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Abstract

We prove a Ramanujan-type supercongruence involving the Almkvist–Zudilin num-
bers, which confirms a conjecture of Z.-H. Sun and is corresponding to Ramanujan-type
formula for 1/π due to Chan and Verrill:

∞∑
k=0

4k + 1

(−27)k
γk =

3
√
3

π
.

Here γk are the Almkvist–Zudilin numbers.
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1 Introduction

In 1914, Ramanujan [15] discovered 17 infinite series representations of 1/π, such as

∞∑
k=0

(−1)k(4k + 1)

(
1
2

)3
k

(1)3k
=

2

π
,

where (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k ≥ 1. In 1997, Van Hamme [25]
investigated supercongruences on partial sums of Ramanujan’s infinite series for 1/π and
proposed 13 interesting supercongruence conjectures, which opened up the study of super-
congruences related to infinite series for 1/π. We refer to [23] for more recent developments
on Van Hamme’s supercongruences.

Supercongruences for partial sums of infinite series for 1/π are sometimes called Ramanujan-
type supercongruences. Although all of Van Hamme’s 13 supercongruence conjectures have
been proved by many mathematicians through various methods, Ramanujan-type super-
congruences still attract many experts’ attention (see, for instance, [6, 7, 11, 13, 22, 28]).

The Almkvist–Zudilin numbers (see [1] and [17, A125143]) are defined as

γn =

n∑
j=0

(−1)n−j 3
n−3j(3j)!

(j!)3

(
n

3j

)(
n+ j

j

)
,

which appears to be first recorded by Zagier [27] as integral solutions to Apéry-like recur-
rence equations.
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Chan and Verrill [4] established several new Ramanujan-type series for 1/π in terms of
Almkvist–Zudilin numbers, such as

∞∑
k=0

4k + 1

81k
γk =

3
√
3

2π
, (1)

and

∞∑
k=0

4k + 1

(−27)k
γk =

3
√
3

π
. (2)

Zudilin [28, (33)] conjectured that (1) possesses the following nice p-adic analogue:

p−1∑
k=0

4k + 1

81k
γk ≡

(
−3

p

)
p (mod p3),

which was recently confirmed by the author [12]. Here and in what follows,
(

·
p

)
denotes the

Legendre symbol. We remark that congruence properties for the Almkvist–Zudilin numbers
have been widely studied by Amdeberhan and Tauraso [2], Chan, Cooper and Sica [3], and
Z.-H. Sun [18, 20, 21].

The motivation of the paper is to establish a p-adic analogue of (2), which was originally
conjectured by Z.-H. Sun [18, Conjecture 6.8].

Theorem 1.1. For any prime p ≥ 5, we have

p−1∑
k=0

4k + 1

(−27)k
γk ≡

(
−3

p

)
p (mod p3). (3)

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary
results. We prove Theorem 1.1 in Section 3.

2 Preliminary results

The nth harmonic number is given by

Hn =

n∑
j=1

1

j
,

with the convention that H0 = 0. In order to prove Theorem 1.1, we require the following
preliminary results.

Lemma 2.1. For any non-negative integer n, we have

n∑
i=0

(−1)i

2i+ 1

(
n

i

)(
n+ i

i

)
(H2i+1 −Hi) =

1

(2n+ 1)2
+

2

2n+ 1
(H2n −Hn) . (4)
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In fact, the identity (4) can be discovered and proved by the symbolic summation package
Sigma developed by Schneider [16]. One can also refer to [9, 10] for the same approach to
finding and proving identities of this type.

Lemma 2.2. For any prime p ≥ 5, we have

(1/3)(p−1)/2(2/3)(p−1)/2

(1)2(p−1)/2

≡
(
−3

p

)
p(3p − 6p− 5) (mod p3), (5)

and

1

p

(
p− 1

(p− 1)/2

)2(
2p− 2

p− 1

)(
(5p− 3)/2

2p− 2

)

≡ −8p
(
24(p−1) − 2p+1 + 4p+ 4

)
(mod p3). (6)

Proof. Note that

(1/3)(p−1)/2(2/3)(p−1)/2

(1)2(p−1)/2

=

(
p−1

(p−1)/2

)(
3(p−1)/2
(p−1)/2

)
27(p−1)/2

. (7)

By [8, (49)], we have (
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3). (8)

Furthermore, we have (
3(p− 1)/2

(p− 1)/2

)
=

p · (p+ 1) · · · (p+ (p− 3)/2)

1 · 2 · · · (p− 1)/2

≡ p

(p− 1)/2

(
1 + pH(p−3)/2

)
≡ −2p− 2p2

(
H(p−1)/2 + 3

)
≡ 2p (2p − 3p− 3) (mod p3), (9)

where we have used the congruence [8, (45)]:

H(p−1)/2 ≡ 2(1− 2p−1)

p
(mod p). (10)

Combining (7)–(9), we arrive at

(1/3)(p−1)/2(2/3)(p−1)/2

(1)2(p−1)/2

≡ (−1)(p−1)/222p−1 (2p − 3p− 3) p

33(p−1)/2
(mod p3). (11)
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From the congruence
(
(−3)(p−1)/2 −

