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Abstract

In this paper, we establish a q-congruence which unifies one kind of q-congruences
on double sums and the result confirms Wei and Li’s conjectures as well. Meanwhile,
we provide one new q-supercongruence on double sums.
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1 Introduction

In 2011, Long [11] conjectured that for any odd prime p,

(p−1)/2∑
k=0

(−1)k
6k + 1

8k
(1/2)3k
k!3

k∑
j=1

{
1

(2j − 1)2
− 1

16j2

}
≡ 0 (mod p), (1)

where the Pochhammer symbol is given by

(a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1) for n ∈ Z+.

In the last few years, this interesting congruence involving double series attracted many
researchers’ attentions. In 2015, Swisher [13] confirmed Long’s conjecture (1). Later, Gu
and Guo[4] established a beautiful q-analogue of (1): for any positive odd integer n,

(n−1)/2∑
k=0

(−1)k[6k + 1]
(q; q2)3k
(q4; q4)3k

k∑
j=1

{
q2j−1

[2j − 1]2
− q4j

[4j]2

}
≡ 0 (mod Φn(q)). (2)

Here, the q-shifted factorial is defined as (a; q)0 = 1, (a; q)n = (1−a)(1−aq) · · · (1−aqn−1)
for n ∈ Z+ and [n] = [n]q = 1 + q + · · · + qn−1 is the q-integer. Φn(q) stands for the n-th
cyclotomic polynomial in q:

Φn(q) =
∏

1⩽k⩽n
gcd(n,k)=1

(q − ζk),

with ζ an n-th primitive root of unity.
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On the other hand, in 1997, Van Hamme [14] conjectured 13 congruences, whose q-
analogues have been investigated by many authors. More progress on q-congruences can be
found in [15, 8].

Recently, Wang and Yu [16] and Wei and Li [17] presented some q-congruences on double
basic hypergeometric sums similar to (2). In particular, Wei and Li [17, Theorem 1] proved
that

(n−r)/d∑
k=0

[2dk + r]
(qr; qd)3k(xq

r, yqr, zqr; qd)k
(qd; qd)3k(q

d/x, qd/y, qd/z; qd)k

q(2d−3r)k

(xyz)k

×
k∑

j=1

(
qdj−d+r

[dj − d+ r]2
− qdj

[dj]2

)
≡ 0 (mod Φn(q)), (3)

where n > 1, d > 1, r > 0 are integers with (r, d) = 1 and n ≡ r (mod d) such that n ≥ r.
In the same paper, Wei and Li also proposed the following conjectures[17, Conjecture 1 and
2].

Conjecture 1.1. Let n > 1, d > 1, r > 0,m ≥ 0 be integers with (r, d) = 1 and n ≡ r
(mod d) such that n ≥ r. Then modulo Φn(q),

(n−r)/d∑
k=0

(−1)k[2dk + r]
(qr; qd)2m+1

k

(qd; qd)2m+1
k

qd(
k
2)+m(d−r)k

k∑
j=1

(
qdj−d+r

[dj − d+ r]2
− qdj

[dj]2

)
≡ 0.

Conjecture 1.2. Let n > 1, d > 1, r > 0,m ≥ 0 be integers with (r, d) = 1 and n ≡ r
(mod d) such that n ≥ r. Then modulo Φn(q),

(n−r)/d∑
k=0

[2dk + r]
(qr; qd)2m+2

k

(qd; qd)2m+2
k

qm(d−r)k−rk
k∑

j=1

(
qdj−d+r

[dj − d+ r]2
− qdj

[dj]2

)
≡ 0.

Inspired by the work just mentioned, we shall prove these two conjectures in this pa-
per. In fact, the m = 0 cases of both conjectures can be obtained by fixing (x, y, z) =
(qd−r, qd−r,∞) and (qd−r, qd−r, 1) in (3), respectively. And the m ≥ 1 cases rely on the
following theorem, which can be deemed as a generalization of both conjectures.

Theorem 1.3. Let n > 1, d > 1,m ≥ 1 and r be integers with (r, d) = (n, d) = 1,
tn + d − dn ≤ r ≤ n, where t is the least positive integer satisfying tn ≡ r (mod d). Let
bi, cj be indeterminates, where 1 ≤ i ≤ m, 1 ≤ j ≤ m− 1. Then

M∑
k=0

[2dk + r]
(b1, c1, . . . , bm−1, cm−1, bm; qd)k(q

r; qd)3k
(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd; qd)3k

×
(

qmr+md−2r

b1c1 · · · bm−1cm−1bm

)k

×
k∑

j=1

(
qdj−d+r

[dj − d+ r]2
− qdj

[dj]2

)
≡ 0 (mod Φn(q)),

where M = (tn− r)/d or n− 1.
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Obviously, taking m = 2, t = 1, b1 = xqr, c1 = yqr, b2 = zqr in Theorem 1.3, we obtain
(3). The m ≥ 1 cases of Conjecture 1.1 and Conjecture 1.2 can be derived by choos-
ing (t, b1, c1, . . . , bm−1, cm−1, bm) → (1, qr, qr, . . . , qr, qr,∞) and (1, qr, qr, . . . , qr, qr, qr) in
Theorem 1.3 respectively.

