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Abstract

Let {x, y, w, z} ⊂ Rd. If conv{x, y, w, z} is a non-degenerate rectangle, then we
call the set {x, y, w, z} a rectangular quadruple. Let M ⊂ Rd with cardM ≥ 4. If, for
any x, y ∈ M , there exists a rectangular quadruple {x, y, w, z} ⊂ M , we say that M
is rq-convex and the pair x, y have the rq-property in M . In this paper, we consider
rq-convexity of lattice graphs which are in the planar square and triangular lattices
and the cubic lattice in 3-space.
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1 Introduction

In 1974, the third author proposed at the meeting on Convexity in Oberwolfach the inves-
tigation of the following general convexity concept. Let F be a family of sets in Rd (always
d ≥ 2). A set M ⊂ Rd is called F-convex, if for any pair of distinct points x, y ∈ M , there
is a set F ∈ F , such that x, y ∈ F and F ⊂ M [1].

Blind, Valette and the third author [1], and also Böröczky, Jr. [2] investigated the
rectangular convexity, the case when F is the family of all non-degenerate rectangles. Mag-
azanik and Perles [4] studied staircase connectedness. The third author [10] introduced the
right convexity. Then the second and the third author [9] [8] investigated the right triple
convexity. Li and the last two authors [3] dealt with the right quadruple convexity, abbre-
viated as rq-convexity. Wang, Nie and the last two authors studied the poidge-convexity
and the thin right triangle convexity (see [7], [5]). All these concepts are particular cases
of F-convexity.

This paper is about the rq-convexity in lattice graphs. The lattices which will be
considered are the planar square and triangular lattices and the cubic lattice in 3-space.

2 Definitions

For a set M ⊂ Rd, we denote by convM its convex hull, by M its affine hull and by
clM, intM, bdM its closure, relative interior and relative boundary, which means in the
topology of M .

Put x1x2 . . . xn = conv{x1, x2, . . . , xn}, for x1, . . . , xn ∈ Rd. Thus, for distinct points
x, y ∈ Rd, xy denotes the line-segment from x to y, and xy the line through x, y; let Hxy be
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the hyperplane through x orthogonal to xy; the hypersphere with a diameter xy is denoted
by Cxy.

A diameter of a closed set M ⊂ Rd is a line-segment ab such that ∥a−b∥ = sup{∥x−y∥ :
x, y ∈ M} and a, b ∈ M . We write diamM = ∥a− b∥.

For any two sets H1, H2 ⊂ Rd, H1 ∥ H2 means that H1 is parallel to H2, and H1 ⊥ H2

means that H1 and H2 are orthogonal.
A set of four points {w, x, y, z} ⊂ Rd is called a rectangular quadruple, if wxyz is a

non-degenerate rectangle.
Let M ⊂ Rd with cardM ≥ 4. If, for x, y ∈ M , there exists a rectangular quadruple

{w, x, y, z} ⊂ M , we say that x, y have the rq-property in M . If any pair of points in M
have the rq-property, then we call the set M rq-convex.

If there exists a point k ∈ M such that for any x ∈ M , k, x enjoy the rq-property in M ,
then M is an rq-starshaped set. The set of points in M which can play the role of k form
the kernel of M .

3 rq-Convexity of square lattice graphs

Consider the norm ∥(q1, , q2, . . . , qd)∥m = max{|q1|, |q2|, . . . , |qd|}, defining in Zd the discs
of radius n ∈ N

Q(n) = {(x1, x2, . . . , xd) ∈ Zd : ∥(x1, x2, . . . , xd)∥m ≤ n},

centred at the origin 0. For d = 2, Li, Yuan and Zamfirescu [3] proved that, besides Q(n),
the set Q(n) \ {0} is rq-convex, while Q(n) \Q(n− 2) and Q(n) \Q(n− 1) (n ≥ 3) are not.

