ g(j)

and if g is an admissible metric, then ∀λ(j) = (λ
(j)
1 , λ

(j)
2 ) ∈ g(j) × g(j), ∀j ∈ {1, . . . , R − 1},

g̃j(λ
(j)) = max

(
gj(0, λ

(j)
1 )

gj(0, λ
(j)
2 )

,
gj(0, λ

(j)
2 )

gj(0, λ
(j)
1 )

)
.

The functions g(j+1) × g(j+1) 3 (0(j), λj+1) 7→ g̃j(λ
(j)) are (g ⊕ g)λ

(j+1)

tempered weights,

uniformly with respect to λ(j+1) and g × g 3 (0(j), λ
(j)) 7→ g̃j(λ

(j)) are g ⊕ g tempered

weights. In this context, (g ⊕ g)λ
(R)

= g ⊕ g.
On C∞

0 (g(j) × g(j)), for λ(j) ∈ g(j) × g(j), we define an operator Pλ(j) by the formula

Pλ(j)f(y(j)) =

∫∫
g(j)×g(j)

e−i⟨x(j),y(j)⟩f̌(x(j))e
−i⟨rj+1(x(j)),λ̃j+1⟩ dx(j), ∀f ∈ C∞

0 (g(j) × g(j)),

where rj+1(x(j)) is the projection of r(x(j)) on g(j+1).
Finally, for m a g ⊕ g tempered weight, we put

mλ(j)

(x(j)) = m((x(j), λ
(j))), ∀x(j) ∈ g(j) × g(j), ∀λ(j) ∈ g(j) × g(j).
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Then, for N sufficiently large, Pλ(j) can be extended to a continuous operator

Pλ(j) : Smλ(j)

(g(j) × g(j), (g ⊕ g)λ
(j)

) → Smλ(j)
(g̃j(λ

(j)))N (g(j) × g(j), (g ⊕ g)λ
(j)

)

and the estimates are uniform with respect to λ(j) ∈ g(j) × g(j).

Proposition 6.17. Let g be an admissible metric on g and m a g ⊕ g tempered weight.
Then the Melin operator U admits a unique weakly continuous extension

U : Sm(g× g, g ⊕ g) → C∞(g× g)

so that ∀α = (α1, α2) ∈ N2n, there exist Nα ∈ N, kα ∈ N and Cα > 0 such that

|∂αUf(x)| ≤ Cαm(x)

R−1∏
j=1

g̃j(x
(j))Nα

R∏
i1=1

gi1(x1)−di1
|α1,i1

|
R∏

i2=1

gi2(x2)−di2
|α2,i2

||f |mkα
(g),

(6.9)
for all x ∈ g× g and for all f ∈ Sm(g× g, g ⊕ g).

Proof. We shall prove (6.9) by induction on j. We shall denote with Uj the Melin operator
defined on C∞

0 (g(j) × g(j)).
If j = 1, then g(1) = g1 is an abelian algebra, U1 = I and there is nothing to prove. Let

us assume that the assertion is true for j and let us prove it for j+1. For f ∈ Sm(g×g, g⊕g)
and λ(j) ∈ g(j) let us put

fλ(j)(x(j)) = f(x(j), λ
(j)), ∀x(j) ∈ g(j) × g(j).

Then

fλ(j) ∈ Smλ(j)

(g(j) × g(j), (g ⊕ g)λ
(j)

)

uniformly with respect to λ(j).
Therefore, accordingly to Remark 6.16, to the induction hypothesis and to the formula

Uj+1f(x(j), λ
(j)) = Uj(Pλ(j)fλ(j))(x(j)), ∀(x(j), λ

(j)) ∈ g× g

we obtain that ∀α(j) = (α1,(j), α2,(j)) ∈ N
∑j

k=1 2nk , there exist Nα(j)
, kα(j)

∈ N and Cα(j)
> 0

so that

|∂α(j)Uj+1f(x(j),λ
(j))| ≤ Cα(j)

mλ(j)

(x(j))

j∏
k=1

g̃k((x(j), λ
(j))(k))

Nα(j)