(
−3
p

))2

≡ 0 (mod p2), we deduce that

(−3)(p−1)/2 ≡
(
−3

p

)
3p−1 + 1

2
(mod p2). (12)

Applying (12) and the Fermat’s little theorem to the right-hand side of (11) gives

(1/3)(p−1)/2(2/3)(p−1)/2

(1)2(p−1)/2

≡
(
−3

p

)
p(3p − 6p− 5) (mod p3),

which proves (5).
Note that

(
2p−2
p−1

)
/p is always an integer. On the other hand, we have(

(5p− 3)/2

2p− 2

)
=

(2p− 1) · 2p · (2p+ 1) · · · (2p+ (p− 3)/2)

1 · 2 · · · (p+ 1)/2

≡ (2p− 1) · 2p
(p− 1)/2 · (p+ 1)/2

(
1 + 2pH(p−3)/2

)
≡ 8p+ 16p2

(
H(p−1)/2 + 1

)
≡ 8p

(
2p+ 5− 2p+1

)
(mod p3).

It follows that

1

p

(
p− 1

(p− 1)/2

)2(
2p− 2

p− 1

)(
(5p− 3)/2

2p− 2

)

≡ 8
(
2p+ 5− 2p+1

)( p− 1

(p− 1)/2

)2(
2p− 2

p− 1

)
(mod p3). (13)

Furthermore, by Wolstenholme’s theorem [26], we have(
2p− 2

p− 1

)
=

p

2p− 1

(
2p− 1

p− 1

)
≡ −p(2p+ 1) (mod p3). (14)

Finally, combining (8),(13) and (14) gives

1

p

(
p− 1

(p− 1)/2

)2(
2p− 2

p− 1

)(
(5p− 3)/2

2p− 2

)
≡ −8p

(
24(p−1) − 2p+1 + 4p+ 4

)
(mod p3),

where we have used the Fermat’s little theorem.

Lemma 2.3. For any prime p ≥ 5, we have

p

p−1∑
k=0

(3k)!

(2k + 1)33kk!3
(H3k −Hk) ≡ 2(p− 1)

(
−3

p

)
(mod p2). (15)
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Proof. Noting that

(3k)!

33kk!3
=

(1/3)k(2/3)k
(1)2k

, (16)

we have

p−1∑
k=0

(3k)!

(2k + 1)33kk!3
(3H3k −Hk) =

p−1∑
k=0

(1/3)k(2/3)k
(2k + 1)(1)2k

k−1∑
j=0

(
1

1/3 + j
+

1

2/3 + j

)
. (17)

Recall the following identity due to Tauraso [24, Theorem 1]:

(1/3)k(2/3)k
(1)2k

k−1∑
j=0

(
1

1/3 + j
+

1

2/3 + j

)
=

k−1∑
j=0

(1/3)j(2/3)j
(1)2j

· 1

k − j
. (18)

Substituting (18) into the right-hand side of (17) and exchanging the summation order
gives

p−1∑
k=0

(3k)!

(2k + 1)33kk!3
(3H3k −Hk)

=

p−1∑
k=0

k−1∑
j=0

(1/3)j(2/3)j
(1)2j

· 1

(2k + 1)(k − j)

=

p−2∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

p−1∑
k=j+1

(
1

k − j
− 2

2k + 1

)

=

p−2∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(Hp−1 − 2H2p−1 +Hp−1−j + 2H2j+2 −Hj+1) . (19)

It follows from (16) and (19) that

p

p−1∑
k=0

(3k)!

(2k + 1)33kk!3
(3H3k − 3Hk)

≡ p

p−2∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(Hp−1 − 2H2p−1 +Hp−1−j + 2H2j+2 −Hj+1 − 2Hj)

≡ 2p

p−2∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(H2j+1 −Hj)− 2

p−1∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(mod p2), (20)

where we have used the facts that Hp−1 ≡ 0 (mod p2),Hp−1−j ≡ Hj (mod p) and
(1/3)p−1(2/3)p−1 ≡ 0 (mod p2).
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Furthermore, we have

p

p−2∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(H2j+1 −Hj)

≡ p

⌊p/3⌋∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(H2j+1 −Hj) +

p−1∑
j=(p+1)/2

(1/3)j(2/3)j
(2j + 1)(1)2j

+
(1/3)(p−1)/2(2/3)(p−1)/2

(1)2(p−1)/2

(
1

p
−H(p−1)/2

)
(mod p2), (21)

where we have used the fact that (1/3)j(2/3)j ≡ 0 (mod p) for j > ⌊p/3⌋.
By [2, Lemma 2.3], we have

(1/3)j(2/3)j
(1)2j

≡ (−1)j
(
⌊p/3⌋
j

)(
⌊p/3⌋+ j

j

)
(mod p), (22)

for 0 ≤ j ≤ ⌊p/3⌋. It follows from (4) and (22) that

p

⌊p/3⌋∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(H2j+1 −Hj)

≡ p

⌊p/3⌋∑
j=0

(−1)j

2j + 1

(
⌊p/3⌋
j

)(
⌊p/3⌋+ j

j

)
(H2j+1 −Hj)

= p

(
1

(2⌊p/3⌋+ 1)2
+

2

2⌊p/3⌋+ 1

(
H2⌊p/3⌋ −H⌊p/3⌋

))
(mod p2). (23)

If p ≡ 1 (mod 3), by Hp−1−j ≡ Hj (mod p) we have

LHS (23) ≡ 9p (mod p2).

