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On the area and the lattice diameter of lattice triangles
by

Călin Popescu

Abstract

Given an integer n ≥ 2, let f(n) be the largest area a lattice triangle of lattice
diameter at most n may have. We prove that, if n ≥ 4, then f(n) ≥ 1

2
(n2 + 3), and

f(n) ≥ 19
32
n2 > 1

2
(n2 + 3) for infinitely many n.

As a corollary, given any non-negative integer N , the largest possible area of a
lattice triangle of lattice diameter n is greater than 19

32
(n+N)2 for infinitely many n.
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1 Introduction

A lattice point is one in the Cartesian plane whose coordinates are both integral. A convex
lattice polygon is the convex hull of at least three non-collinear lattice points. The lattice
diameter of a convex lattice polygon is the maximal number of collinear lattice points
contained in that polygon [3, 4].

A convex lattice polygon P of lattice diameter n contains at most n2 lattice points
[2, 3, 5]. By Pick’s area formula, the area of P is then at most n2 − 5

2 . The area maxima
are all known for n in the range 2 through 5 [1, 3]. If n ≥ 6, a maximal area P has at least
four vertices and its area is at most n2 − 3 [1, 3]; moreover, the maximal area is at least
n2 − 5, and it has been conjectured that this would be the hoped for maximum [3].

Our purpose here is to deal with the largest possible area of a lattice triangle of lattice
diameter at most n. Let Tn be the collection of all such triangles. For every triangle T
in Tn, let f(n, T ) denote the area of T , and let f(n) = maxT∈Tn

f(n, T ). By the preceding,
f(n) ≤ n2 − 5

2 or f(n) ≤ n2 − 3 if n ≥ 6. To the best of our knowledge, these are the only
known upper bounds and we failed to provide any better. Thus, we turned to lower bounds
to prove that, if n ≥ 4, then f(n) ≥ 1

2 (n
2 + 3), and f(n) ≥ 19

32n
2 > 1

2 (n
2 + 3) for infinitely

many n. (This latter shows that, if f(n) ≤ an2 + bn+ c for all sufficiently large integers n,
then a ≥ 19

32 > 1
2 .)

As a corollary, given any non-negative integer N , the largest possible area of a lattice
triangle of lattice diameter n is greater than 19

32 (n+N)2 for infinitely many n.

2 The lower bounds

Theorem. If n ≥ 4, then f(n) ≥ 1
2 (n

2 + 3). Moreover, f(n) ≥ 19
32n

2 > 1
2 (n

2 + 3) for
infinitely many n.
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Proof. The proof of the first statement is part of the proof of the second, so we proceed
to prove this latter. The idea is to consider a sequence of homothetic images of a suitable
triangle and show that each lies in the desired collection.

Fix an integer n ≥ 4. For every positive integer k, let nk = kn, and let Tk be the triangle
with vertices at O = (0, 0), Ak = (k(n+ 1), 2k) and Bk = (k(n− 1), k(n+ 1)). Clearly, Tk

is the factor k homothetic image of T1 from O. The area of Tk is

1

2

(
1 +

3

n2

)
n2
k.

We will show that Tk is a member of Tnk
, so f(nk) ≥ f(nk, Tk) = 1

2

(
1 + 3

n2

)
n2
k. In

particular, f(n) = f(n1) ≥ f(n1, T1) = 1
2 (n

2
1 + 3) = 1

2 (n
2 + 3). This establishes the first

statement.
For the second, notice that the coefficient of n2

k is maximised at n = 4, where it achieves
the value 19

32 . In this case, nk = 4k, and f(nk) ≥ f(nk, Tk) = 19
32n

2
k > 1

2 (n
2
k + 3) for all

k ≥ 2, proving the second statement.
To show that Tk is a member of Tnk

, let (a, b) and (a′, b′) be distinct lattice points
in Tk. Since the number of lattice points along the closed segment joining (a, b) to (a′, b′)
is gcd(a− a′, b− b′) + 1, we are to prove that gcd(a− a′, b− b′) < nk = kn.

To this end, we will show that, if one of the absolute values |a−a′|, |b−b′| is greater than
or equal to kn, then the other is positive and smaller than kn. Only the case |a− a′| ≥ kn
will be considered; with minor computational changes, the case |b − b′| ≥ kn is dealt with
similarly.