×
j+1∏
i1=1

gk(x1,(j), λ
(j)
1 )−di1

|α1,i1
|
j+1∏
i2=1

gk(x2,(j), λ
(j)
2 )−di2

|α2,i2
||f |mkα(j)

(g),

for all x(j) ∈ g(j)× g(j) and for all f ∈ Smλ(j+1)

(g(j+1)× g(j+1), (g⊕ g)λ
(j+1)

). The estimates

are uniform with respect to λ(j).
We have to estimate the derivatives of Uj+1f(·, λ(j)) with respect to λj+1 also. In

order to simplify the notations we shall assume that gj+1 has dimension 1 and λj+1 =



M. Pascu 87

(λ1,j+1, λ2,j+1). We consider only the derivative of order 1 with respect to λ1,j+1. Similar
estimates for derivatives of greater order will follow by induction on the order of derivation.
We have

∂

∂λ1,j+1

Uj+1f(y(j), λ
(j)) =

∂

∂λ1,j+1

Uj(Pλ(j)f(·, λ(j)))(y(j)) = Uj(
∂

∂λ1,j+1

Pλ(j)f(·, λ(j)))(y(j))

and

∂

∂λ1,j+1

Pλ(j)f(·,λ(j))(y(j))

=
∂

∂λ1,j+1

∫∫
g(j)×g(j)

e−i⟨x(j),y(j)⟩f(x(j) ,̌ λ
(j))e−i⟨rj+1(x(j)),λ̃j+1⟩ dx(j)

=

∫∫
g(j)×g(j)

e−i⟨x(j),y(j)⟩ ∂

∂λ1,j+1

f(x(j) ,̌ λ
(j))e−i⟨rj+1(x(j)),λ̃j+1⟩ dx(j)

− 1

2

∫∫
g(j)×g(j)

e−i⟨x(j),y(j)⟩f(x(j) ,̌ λ
(j))rj+1(x(j))e

−i⟨rj+1(x(j)),λ̃j+1⟩ dx(j)

=Pλ(j)(
∂

∂λ1,j+1

f)(·, λ(j))(y(j)) −
1

2
Pλ(j)(rj+1(−iD(j))f(·, λ(j)))(y(j))

=φf
1,λ(j)(y(j)) + φf

2,λ(j)(y(j)).

We denoted by rj+1(x(j)) the sum of terms of homogeneous degree dj+1 from rj+1(x(j)).
Now the operators

∂

∂λ1,j+1

: Smλ(j+1)

(g(j+1) × g(j+1),(g ⊕ g)λ
(j+1)

) →

Smλ(j+1)
(gj+1(·,λ(j+1)))−dj+1

(g(j+1) × g(j+1), (g ⊕ g)λ
(j+1)

)

are continuous and the estimates are uniform with respect to λ(j+1). Therefore, using
again the induction hypothesis and Remark 6.16, we obtain that ∀α(j) = (α1,(j), α2,(j)) ∈
N

∑j
k=1 2nk , there exist Nα(j)

, k′α(j)
∈ N and C ′

α(j)
> 0 so that

∣∣∣∣( ∂

∂λ1,j+1

∂α(j)Ujφ
f
1,λ(j)

)
(x(j))

∣∣∣∣ ≤C ′
α(j)

mλ(j)

(x(j))

j∏
k=1

g̃k((x(j), λ
(j))(k))

Nα(j)

×
j+1∏
i1=1

gk(x1,(j))
−di1 |α1,i1 |

j+1∏
i2=1

gk(x2,(j))
−di2 |α2,i2 |

× (gj+1(x1,(j), λ
(j)
1 ))−dj+1 |f |mk′

α(j)

(g),

and the estimates are uniform with respect to λ(j).
Since g is an admissible metric, we obtain, as in the final part of the proof of Propo-

sition 6.7, that ∀α(j) = (α1,(j), α2,(j)) ∈ N
∑j

k=1 2nk , there exist Nα(j)
, k”α(j)

∈ N and
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C”α(j)
> 0 so that∣∣∣∣( ∂

∂λ1,j+1

∂α(j)Ujφ
f
2,λ(j)

)
(x(j))

∣∣∣∣ ≤C”α(j)
mλ(j)

(x(j))

j∏
k=1

g̃k((x(j), λ
(j))(k))

Nα(j)

×
j+1∏
i1=1

gk(x1,(j))
−di1 |α1,i1 |

j+1∏
i2=1

gk(x2,(j))
−di2 |α2,i2 |

× (gj+1(x1,(j), λ
(j)
1 ))−dj+1 g̃j(λ

(j))dj |f |mk”α(j)
(g)

and the estimates are uniform with respect to λ(j).
The weak continuity follows from the induction hypothesis and from Proposition 6.15.