We remark that, however, for any 1 ≤ i ≤ n − 1, the set Q(n) \ Q(i) is rq-starshaped.
The four points (n, n), (n,−n), (−n, n), (−n,−n), are in the kernel.

Now, we consider subsets of Q(n), for d ≥ 3.

Theorem 1. For any 0 ≤ i ≤ n− 1, the set Q(n) \Q(i) in Zd (d ≥ 3) is rq-convex.

Proof. Let x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) be two points in Q = Q(n) \Q(i).
Case 1. x1 ̸= y1 and xj = yj (j = 2, . . . , d).
Choose s = (x1, s2, . . . , sd), t = (y1, s2, . . . , sd) ∈ Q such that (s2, . . . , sd) ̸= (x2, . . . , xd).
Case 2. x1 ̸= y1 and x2 ̸= y2.
For some j ∈ {1, 2}, if |xj |, |yj | ≤ i or |xj |, |yj | > i, then take s = (x1, yj , x3, . . . , xd), t =

(y1, xj , y3, . . . , yd).
If |x1|, |y2| ≤ i and |x2|, |y1| > i, then consider xk, yk (k ̸= 1, 2). If there is some k

satisfying xk ̸= yk, then choose s = (x1, x2, . . . , yk, . . . , xd), t = (y1, y2, . . . , xk, . . . , yd). If
xk = yk = p for all k, then put s = (x1, x2, q, . . . , q),
t = (y1, y2, q, . . . , q), where q ̸= p and |q| ≤ n.

In all cases, {x, y, s, t} ⊂ Q is a rectangular quadruple; so, x, y enjoy the rq-property in
Q.

In R3, Q(n) \ Q(i) (0 ≤ i ≤ n − 1) determines the sets ∪{ab ⊂ R3 : ∥a − b∥ = 1, a, b ∈
Q(n) \ Q(i)} and ∪{abcd ⊂ R3 : abcd is a unit square, a, b, c, d ∈ Q(n) \ Q(i)}; these sets
are not rq-convex but rq-starshaped. The points (±n,±n,±n) are in the kernel.
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Starting with an abstract finite graph G, with V (G) and E(G) as vertex- and edge-
set, respectively, we take V (G) to be a set in R2, and each edge a line-segment joining its
incident vertices, such that any two such line-segments meet in at most one point which is
a vertex for both. So we obtain the geometric graph G1 = ∪{e : e ∈ E(G)} ⊂ R2. Thus, a
geometric graph in R2 is a finite union of line-segments. Edges do not cross. We identify
G with G1 [9].

Let L ⊂ R2 be the infinite square lattice graph. It has Z2 as vertex set and all pairs of
Z2 × Z2 determining line-segments of unit length as edge set. Take in L some finite cycle
C, considered as a geometric graph, and consider the geometric graph, called grid graph,
the vertices and edges of which are all vertices and edges lying on C or inside the bounded
plane region of boundary C [9].

Let Vm (resp. Hn) in L be the lattice-point set containing the lattice points from the
origin to (0,m) (resp. (n, 0)) on the y−axis (resp. x−axis) and Vmn the Cartesian product
of Vm, Hn.

A grid graph is called a rectangular grid graph, if its vertex set is isometric to Vmn for
some m,n ≥ 1.

Obviously, the vertex set of any rectangular grid graph is rq-convex. Are there any
other grid graphs with rq-convex vertex sets? Let G be a grid graph. For card(V (G)) = 12,
there exists a further example, see Figure 1.

Figure 1: V (G) is rq-convex. Figure 2: Q(2) \ {0}

If n ≥ 2, then Q(n) \ {0} is the vertex set of a grid graph. Therefore, Q(n) \ {0} is
another example, and card(Q(n) \ {0}) = 4n(n+ 1) ≥ 24.

Conjecture 1. The vertex set different from Q(n)\{0} of a grid graph G with card(V (G)) >
12 is rq-convex, if and only if G is a rectangular grid graph.