Let |a − a′| ≥ kn. Then one of the points, say (a, b), lies on one of the verticals x = i,
i = 0, 1, . . . , k, and the other, (a′, b′), lies on one the verticals x = kn + j, j = a, . . . , k.
Notice that a′ ≥ a(n+ 1); equality holds here if and only if a = k and a′ = k(n+ 1).

The vertical x = a crosses OAk and OBk at heights 2a/(n+ 1) and (n+ 1)a/(n− 1) ≥
2a/(n+ 1), respectively, so 2a/(n+ 1) ≤ b ≤ a(n+ 1)/(n− 1).

The vertical x = a′ crosses OAk and AkBk at heights 2a′/(n+ 1) and

1

2

(
k(n2 + 3)− a′(n− 1)

)
≥ 2a′

n+ 1
,

respectively, so b′ ≥ 2a′/(n+ 1) and

b′ ≤ 1

2

(
k(n2 + 3)− a′(n− 1)

)
≤ 1

2

(
k(n2 + 3)− kn(n− 1)

)
=

1

2
k(n+ 3) < kn,

on account of a′ ≥ kn and n ≥ 4. Hence b′ − b ≤ b′ < kn.
Finally, recall that a′ ≥ a(n+ 1), to bound b′ − b from below:

b′ − b ≥ 2a′

n+ 1
− (n+ 1)a

n− 1
≥ 2a′

n+ 1
− a′

n− 1
=

a′(n− 3)

n− 1
> 0,

on account of a′ ≥ kn > 0 and n ≥ 4. This completes the argument.

Let T ′
d be the subcollection of Td consisting of all triangles of lattice diameter d, and let

f ′(d) = maxT∈T ′
d
f(d, T ).
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Corollary. Given any non-negative integer N , f ′(d) > 19
32 (d+N)2 for infinitely many d.

Proof. In the above setting, each Tk has exactly three lattice diameters: One along the
horizontal through Ak, one along the vertical through Bk, and one along the first bisectrix.
The vertical through Bk crosses OAk at height 2k(n−1)/(n+1), so the lattice diameter dk
of Tk is

dk =

⌊
k(n+ 1)− 2

n+ 1
k(n− 1)

⌋
+ 1 =

(
1− 1

n

)
nk +

⌊
4nk

n(n+ 1)

⌋
+ 1.

It is then easily seen that

n2 + 3

n(n+ 1)
nk ≤ dk ≤ n2 + 3

n(n+ 1)
nk + 1.

These inequalities show that dk+1 − dk > n− 2 ≥ 2, so the dk form a strictly increasing
sequence of positive integers.

Given any non-negative integer N , the inequality on the right shows that dk < nk −N
for all but finitely many indices k, e. g., for all k > 5(N + 1).

Finally, set n = 4, to get f ′(dk) ≥ f(dk, Tk) = f(nk, Tk) = 19
32n

2
k > 19

32 (dk + N)2 for
all large enough k. The conclusion then follows by recalling that the dk form a strictly
increasing sequence of positive integers.

Remark. If n = 2or 3, the pattern yields initial triangles of lattice diameter 3, respec-
tively 4, and too small an area. The subsequent triangles provide weaker area lower bounds.

If n = 2, then f(2) = 3
2 = 22 − 5

2 < 1
2 (2

2 + 3) is achieved by the triangle with vertices
at (0, 0), (1, 0) and (2, 3).

If n = 3, the triangle with vertices at (0, 0), (2, 0) and (3, 4) has lattice diameter 3 (there
are four such) and area 4 < 1

2 (3
2 + 3). Trying to maximise area over T3, we gathered quite

strong evidence supporting the claim: f(3) = f ′(3) = 4 and the maximal area triangles are
all affine unimodular images of the one above.

We end with a word on convex lattice polygons. A lattice triangulation of such a polygon
is one whose triangles are all lattice triangles (e. g., by non-crossing diagonals). Let P be
a lattice polygon of lattice diameter at most n. Then every lattice triangulation of P
contains at most one triangle of area at least 1

2 (n
2+3) and hence at most one of area f(n).

Otherwise, the area of P would be at least n2 + 3, contradicting the area upper bound
n2 − 5

2 mentioned in the introduction.
Finally, let Pk be the parallelogram obtained from Tk by reflecting this latter across the

midpoint of one of its sides. The area of Pk is
(
1 + 3

n2

)
n2
k. On the other hand, letting dk

denote the lattice diameter of Pk, the area of Pk is at most d2k − 5
2 . Consequently, if

0 < a <
(
1 + 3

n2

)1/2
, then the dk − ank form an unbounded sequence.
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