7 Symbolic calculus and L2− continuity

We shall prove first the continuity of the operation of composition of two symbols.

Theorem 7.1. Let g be an admissible metric on the homogeneous Lie group g and let m1

and m2 be two g-tempered weights. Then the product

C∞
0 (g) × C∞

0 (g) 3 (a, b) 7→ a#b = (ǎ ∗ b̌)̂ ∈ S(g)

admits a unique double continuous extension

# : Sm1(g, g) × Sm2(g, g) → Sm1m2(g, g).

Proof. We have

(a#b)(x) = U(ˆ̌a ∗ ˆ̌b)(x, x) = U(a⊗ b)(x, x), ∀x ∈ g.

For the estimation of the derivatives of a#b we shall apply Proposition 6.17. Let us remark
that if x1 = x2 ∈ g, then g̃j(x

(j)) = 1, ∀j ∈ {1, . . . , R − 1}. Therefore ∀α ∈ Nn there exist
kα ∈ N and Cα > 0 such that

|∂αU(a⊗ b)(x, x)| ≤ Cαm1(x)m2(x)

R∏
i=1

gi(x)−di|αi||a|m1

kα
(g)|b|m2

kα
(g),

for all x ∈ g, a ∈ Sm1(g, g) and b ∈ Sm2(g, g).

We pass now to the proof of the L2-continuity of the pseudodifferential operators for
the metric q on g. Remark that q is clearly an admissible metric. Let ϕν be a partition of
unity for q as in Proposition 4.1. We put Φµν(x) = ϕµ(x1)ϕν(x2), ∀x = (x1, x2) ∈ g × g.
Since q is a self-tempered varying metric, by (2.5) we have

1 + qxν
(xµ − xν) ≤ C(1 + qy(xµ − y))M+1(1 + qy(xν − y)), ∀ν, µ ∈ N∗, ∀y ∈ g. (7.1)

We shall use the notation q = q ⊕ q.
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Lemma 7.2. If

fµν(y) = U(Φµνf)(y, y), ∀ν, µ ∈ N∗, ∀y ∈ g, ∀f ∈ S1(g× g,q).

then ∀N ∈ N, ∃k ∈ N, ∃C > 0 so that

‖f̌µν‖L1(g) ≤ C|f |1k(q)(1 + qxν
(xµ − xν))−N , ∀ν, µ ∈ N∗.

Proof. Ifm and n are two q-tempered weights, then m⊗n is a q-tempered weight. Therefore,
according to Example 2.9, the function

mµν(y) = (1 + qy1
(xµ − y1))−N(M+1)(1 + qy2

(xν − y2))−N , ∀y = (y1, y2) ∈ g× g

is a q-tempered q-weight. If y1 ∈ Bµ and y2 ∈ Bν , then

qxµ(y1 − xµ) < γ, qxν (y2 − xν) < γ

and therefore, by (2.1)
qy1

(y1 − xµ) < 1, qy2
(y2 − xµ) < 1.

Hence m−1
µν is uniformly bounded on the support of Φµν and, consequently, there exists

some constant C > 0 so that

|Φµνf |
mµν

k (q) ≤ C|Φµνf |1k(q).

. Therefore, according to Proposition 4.1,

Φµνf ∈ Smµν (g× g,q)

and the estimates are uniform with respect to µ and ν. More precisely, for all k ∈ N there
exists a positive constant Ck so that

|Φµνf |
mµν

k (q) ≤ Ck|f |1k(q), ∀µ, ν ∈ N∗, ∀f ∈ S1(g× g,q).