Now, we want to see what happens inside of discs considered in the Euclidean norm.
Let C ⊂ R2 be a circle with radius r(C) and centre 0, and VC ⊂ Z2 the set of all lattice

points in convC. This set VC is the vertex set of a rectangular grid graph, if and only if
r(C) ∈ [

√
2, 2) ∪ [2

√
2,
√
2 + 2). See Figure 3.
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Figure 3: VC is a rectangular grid graph

Theorem 2. If C ⊂ R2 is a circle with centre 0 and radius at least
√
2, then VC is rq-

starshaped.

Proof. Let ax, ay be the coordinates of a ∈ VC . Thus, a = (ax, ay). Consider the point
s = (sx, 0) ∈ VC with maximal sx.

Case 1. (sx, 1) ∈ VC .
We prove that 0 belongs to the kernel of VC . Indeed, for any point c = (cx, cy) ∈ VC

with cx ̸= 0 and cy ̸= 0, the points c, (cx, 0),0, (0, cy) form a rectangular quadruple.
For any point (cx, 0) ∈ VC with cx ̸= 0, the points (cx, 0), (cx, 1), (0, 1),0 form a rectan-

gular quadruple. The case of (0, cy) ∈ VC with cy ̸= 0 is analogous.
Case 2. (sx, 1) ̸∈ VC and sx is even.
We again prove that 0 belongs to the kernel of VC . For any point c = (cx, cy) ∈ VC with

| cx |< sx, the argument is the same as in Case 1.
For | cx |= sx, say cx = sx, we have the rectangular quadruple {(sx, 0),

(sx/2, sx/2),0, (sx/2,−sx/2)}.
Case 3. (sx, 1) ̸∈ VC and sx is odd.
We now prove that (1, 0) belongs to the kernel of VC . For any point c = (cx, cy) ∈ VC

with | cx |< sx and | cy |< sx, the argument is very similar to the one in Case 1.
For cx = sx and cy = 0, we have the rectangular quadruple {(sx, 0), ((sx + 1)/2, (sx +

1)/2), (1, 0), ((sx + 1)/2,−(sx + 1)/2)}.
For cx = −sx and cy = 0, we have the rectangular quadruple {(−sx, 0),

((−sx + 1)/2, (−sx + 1)/2), (1, 0), ((−sx + 1)/2, (sx − 1)/2)}.
For cx = 0 and cy = sx, a suitable rectangular quadruple is {(0, sx), ((−sx +1)/2, (sx +

1)/2), (1, 0), ((sx + 1)/2, (sx − 1)/2)}.
For cx = 0 and cy = −sx, we exhibit the rectangular quadruple {(0,−sx),

((−sx + 1)/2,−(sx + 1)/2), (1, 0), ((sx + 1)/2, (−sx + 1)/2)}.
Hence, VC is rq-starshaped.

If the radius of C is smaller than
√
2, then there is no rectangular quadruple containing

0.
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For a grid graph G ⊂ L, let G2 ⊂ R2 be the union of all unit squares, all edges of which
are in G1.

A set S ⊂ R2 is horizontally convex (vertically convex ), if S includes every horizontal
(vertical) line-segment with endpoints in S.[4]

Theorem 3. Let G ⊂ L be a grid graph. If G2 is horizontally convex and symmetric with
respect to a vertical line containing lattice points, then V (G) and G1 are rq-starshaped.

Proof. Suppose that the origin 0 is in the vertical axis of symmetry of G2, i.e. G2 is
symmetric with respect to the y-axis Y . There exist at least two points w,w′ ∈ V (G)
with the largest x-coordinate. Then choose points k, k′ ∈ Y such that k,w have the same
y-coordinate, and k′, w′ have the same y-coordinate, too. Now, we show that k is in the
kernel of both V (G) and G1.