In fact, with the change of the parameters and the indeterminates, Theorem 1.3 can
produce a huge amount of q-congruences on double series. In the last few years, with
the help of transformation formulas for basic hypergeometric series, such as Watson’s 8ϕ7-
transformation formula [2, Appendix (III.18)], a lot of q-congruences and q-supercongruences
were proved by the ‘creative microscoping’ method. Almost all of them, including Van
Hamme’s supercongruences, can produce corresponding q-congruences involving double se-
ries by Theorem 1.3.

Some special cases of Theorem 1.3 can be further strengthened to q-supercongruences
modulo the square of a cyclotomic polynomial. For example, Song and Wang [12] proved
a new q-supercongruence related to the supercongruence (D.2) of Van Hamme. Fang and
Guo [3] investigated the double sums related to Van Hamme’s supercongruences (A.2)
and (H.2). Guo and Lian [5] presented the q-supercongruences related to Van Hamme’s
supercongruences (C.2), and (J.2).

Here, we shall present the q-supercongruence on double sums corresponding to Van
Hamme’s supercongruences (G.2).

Theorem 1.4. Let n be a positive integer with n ≡ 1 (mod 4). Then, modulo Φn(q)
2,

B∑
k=0

[8k + 1]
(q; q4)4k
(q4; q4)4k

q2k
k∑

j=1

(
q4j−3

[4j − 3]2
− q4j

[4j]2

)

≡ q(1−n)/4[n]
(q2; q4)(n−1)/4

(q4; q4)(n−1)/4

(
(n2 − 1)(1− q)2

24
+

(n−1)/4∑
k=1

q4k−2

[4k − 2]2

)
,

where B = (n− 1)/4 or n− 1.

The rest of our paper is arranged as follows. The proof of Theorem 1.3 will be shown in
Section 2. Theorem 1.4 will be proven in Section 3. In the last section, we give one more
such q-supercongruence.
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2 Proof of Theorem 1.3

In the proof, we shall make full use of the sum of a powerful transformation formula due to
Andrews[1, Theorem 4], which can be stated as follows:

∑
k≥0

(a, q
√
a,−q

√
a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√
a,−

√
a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

(
amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N
(aq/bm, aq/cm; q)N

∑
j1,...,jm−1≥0

(aq/b1c1; q)j1 · · · (aq/bm−1cm−1; q)jm−1

(q; q)j1 · · · (q; q)jm−1

×
(b2, c2; q)j1 · · · (bm, cm; q)j1+···+jm−1

(aq/b1, aq/c1; q)j1 · · · (aq/bm−1, aq/cm−1; q)j1+···+jm−1

×
(q−N ; q)j1+···+jm−1

(bmcmq−N/a; q)j1+···+jm−1

(aq)jm−2+···+(m−2)j1qj1+···+jm−1

(b2c2)j1 · · · (bm−1cm−1)j1+···+jm−2
. (4)

In order to prove Theorem 1.3, we first need the following congruence, which is a gen-
eralization of Liu and Wang’s result[9, Lemma 2].

Lemma 2.1. Let n > 1, d > 1,m ≥ 1 and r be integers with (r, d) = (n, d) = 1, tn + d −
dn ≤ r ≤ n, where t is the least positive integer satisfying tn ≡ r (mod d). Let bi, cj be
indeterminates, where 1 ≤ i ≤ m, 1 ≤ j ≤ m− 1. Then, modulo Φn(q)(1 − aqtn)(a− qtn),
we have

M∑
k=0

[2dk + r]
(b1, c1, . . . , bm−1, cm−1, bm; qd)k(q

r, aqr, qr/a; qd)k
(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd, aqd, qd/a; qd)k

×
(

qmr+md+tn−n−2r

b1c1 · · · bm−1cm−1bm

)k

≡ [tn]
(bmqr; qd)(tn−r)/d

(qd+r/bm; qd)(tn−r)/d
(bm)(r−tn)/d

×
∑

j1,...,jm−1≥0

(qd+r/b1c1; q
d)j1 · · · (qd+r/bm−1cm−1; q

d)jm−1

(qd; qd)j1 · · · (qd; qd)jm−1

×
(b2, c2; q

d)j1 · · · (bm, aqr; qd)j1+···+jm−1

(qd+r/b1, qd+r/c1; qd)j1 · · · (qd+r/bm−1, qd+r/cm−1; qd)j1+···+jm−1

×
(qr/a; qd)j1+···+jm−1

(bmqr; qd)j1+···+jm−1

q(d+r)(jm−2+···+(m−2)j1)+d(j1+···+jm−1)