Therefore, if we apply Proposition 6.17, we obtain that ∀α = (α1, α2) ∈ N2n, there exist
Nα ∈ N, kα ∈ N and Cα > 0 such that

|∂αU(Φµνf)(x)| ≤Cαmµν(x)

R−1∏
j=1

q̃j(x
(j))Nα

R∏
i1=1

qi1(x1)−di1 |α1,i1 |

×
R∏

i2=1

qi2(x2)−di2 |α2,i2 ||f |1kα
(q),

for all x ∈ g× g, for all µ, ν ∈ N∗ and for all f ∈ S1(g× g, q ⊕ q).
As we already remarked, q̃j(y

(j), y(j)) = 0, ∀y ∈ g. Hence for all α ∈ Nn there exist
kα ∈ N and Cα > 0 so that

|∂αfµν(y)| ≤ Cαmµν(y, y)

R∏
i=1

qi(y)−di|αi||f |1kα
(q) ≤ Cαmµν(y, y)|f |1kα

(q)
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for all y ∈ g, for all µ, ν ∈ N∗ and for all f ∈ S1(g× g, q ⊕ q).
By (7.1)

mµν(y, y) ≤ C(1 + qxν
(xµ − xν))−N

for all y ∈ g, for all µ, ν ∈ N∗. So, finally we obtain that for all k ∈ N there exist k1 ∈ N
and Ck > 0 so that

|∂αfµν(y)| ≤ Ck|f |1k1
(q)(1 + qxν (xµ − xν))−N

for all y ∈ g and |α| ≤ k. If k is large enough, the conclusion of the lemma follows from
Sobolev inequality, as in the proof of Proposition 6.7.

Theorem 7.3. Let a ∈ S1(g, q). Then the linear operator C∞
0 (g) 3 f 7→ Af = f ∗ǎ ∈ L2(g)

extends to a unique bounded mapping of L2(g). More precisely, there exist k ∈ N and C > 0
so that

‖Af‖L2(g) ≤ C|a|1k(q)‖f‖L2(g), ∀f ∈ C∞
0 (g).

Proof. We shall apply Cotlar’s lemma: if A1, . . . , Ak are bounded operators in a Hilbert
space H such that, for some constant M ,

∑j
ν=1 ‖A∗

µAν‖1/2 ≤ M and
∑j

ν=1 ‖AµA
∗
ν‖1/2 ≤

M , then ‖
∑j

µ=1Aµ‖ ≤M .
Let

Aνf = f ∗ (ϕνa)̌, ∀f ∈ L2(g).

The operators Aν are bounded operators in L2(g) since ϕνa ∈ C∞
0 (g) and (ϕνa)̌ ∈ S(g) ⊂

L1(g). The adjoint of Aν is given by the formula A∗
νf = f ∗ (ϕν ā)̌. Therefore, if we apply

Lemma 6.2, we obtain that

A∗
µAνf = f ∗ ((ϕνa)̌ ∗ (ϕµā) )̌ = f ∗ (U(ϕνa⊗ ϕµā)∆)ˇ= f ∗ ((a⊗ ā)νµ) .̌

For a function h defined on g× g we put h∆(y) = h(y, y).
From Lemma 7.2 we obtain that ∀N ∈ N, ∃k ∈ N, ∃C > 0 so that

‖A∗
µAν‖ ≤ C

(
|a|1k(q)

)2
(1 + qxν

(xµ − xν))−N , ∀ν, µ ∈ N∗.

Similar estimates hold for AµA
∗
ν . So, choosing N sufficiently large, we obtain from Propo-

sition 4.1 that

j∑
ν=1

‖A∗
µAν‖1/2 ≤ C|a|1k(q) and

j∑
ν=1

‖AµA
∗
ν‖1/2 ≤ C|a|1k(q), ∀j ∈ N (7.2)

for some C > 0 and some k ∈ N.
On the other hand

a =
∑
ν

ϕνa

in the sense of weak convergence in S1(g, q) so that, by Theorem 7.1,

Af =
∑
ν

Aνf, ∀f ∈ C∞
0 (g) (7.3)

in the sense of weak convergence in S1(g, q) of the Fourier transforms.
Cotlar’s lemma, (7.2), and (7.3) conclude the proof.
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