For any point v ∈ G1 \ wk, let v′ ∈ kw satisfy vv′ ⊥ kw and v′′ ∈ Y satisfy vv′′ ⊥ Y .
If v ∈ G1 ∩ wk, take v′ ∈ k′w′ such that vv′ ⊥ kw and v′′ ∈ Y such that v′v′′ ⊥ Y . Then,
{v, v′, k, v′′} is a rectangular quadruple in G1; thus G1 is rq-starshaped.

If, in particular, v ∈ V (G), then {v, v′, k, v′′} ⊂ V (G); so V (G) is rq-starshaped, too.

4 rq-Convexity of cubic lattice graphs

We say that a surface S ⊂ R3 is a Jordan surface, if S is the image of an injective continuous
map of the sphere (boundary of a ball) into R3.

Consider the infinite cubic lattice Z3 ⊂ R3. Let the Jordan surface S be a finite union
of unit squares with vertices in Z3. Consider the bounded component D of R3 \ S. The
2-complex S∗ of all vertices of Z3, unit edges and unit squares with vertices in Z3 lying
in clD is called a grid 2-complex. The union S2 of all squares of S∗ is a geometric grid
2-complex. The union S1 of all edges of S∗ is a geometric grid 1-complex. The complex S∗

has S0 = Z3 ∩ clD as vertex set.
The Jordan surface Brst = bd(0(r, 0, 0) × 0(0, s, 0) × 0(0, 0, t)) determines a geometric

grid 1-complex (Brst)1 = Erst, and a geometric grid 2-complex (Brst)2 = Srst.

Theorem 4. A geometric grid 1-complex is rq-convex if and only if it is isometric to Erst

for some r, s, t.

Proof. Note that the 1-skeleton of any right parallelotope is rq-convex (Theorem 4.1 in
[3]). Any two points in Erst are lying on the 1-skeleton included in Erst of some right
parallelotope. The ”if” part is settled.

Now we show the other implication. Let S be a Jordan surface as above. Suppose
it is translated such that S1 ⊂ Erst where r, s, t are smallest possible. We show that, if
S1 ̸= Erst, then S1 is not rq-convex.

Assume that S1 ̸= Erst. We claim that there exists a z-path which is defined as e1 ∪
e2 ∪ e3 ⊂ S1 with edges e1, e2, e3 pairwise orthogonal, allowing another edge e′1 ̸⊂ S1 in the
boundary of the square determined by e1, e2, orthogonal to e2.

Let S+
2 = {∪abcd : abcd is a unit square, ab, bc, cd, da ⊂ S1}. Consider the unit cube C

with vertices in Z3. Let F1, F2, F3, F
′
1, F

′
2, F

′
3 be the six facets of C = abcdd′a′b′c′, where
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Figure 4: A cube C

abcd ∥ a′b′c′d′, aa′ ∥ bb′ ∥ cc′ ∥ dd′, and F1 = abcd, F ′
1 = a′b′c′d′, F2 = cdd′c′, F ′

2 =
abb′a′, F3 = add′a′, F ′

3 = bcc′b′. Remark that S+
2 = Srst implies S1 = Erst.

To prove the claim we shall show that there exists a cube C in one of the following
situations.

Case 1. Exactly two squares of C are not in S+
2 . In this case, the two squares are

orthogonal, say F1, F2. Then only its edge cd is not in S1. In this case we find the z-path
ab ∪ bc ∪ cc′.

Case 2. Exactly three squares of C are not in S+
2 . If F1, F2, F3 ̸⊂ S+

2 , then at least one
of cd, ad, dd′ say cd is not in C ∩ S1, and all but these three edges of C are in S1. We find
the z-path ab ∪ bc ∪ cc′. If F1, F2, F

′
1 ̸⊂ S+

2 , then cd, c′d′ are not in C ∩ S1. Then we find
the z-path ab ∪ bc ∪ cc′.

