On the area and the lattice diameter of lattice triangles by CĂLIN POPESCU

Abstract

Given an integer $n \ge 2$, let f(n) be the largest area a lattice triangle of lattice diameter at most n may have. We prove that, if $n \ge 4$, then $f(n) \ge \frac{1}{2}(n^2 + 3)$, and $f(n) \ge \frac{19}{32}n^2 > \frac{1}{2}(n^2 + 3)$ for infinitely many n.

As a corollary, given any non-negative integer N, the largest possible area of a lattice triangle of lattice diameter n is greater than $\frac{19}{32}(n+N)^2$ for infinitely many n.

Key Words: Lattice diameter, lattice triangles.

2020 Mathematics Subject Classification: Primary 52C05; Secondary 11H06.

1 Introduction

A *lattice point* is one in the Cartesian plane whose coordinates are both integral. A *convex lattice polygon* is the convex hull of at least three non-collinear lattice points. The *lattice diameter* of a convex lattice polygon is the maximal number of collinear lattice points contained in that polygon [3, 4].

A convex lattice polygon P of lattice diameter n contains at most n^2 lattice points [2,3,5]. By Pick's area formula, the area of P is then at most $n^2 - \frac{5}{2}$. The area maxima are all known for n in the range 2 through 5 [1, 3]. If $n \ge 6$, a maximal area P has at least four vertices and its area is at most $n^2 - 3$ [1, 3]; moreover, the maximal area is at least $n^2 - 5$, and it has been conjectured that this would be the hoped for maximum [3].

Our purpose here is to deal with the largest possible area of a lattice triangle of lattice diameter at most n. Let \mathcal{T}_n be the collection of all such triangles. For every triangle T in \mathcal{T}_n , let f(n,T) denote the area of T, and let $f(n) = \max_{T \in \mathcal{T}_n} f(n,T)$. By the preceding, $f(n) \leq n^2 - \frac{5}{2}$ or $f(n) \leq n^2 - 3$ if $n \geq 6$. To the best of our knowledge, these are the only known upper bounds and we failed to provide any better. Thus, we turned to lower bounds to prove that, if $n \geq 4$, then $f(n) \geq \frac{1}{2}(n^2 + 3)$, and $f(n) \geq \frac{19}{32}n^2 > \frac{1}{2}(n^2 + 3)$ for infinitely many n. (This latter shows that, if $f(n) \leq an^2 + bn + c$ for all sufficiently large integers n, then $a \geq \frac{19}{32} > \frac{1}{2}$.)

As a corollary, given any non-negative integer N, the largest possible area of a lattice triangle of lattice diameter n is greater than $\frac{19}{32}(n+N)^2$ for infinitely many n.

2 The lower bounds

Theorem. If $n \ge 4$, then $f(n) \ge \frac{1}{2}(n^2 + 3)$. Moreover, $f(n) \ge \frac{19}{32}n^2 > \frac{1}{2}(n^2 + 3)$ for infinitely many n.

Proof. The proof of the first statement is part of the proof of the second, so we proceed to prove this latter. The idea is to consider a sequence of homothetic images of a suitable triangle and show that each lies in the desired collection.

Fix an integer $n \ge 4$. For every positive integer k, let $n_k = kn$, and let T_k be the triangle with vertices at O = (0,0), $A_k = (k(n+1), 2k)$ and $B_k = (k(n-1), k(n+1))$. Clearly, T_k is the factor k homothetic image of T_1 from O. The area of T_k is

$$\frac{1}{2}\left(1+\frac{3}{n^2}\right)n_k^2.$$

We will show that T_k is a member of \mathcal{T}_{n_k} , so $f(n_k) \ge f(n_k, T_k) = \frac{1}{2} \left(1 + \frac{3}{n^2}\right) n_k^2$. In particular, $f(n) = f(n_1) \ge f(n_1, T_1) = \frac{1}{2}(n_1^2 + 3) = \frac{1}{2}(n^2 + 3)$. This establishes the first statement.

For the second, notice that the coefficient of n_k^2 is maximised at n = 4, where it achieves the value $\frac{19}{32}$. In this case, $n_k = 4k$, and $f(n_k) \ge f(n_k, T_k) = \frac{19}{32}n_k^2 > \frac{1}{2}(n_k^2 + 3)$ for all $k \ge 2$, proving the second statement.

To show that T_k is a member of \mathcal{T}_{n_k} , let (a, b) and (a', b') be distinct lattice points in T_k . Since the number of lattice points along the closed segment joining (a, b) to (a', b')is gcd(a - a', b - b') + 1, we are to prove that $gcd(a - a', b - b') < n_k = kn$.

To this end, we will show that, if one of the absolute values |a-a'|, |b-b'| is greater than or equal to kn, then the other is positive and smaller than kn. Only the case $|a-a'| \ge kn$ will be considered; with minor computational changes, the case $|b-b'| \ge kn$ is dealt with similarly.

Let $|a - a'| \ge kn$. Then one of the points, say (a, b), lies on one of the verticals x = i, $i = 0, 1, \ldots, k$, and the other, (a', b'), lies on one the verticals x = kn + j, $j = a, \ldots, k$. Notice that $a' \ge a(n+1)$; equality holds here if and only if a = k and a' = k(n+1).

The vertical x = a crosses OA_k and OB_k at heights 2a/(n+1) and $(n+1)a/(n-1) \ge 2a/(n+1)$, respectively, so $2a/(n+1) \le b \le a(n+1)/(n-1)$.

