
Bull. Math. Soc. Sci. Math. Roumanie
Tome 67 (115), No. 4, 2024, 471–482

The Lehmer problem and Beatty sequences
by

Victor Zhenyu Guo(1), Yuan Yi(2)

Abstract

Let a and q be positive integers. The D. H. Lehmer problem introduces the distri-
bution of the set

{a : a ⩽ q, (a, q) = 1, ab ≡ 1 mod q, 2 ∤ a+ b}.

Zhang gave the initial approach. Lu and Yi considered a generalization of the Lehmer
problem, which restricts the integers in short intervals. In this paper, we study a more
general problem. Let

Bα,β
..= (⌊αn+ β⌋)∞n=1

be the Beatty sequence. Let c be a positive integer with (n, q) = (c, q) = 1, 0 <
δ1, δ2 ⩽ 1. We investigate the distribution of the set

{a : a ⩽ δ1q, b ⩽ δ2q, ab ≡ c mod q, n ∤ a+ b, a ∈ Bα,β}.

Key Words: The Lehmer problem, Beatty sequence, exponential sum, asymp-
totic formula.
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1 Introduction

Let q be a positive integer. For each integer a with 1 ⩽ a < q, (a, q) = 1, there is a unique
integer b with 1 ⩽ b < q such that ab ≡ 1 (mod q). We denote b by a. Let

r(q) ..= #{a : 1 ⩽ a ⩽ q, (a, q) = 1, 2 ∤ a+ a}.

The original problem is suggested by D. H. Lehmer (see [1, P. 251, F12]) to investigate a
nontrivial estimation for r(q) when q is an odd prime.

Zhang [12, 11, 10] gave the initial approach and obtained asymptotic formulas for r(q),
one of which reads as following:

r(q) =
1

2
φ(q) +O(q

1
2 d2(q) log2 q).

Liu and Zhang [4] considered two cases of the generalized Lehmer problems in special sets
on r-th residues and primitive roots respectively, obtained two interesting hybrid mean
value formulas of the error terms.
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The Lehmer problem was generalized by Lu and Yi [5] in the sense of short intervals.
Let n ⩾ 2 be a fixed positive integer, q ⩾ 3 and c be two integers with (n, q) = (c, q) = 1.
Let

rn(δ1, δ2, c, ; q) ..=
∑′

a⩽δ1q

∑′

b⩽δ2q

ab≡c mod q

n∤a+b

1 (0 < δ1, δ2 ≤ 1),

by
∑′

we indicate that the variable summed over takes values coprime to the number q.

By several methods of character sums, Gauss sums and Kloosterman sums, they proved

rn(δ1, δ2, c; q) =
(
1− n−1

)
δ1δ2φ(q) +O(q

1
2 d6(q) log2 q).

Based on the results obtained, we find that the Lehmer problem also has good distribu-
tion properties on some special sequences. It is interesting to generalize the Lehmer problem
in short intervals like Liu and Zhang’s paper [4] related to r-th residues and primitive roots.
In this paper, we study the mean value distribution of the generalized Lehmer problem
related to a generalized arithmetic progression.

For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the
sequence of integers defined by

Bα,β
..= (⌊αn+ β⌋)∞n=1 ,

where ⌊t⌋ denotes the integer part of any t ∈ R. Such sequences are also called generalized
arithmetic progressions. If α is irrational, it follows from a classical exponential sum esti-
mate of Vinogradov [9] that Bα,β contains infinitely many prime numbers; in fact, one has
the asymptotic estimate

#
{
prime p ⩽ x : p ∈ Bα,β

}
∼ α−1π(x) as x→ ∞,

where π(x) is the prime counting function.
For any irrational number α, we define its type τ = τ(α) by the following definition

τ ..= sup
{
t ∈ R : lim inf

n→∞
nt∥αn∥ = 0

}
.

Using Dirichlet’s approximation theorem, one can see that τ ⩾ 1 for every irrational number
α. Thanks to the work of Khintchine [2] and Roth [6, 7], it is known that τ = 1 for almost
all real numbers, in the sense of the Lebesgue measure, and for all irrational algebraic
numbers, respectively. Moreover, if α is an irrational number of type τ < ∞, then so are
α+ θ with θ a rational number, α−1 and nα−1 for all integer n ⩾ 1.