Case 3. Exactly two non-opposite squares of C are in S+
2 . Let F1, F2 ⊂ S+

2 . Then at
least one of bb′, b′c′ is not in S1, say b′c′ ̸⊂ S1; F1 ∪ F2 contains the z-path bc ∪ cc′ ∪ c′d′.

The set S+
2 determines a set C of cubes. Let W be their union. Suppose W is not convex.

By Tietze’s theorem [6], W is not locally convex at some point p. Then p belongs to an edge
of S1, such that W is not locally convex at the endpoints u, u′ of that edge. Clearly, u must
be a vertex of at least 3 cubes C1, C2, C3 ∈ C, such that uu′ ⊂ C1 ∩C2 ∩C3, uu

′ = C1 ∩C3,
but uu′ ⊂ bdW . Consider the 4-th cube C4 containing uu′. Of course, C4 ̸⊂ W . Let Fu be
the facet of C4 containing u, but not u′, Fu′ the facet of C4 containing u′, but not u, and
F the facet of C4 not meeting C1. If all these facets Fu, Fu′ , F ⊂ S+

2 , then C4 ∈ C, absurd.
So, either none of these facets lies in S+

2 and C4 is in Case 2 or Case 3, or precisely one of
them lies in S+

2 , and C4 is in Case 1 or Case 2, or precisely two of them lie in S+
2 , and C4

is in Case 1.
Hence, if W is not convex, we are done. If W is convex, it is a parallelotope. The only

parallelotope touching all sides of Brst is convBrst, and our claim is proven.
Hence, there is a z-path e1 ∪ e2 ∪ e3 ⊂ S. Consider the edge e′1 ∥ e1 of the square

determined by e1, e2, and the edge e′3 ∥ e3 of the square determined by e2, e3.
Let {v} = e2∩e1, {w} = e2∩e3. Take x ∈ e1, y ∈ e3 with ∥x−v∥ ≠ ∥y−w∥. Put x′ ∈ e′1

such that xx′ ⊥ e1 and y′ ∈ e′3 such that yy′ ⊥ e3. We have {x, y, x′, y′, v, w} = Cxy ∩Erst.
Hence, x, y don’t have the rq-property in Cxy ∩ S1.

It is easily seen that, for any rectangle xyy∗x∗ with x∗, y∗ ∈ S1, the points x
∗, y∗ cannot

belong to unit cubes of the lattice near e1 ∪ e2 ∪ e3. Rectangles vww∗v∗ with v∗, w∗ ∈ S1
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Figure 5: A z-path e1 ∪ e2 ∪ e3

abound. But rectangles vyy∗v∗ are already fewer, forming a finite family of rectangles
parallel to e1.

Now, taking x instead of v, but close to v, (Hxy∪Hyx)∩S1 does not include rectangular
quadruples any more, although it contains quadruples tending to rectangular ones as x → v.

Hence, the presence of z-paths yields that S1 is not rq-convex, and the theorem is proven.

The statement concerning geometric grid 2-complexes analogous to Theorem 4 is false.
Indeed, not only Srst is rq-convex. For example, S999 minus the interior of the unit square
in the middle of 0(9, 0, 0)× 0(0, 9, 0) is rq-convex, too.

The 0-dimensional analogon is also false. Let R0, R1, R2, R3, R4, R5, R6 be seven right
parallelotopes whose boundaries are in the union of all unit squares with vertices in Z3,

such that, for every i ∈ {1, 2, . . . , 6}, R0∪Ri is a right parallelotope. Then, S = bd(
6⋃

j=0

Rj)

is also a Jordan surface. The set S0 of all lattice points of S∗ is rq-convex. Indeed, for
any two points in S0, there exists a plane parallel to some coordinate plane, such that the
points symmetric about this plane are also in S0.

5 rq-Convexity in triangular lattice graphs

Consider the Archimedean tiling (36) in R2, which is an infinite triangular lattice graph
realised in the plane. We assume that its edges have length 1.