The vertical x = a' crosses OA_k and A_kB_k at heights 2a'/(n+1) and

$$\frac{1}{2} \left(k(n^2 + 3) - a'(n-1) \right) \ge \frac{2a'}{n+1},$$

respectively, so $b' \ge 2a'/(n+1)$ and

$$b' \le \frac{1}{2} \left(k(n^2 + 3) - a'(n - 1) \right) \le \frac{1}{2} \left(k(n^2 + 3) - kn(n - 1) \right) = \frac{1}{2} k(n + 3) < kn,$$

on account of $a' \ge kn$ and $n \ge 4$. Hence $b' - b \le b' < kn$.

Finally, recall that $a' \ge a(n+1)$, to bound b' - b from below:

$$b'-b \geq \frac{2a'}{n+1} - \frac{(n+1)a}{n-1} \geq \frac{2a'}{n+1} - \frac{a'}{n-1} = \frac{a'(n-3)}{n-1} > 0,$$

on account of $a' \ge kn > 0$ and $n \ge 4$. This completes the argument.

Let \mathcal{T}'_d be the subcollection of \mathcal{T}_d consisting of all triangles of lattice diameter d, and let $f'(d) = \max_{T \in \mathcal{T}'_d} f(d, T)$.

Corollary. Given any non-negative integer N, $f'(d) > \frac{19}{32}(d+N)^2$ for infinitely many d.

Proof. In the above setting, each T_k has exactly three lattice diameters: One along the horizontal through A_k , one along the vertical through B_k , and one along the first bisectrix. The vertical through B_k crosses OA_k at height 2k(n-1)/(n+1), so the lattice diameter d_k of T_k is

$$d_k = \left\lfloor k(n+1) - \frac{2}{n+1}k(n-1) \right\rfloor + 1 = \left(1 - \frac{1}{n}\right)n_k + \left\lfloor \frac{4n_k}{n(n+1)} \right\rfloor + 1.$$

It is then easily seen that

$$\frac{n^2+3}{n(n+1)} n_k \le d_k \le \frac{n^2+3}{n(n+1)} n_k + 1.$$

These inequalities show that $d_{k+1} - d_k > n - 2 \ge 2$, so the d_k form a strictly increasing sequence of positive integers.

Given any non-negative integer N, the inequality on the right shows that $d_k < n_k - N$ for all but finitely many indices k, e.g., for all k > 5(N + 1).

Finally, set n = 4, to get $f'(d_k) \ge f(d_k, T_k) = f(n_k, T_k) = \frac{19}{32}n_k^2 > \frac{19}{32}(d_k + N)^2$ for all large enough k. The conclusion then follows by recalling that the d_k form a strictly increasing sequence of positive integers.

Remark. If n = 2 or 3, the pattern yields initial triangles of lattice diameter 3, respectively 4, and too small an area. The subsequent triangles provide weaker area lower bounds.

If n = 2, then $f(2) = \frac{3}{2} = 2^2 - \frac{5}{2} < \frac{1}{2}(2^2 + 3)$ is achieved by the triangle with vertices at (0,0), (1,0) and (2,3).

If n = 3, the triangle with vertices at (0, 0), (2, 0) and (3, 4) has lattice diameter 3 (there are four such) and area $4 < \frac{1}{2}(3^2 + 3)$. Trying to maximise area over \mathcal{T}_3 , we gathered quite strong evidence supporting the claim: f(3) = f'(3) = 4 and the maximal area triangles are all affine unimodular images of the one above.

We end with a word on convex lattice polygons. A *lattice triangulation* of such a polygon is one whose triangles are all lattice triangles (e.g., by non-crossing diagonals). Let P be a lattice polygon of lattice diameter at most n. Then every lattice triangulation of Pcontains at most one triangle of area at least $\frac{1}{2}(n^2+3)$ and hence at most one of area f(n). Otherwise, the area of P would be at least $n^2 + 3$, contradicting the area upper bound $n^2 - \frac{5}{2}$ mentioned in the introduction.

Finally, let P_k be the parallelogram obtained from T_k by reflecting this latter across the midpoint of one of its sides. The area of P_k is $\left(1 + \frac{3}{n^2}\right)n_k^2$. On the other hand, letting d_k denote the lattice diameter of P_k , the area of P_k is at most $d_k^2 - \frac{5}{2}$. Consequently, if $0 < a < \left(1 + \frac{3}{n^2}\right)^{1/2}$, then the $d_k - an_k$ form an unbounded sequence.

References

[1] E. ALARCON, Convex lattice polygons, Ph.D. Dissertation, University of Illinois at Urbana-Champaign (1994).

- [2] E. ALARCON, An extremal result on convex lattice polygons, *Discr. Math.* 190 (1998), 227-234.
- [3] I. BÁRÁNY, Z. FÜREDI, On the lattice diameter of a convex polygon, *Discr. Math.* 241 (2001), 41-50.
- [4] C. E. CORZATT, Some extremal problems of number theory and geometry, Ph.D. Dissertation, University of Illinois at Urbana-Champaign (1974).
- [5] S. RABINOWITZ, A theorem about collinear lattice points, Utilitas Math. 36 (1986), 93-95.

Received: 09.06.2023 Accepted: 04.09.2023

> Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, RO-70700, Bucharest, Romania E-mail: calin.popescu@imar.ro