If p ≡ 2 (mod 3), then

LHS (23) ≡ p
(
9− 6

(
H⌊p/3⌋+1 −H⌊p/3⌋

))
≡ −9p (mod p2).

It follows that

p

⌊p/3⌋∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

(H2j+1 −Hj) ≡ 9p

(
−3

p

)
(mod p2). (24)

By [19, Theorem 2.3] and [14, Remark 1.2], we have

p−1∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

≡
(
−3

p

)
(mod p2), (25)
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and

(p−1)/2∑
j=0

(1/3)j(2/3)j
(2j + 1)(1)2j

≡
(
−3

p

)(
3p + 2− 2p+1

)
(mod p2),

and so

p−1∑
j=(p+1)/2

(1/3)j(2/3)j
(2j + 1)(1)2j

≡
(
−3

p

)(
2p+1 − 3p − 1

)
(mod p2). (26)

It follows from (6), (10), (20), (21), (24), (25) and (26) that

3p

2

p−1∑
k=0

(3k)!

(2k + 1)33kk!3
(H3k −Hk)

≡
(
−3

p

)(
9p+ 2p+1 − 3p − 2 + (3p − 6p− 5)(2p − 1)

)
≡ 3(p− 1)

(
−3

p

)
(mod p2),

which is equivalent to (15).

3 Proof of Theorem 1.1

We begin with the transformation formula due to Chan and Zudilin [5, Corollary 4.3]:

γn =

n∑
i=0

(
2i

i

)2(
4i

2i

)(
n+ 3i

4i

)
(−3)3(n−i). (27)

Using (27) and exchanging the summation order, we obtain

p−1∑
k=0

4k + 1

(−27)k
γk =

p−1∑
k=0

4k + 1

(−27)k

k∑
i=0

(
2i

i

)2(
4i

2i

)(
k + 3i

4i

)
(−3)3(k−i)

=

p−1∑
i=0

1

(−3)3i

(
2i

i

)2(
4i

2i

) p−1∑
k=i

(4k + 1)

(
k + 3i

4i

)
. (28)

Note that

n−1∑
k=i

(4k + 1)

(
k + 3i

4i

)
=

(2n− 1)(n− i)

2i+ 1

(
n+ 3i

4i

)
, (29)
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which can be easily proved by induction on n. Combining (28) and (29) gives

p−1∑
k=0

4k + 1

(−27)k
γk = (2p− 1)

p−1∑
i=0

p− i

(2i+ 1)(−3)3i

(
2i

i

)2(
4i

2i

)(
p+ 3i

4i

)
. (30)

Furthermore, we have

(−1)i(p− i)

(
2i

i

)2(
4i

2i

)(
p+ 3i

4i

)

=
(−1)ip(p+ 3i) · · · (p+ 1)(p− 1) · · · (p− i)

i!4

≡ p(3i)!

i!3
(1 + p (H3i −Hi)) (mod p3). (31)

Observe that none of the denominators on the right-hand side of (30) contain a multiple
of p except for i = (p− 1)/2. It follows from (30) and (31) that

p−1∑
k=0

4k + 1

(−27)k
γk ≡ (2p− 1)p

p−1∑
i=0

(3i)!

(2i+ 1)33ii!3
(1 + p (H3i −Hi))

− (2p− 1)(3(p− 1)/2)!

33(p−1)/2((p− 1)/2)!3
(
1 + p

(
H3(p−1)/2 −H(p−1)/2

))

+
(p+ 1)(2p− 1)

2p(−3)3(p−1)/2

(
p− 1

(p− 1)/2

)2(
2p− 2

p− 1

)(
(5p− 3)/2

2p− 2

)
(mod p3). (32)

We can rewrite (5) and (25) as

(3(p− 1)/2)!

33(p−1)/2((p− 1)/2)!3
≡

(
−3

p

)
p(3p − 6p− 5) (mod p3), (33)

and

p−1∑
i=0

(3i)!

(2i+ 1)33ii!3
≡

(
−3

p

)
(mod p2). (34)

Note that

p
(
H3(p−1)/2 −H(p−1)/2

)
= 1 + 2p (mod p2). (35)

Substituting (6), (12), (15), (33), (34) and (35) into the right-hand side of (32) and
using the Fermat’s little theorem, we arrive at

p−1∑
k=0

4k + 1

(−27)k
γk ≡

(
−3

p

)
p (mod p3), as desired.
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