(b2c2)j1 · · · (bm−1cm−1)j1+···+jm−2
, (5)

where M = (tn− r)/d or n− 1.
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Proof. When a = qtn or a = q−tn, in terms of (4), we can catch hold of

(tn−r)/d∑
k=0

[2dk + r] (b1, c1, . . . , bm−1, cm−1, bm; qd)k(q
r, qr+tn, qr−tn; qd)k

(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd, qd+tn, qd−tn; qd)k

×
(

qmr+md+tn−n−2r

b1c1 · · · bm−1cm−1bm

)k

= [tn]
(bmqr; qd)(tn−r)/d

(qd+r/bm; qd)(tn−r)/d
(bm)(r−tn)/d

×
∑

j1,...,jm−1≥0

(qd+r/b1c1; q
d)j1 · · · (qd+r/bm−1cm−1; q

d)jm−1

(qd; qd)j1 · · · (qd; qd)jm−1

×
(b2, c2; q

d)j1 · · · (bm, qr+tn; qd)j1+···+jm−1

(qd+r/b1, qd+r/c1; qd)j1 · · · (qd+r/bm−1, qd+r/cm−1; qd)j1+···+jm−1

×
(qr−tn; qd)j1+···+jm−1

(bmqr; qd)j1+···+jm−1

q(d+r)(jm−2+···+(m−2)j1)+d(j1+···+jm−1)

(b2c2)j1 · · · (bm−1cm−1)j1+···+jm−2
. (6)

This means (5) holds modulo (1 − aqn)(a− qn) for M = (tn− r)/d. With the help of the
relation (qr−tn; qd)k = 0 for any k with (tn − r)/d < k < n, we get that (5) also holds
modulo (1− aqtn)(a− qtn) for M = n− 1.

By utilizing Lemma [7, Lemma 2.1], we can easily check that the k-th term and the ((tn−
r)/d−k)-th term on the left-hand side of (5) can cancel each other modulo Φn(q). Therefore,
the left-hand side of (5) is congruent to 0 modulo Φn(q) for M = (tn − r)/d. Moreover,
since (qr; qd)k/(q

d; qd)k ≡ 0 (mod Φn(q)) for (tn−r)/d < k < n, we can immediately prove
(5) is true modulo Φn(q).

Since Φn(q), (1 − aqtn), (a − qtn) are pairwise coprime polynomials in q, we finish the
proof.

Proof of Theorem 1.3. We shall pay attention to calculate the following term, and denote
it as S(q).

S(q) =

M∑
k=0

[2dk + r]
(b1, c1, . . . , bm−1, cm−1, bm; qd)k(q

r; qd)3k
(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd; qd)3k

×
(

qmr+md+tn−n−2r

b1c1 · · · bm−1cm−1bm

)k

−
M∑
k=0

[2dk + r]
(b1, c1, . . . , bm−1, cm−1, bm; qd)k(q

r, qr+tn, qr−tn; qd)k
(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd, qd+tn, qd−tn; qd)k

×
(

qmr+md+tn−n−2r

b1c1 · · · bm−1cm−1bm

)k

.
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On one hand, S(q) can be simplified like this,

S(q) =

M∑
k=0

[2dk + r]
(b1, c1, . . . , bm−1, cm−1, bm; qd)k(q

r; qd)k
(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd; qd)k

×
(

qmr+md+tn−n−2r

b1c1 · · · bm−1cm−1bm

)k

× (qr, qr, qd+tn, qd−tn; qd)k − (qr+tn, qr−tn, qd, qd; qd)k
(qd, qd, qd+tn, qd−tn; qd)k

. (7)

Noticing that qn ≡ 1 (mod Φn(q)), we obtain

(qd+tn, qd−tn; qd)k =

k∏
j=1

(1− qdj+tn)(1− qdj−tn)

=

k∏
j=1

((1− qdj)2 − (1− qtn)2qdj−tn)

≡ (qd; qd)2k − (qd; qd)2k

k∑
j=1

(1− qtn)2

(1− qdj)2
qdj−tn (mod Φn(q)

4).

Similarly, we can get

(qr+tn, qr−tn; qd)k ≡ (qr; qd)2k − (qr; qd)2k

k∑
j=1

(1− qtn)2

(1− qdj−d+r)2
qdj−d+r−tn (mod Φn(q)

4).