For a union D of triangles with boundaries in (36), let W (D) be the set of all lattice
points in D.

Let I ⊂ R2 be a line containing two adjacent lattice points in (36). We call I a lattice
line of (36).

Theorem 5. If I is a lattice line of (36), then the set of lattice points of (36) in a component
of R2 \ I is rq-convex.

Proof. Let R be a component of R2 \ I. We take a Cartesian coordinate system as follows.
The origin 0 should be a vertex of (36), and the x-axis a lattice line parallel to I, considered
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without loss of generality above it. Any lattice point in R has coordinates (x, y) with
x = m/2 and y = n

√
3/2 ≥ 0 and m,n ∈ Z. Consider the point (x′, y′) with x′ = −3n

and y′ = m
√
3 if x ≥ 0, and x′ = 3n and y′ = −m

√
3 if x < 0. This is a lattice point in

R. Moreover, xx′ + yy′ = 0, which shows that ∠(x, y)0(x′, y′) = π/2. Any pair of vertices
of (36) in R can be brought in the positions 0, (x, y), by suitably choosing the Cartesian
coordinate system. Hence, we find the right quadruple {(x, y),0, (x′, y′), (x+ x′, y+ y′)} in
R.

Theorem 6. If P is a regular hexagon of edge-length more than 1, with bdP ⊂ (36), then
W (P ) is rq-starshaped.

Proof. Suppose that the origin 0 is the centre of P and there is a side of P lying in horizontal
direction. We say that the vertices in the same horizontal line are in the same floor. If the
edge-length of P is k ≥ 2, then there are 2k+1 floors, where the first floor is in the bottom.
Let Fi (i = 1, 2, . . . , 2k + 1) be the set of the vertices of W (P ) in the i-th floor. The set
of the k + i vertices in Fi and the corresponding k + i vertices in Fi+2 (i = 1, 2, . . . , k) is
rq-convex.

Figure 6: A regular hexagon with edge-length k = 5

If k is even, then 0 and any point in (
⋃

i odd

Fi) \ {a,−a} have the rq-property. We also

consider the other two directions parallel to edges of P . Notice that there exists a direction
such that a is in the first floor and −a in the (2k + 1)-th floor. For a suitable direction
among the three as horizontal, every point of W (P ) is in an odd floor, and 0 is always in
Fk+1. Hence, 0 is in the kernel of W (P ).

If k is odd, then choose c ∈ Fk+1 such that ∥c∥ = 1 and ∥c − a∥ = k − 1, as shown in
Figure 6. In this case, there are two regular hexagons P1, P2 ⊂ P such that c, a are opposite
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vertices of P1 and c,−a are opposite vertices of P2. The edge-length of P1 is (k− 1)/2 and
the edge-length of P2 is (k+1)/2. Since the vertex set of any regular hexagon is rq-convex,
c and a (resp. −a) have the rq-property. Hence, c and any point in

⋃
i even

Fi enjoy the

rq-property. For a suitable direction among the other too, c and every point in
⋃

j odd

Fj are

in odd floors. Hence, c is in the kernel of W (P ).

Figure 7: The vertex-sets of these cycles are rq-convex

Conjecture 2. There are only two cycles in (36) the vertex-sets of which are rq-convex
(see Figure 7).

Acknowledgement The authors gratefully acknowledge financial support by NSF of China
(12271139, 11871192); the High-end Foreign Experts Recruitment Program of People’s Re-
public of China (G2023003003L); the Program for Foreign Experts of Hebei Province; the
Hebei Natural Science Foundation (A2023205045); the Special Project on Science and Tech-
nology Research and Development Platforms, Hebei Province (22567610H); the China Schol-
arship Council (202308130194).

References

[1] R. Blind, G. Valette, T. Zamfirescu, Rectangular convexity, Geom. Dedicata 9
(1980), 317-327.
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