Combining the above two equations, we are led to

(qr, qr, qd+tn, qd−tn; qd)k − (qr+tn, qr−tn, qd, qd; qd)k

≡ (qr, qr, qd, qd; qd)k[tn]
2

k∑
j=1

(
qdj−d+r−tn

[dj − d+ r]2
− qdj−tn

[dj]2

)
(mod Φn(q)

4). (8)

Applying the relation (8) in (7), we obtain

S(q) ≡
M∑
k=0

[2dk + r]
(b1, c1, . . . , bm−1, cm−1, bm; qd)k(q

r; qd)k
(qd+r/b1, qd+r/c1, . . . , qd+r/bm−1, qd+r/cm−1, qd+r/bm)k(qd; qd)k

×
(

qmr+md+tn−n−2r

b1c1 · · · bm−1cm−1bm

)k

× (qr, qr; qd)k
(qd+tn, qd−tn; qd)k

[tn]2
k∑

j=1

(
qdj−d+r−tn

[dj − d+ r]2
− qdj−tn

[dj]2

)
(mod Φn(q)

4). (9)

On the other hand, substituting the a = 1 case of Lemma 2.1 into the first sum in S(q),
and utilizing (6) in the second sum in S(q), we obtain

S(q) ≡ 0 (mod Φn(q)
3), (10)
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due to the relation (qr+tn, qr−tn; qd)j1+···+jm−1 ≡ (qr, qr; qd)j1+···+jm−1 (mod Φn(q)
2).

Combining (7) and (10) together and noticing qn ≡ 1 (mod Φn(q)), we finish proving
Theorem 1.3.

3 Proof of Theorem 1.4

Proof of Theorem 1.4. The proof is very similar to that of Theorem 1.3. Denoting U(q) as
follows,

U(q) =

B∑
k=0

[8k + 1]
(q; q4)4k
(q4; q4)4k

q2k −
B∑

k=0

[8k + 1]
(q1+n; q4)k(q

1−n; q4)k(q; q
4)2k

(q4+n; q4)k(q4−n; q4)k(q4; q4)2k
, (11)

we obtain

U(q) ≡
B∑

k=0

[8k + 1]
(q; q4)4k
(q4; q4)4k

q2k[n]2
k∑

j=1

(
q4j−3

[4j − 3]2
− q4j

[4j]2

)
(mod Φn(q)

4). (12)

On the other hand, the a = qn case of [10, Theorem 7] reads

B∑
k=0

[8k + 1]
(q1+n; q4)k(q

1−n; q4)k(q; q
4)2k

(q4+n; q4)k(q4−n; q4)k(q4; q4)2k
= q(1−n)/4[n]

(q2; q4)(n−1)/4

(q4; q4)(n−1)/4
.

Substituting the above equation, [10, Theorem 1] and (12) into (11), following the same
path in the proof of Theorem 1.3, we can prove Theorem 1.4 immediately.

4 More q-supercongruences on double sums

Theorem 4.1. Let d, r, n be integers satisfying d ≥ 3, r ≤ d− 2, and n ≥ d− r, such that
d and r are coprime, and n ≡ −r (mod d). Then

C∑
k=0

[2dk + r]
(qr; qd)2dk
(qd; qd)2dk

qd(d−1−r)k
k∑

j=1

(
qdj−d+r

[dj − d+ r]2
− qdj

[dj]2

)
≡ 0 (mod Φn(q)

2), (13)

where C = (dn− n− r)/d or n− 1.

We first list the following lemma in order to prove Theorem 4.1.

Lemma 4.2 (Guo and Schlosser[6]). Let d, r, n be integers satisfying d ≥ 3, r ≤ d− 2, and
n ≥ d− r, such that d and r are coprime, and n ≡ −r (mod d). Then

n−1∑
k=0

[2dk + r]
(qr; qd)2dk
(qd; qd)2dk

qd(d−1−r)k ≡ 0 (mod Φn(q)
4). (14)
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Proof of Theorem 4.1. We denote R(q) as follows,

R(q) =

C∑
k=0

[2dk + r]
(qr; qd)2dk
(qd; qd)2dk

qd(d−1−r)k

−
C∑

k=0

[2dk + r]
(qr; qd)2d−2

k (qr+tn, qr−tn; qd)k

(qd; qd)2d−2
k (qd+tn, qd−tn; qd)k

qd(d−1−r)k,

where t = d− 1.
Noticing the relation (8), we obtain

R(q) ≡
C∑

k=0

[2dk + r]
(qr; qd)2dk
(qd; qd)2dk

qd(d−1−r)k[tn]2
k∑

j=1

(
qdj−d+r

[dj − d+ r]2
− qdj

[dj]2

)
(mod Φn(q)

4).

On the other hand, Lemma 4.2 implies the first sum in R(q) is congruent to 0 modulo
Φn(q)

4, because (14) also holds when the left-hand side truncates at (dn − n − r)/d. The
second sum in R(q) is congruent to 0 modulo Φn(q)

4 as well, this can be proven by following
the same path in the proof of Lemma 4.2. Therefore, R(q) ≡ 0 (mod Φn(q)

4). The proof
is finished.
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