We denote

rn(δ1, δ2, c, α, β; q) ..=
∑′

a⩽δ1q

∑′

b⩽δ2q

ab≡c mod q

n∤a+b

a∈Bα,β

1 (0 < δ1, δ2 ≤ 1)

and obtain the following result.
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Theorem 1.1. Let n ≥ 2 be a fixed positive integer, q ≥ 3 and c be two integers with
(n, q) = (c, q) = 1, δ1, δ2 be real numbers satisfying 0 < δ1, δ2 ≤ 1. Let α > 1 be an
irrational number of finite type τ . Then we have the following asymptotic formula

rn(δ1, δ2, c, α, β; q) =
(
1− n−1

)
α−1δ1δ2φ(q) +O

(
(φ(q))

τ
τ+1+ε

)
,

where φ(·) is the Euler function, ε is a sufficiently small positive number and the implied
constant only depends on n.

Since τ = 1 for almost all real numbers, Theorem 1.1 gives an “almost all” result, which
gives an error term corresponding to the error term in classical Lehmer problems.

Corollary 1.2. Let n ≥ 2 be a fixed positive integer, q ≥ 3 and c be two integers with
(n, q) = (c, q) = 1, δ1, δ2 be real numbers satisfying 0 < δ1, δ2 ≤ 1. For almost all irrational
numbers α > 1, we have that

rn(δ1, δ2, c, α, β; q) =
(
1− n−1

)
α−1δ1δ2φ(q) +O

(
q

1
2+ε
)
,

where φ(·) is the Euler function, ε is a sufficiently small positive number and the implied
constant only depends on n.

2 Preliminaries

2.1 Notation

We denote by ⌊t⌋ and {t} the integer part and the fractional part of t, respectively. As is
customary, we put

e(t) ..= e2πit and ψ(t) ..= t− ⌊t⌋ − 1

2
.

The notation ∥t∥ is used to denote the distance from the real number t to the nearest
integer; that is,

∥t∥ ..= min
n∈Z

|t− n|.

Let P denote the set of primes in N. The letter p always denotes a prime. For a Beatty
sequence (⌊αn+ β⌋)∞n=1, we denote ω ..= α−1 and υ ..= α−1(1 − β). We use notation of
the form m ∼ M as an abbreviation for M < m ⩽ 2M . Let χ0 be the principal character
modulo q.

For an arbitrary set S, we use 1S to denote its indicator function:

1S(n) ..=

{
1 if n ∈ S,
0 if n ̸∈ S.

We use 1α,β to denote the characteristic function of numbers in a Beatty sequence:

1α,β(n) ..=

{
1 if n ∈ Bα,β ,

0 if n ̸∈ Bα,β .
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Throughout the paper, ε always denotes an arbitrarily small positive constant, which
may not be the same at different occurrences; the implied constants in symbols O, ≪ and
≫ may depend (where obvious) on the parameters α, n, ε but are absolute otherwise. For
given functions F and G, the notations F ≪ G, G ≫ F and F = O(G) are all equivalent
to the statement that the inequality |F | ⩽ C|G| holds with some constant C > 0.

2.2 Technical lemmas

We need the following well–known approximation of Vaaler [8].

Lemma 2.1. For any H ⩾ 1, there exist numbers ah, bh such that∣∣∣∣ψ(t)− ∑
0<|h|⩽H

ah e(th)

∣∣∣∣ ⩽ ∑
|h|⩽H

bh e(th), ah ≪ 1

|h|
, bh ≪ 1

H
.

The following lemma provides a convenient characterization of the numbers that occur
in the Beatty sequence Bα,β .

Lemma 2.2. A natural number m has the form ⌊αn+ β⌋ if and only if 1α,β(m) = 1, where
1α,β(m) ..=

⌊
−α−1(m− β)

⌋
−
⌊
−α−1(m+ 1− β)

⌋
.

Proof. Note that an integer m has the form m = ⌊αn+ β⌋ for some integer n if and only if

m− β

α
⩽ n <

m− β + 1

α
.

Lemma 2.3. Let α ∈ R, Q be an integer and P a positive integer. Then∣∣∣∣ Q+P∑
x=Q+1

e(αx)

∣∣∣∣ ⩽ min

(
P,

1

2∥α∥

)
.

Proof. See [3, Lemma 1].

2.3 Integers in Beatty sequences

Lemma 2.4. Let a, q be positive integers, δ ∈ (0, 1) be a real number, θ be a rational
number. Let α be an irrational number of finite type τ and H > 0. We have∑

a⩽δq

a∈Bα,β

e(θa) = α−1
∑

a⩽δ1q

e(θa) +O
(
∥θ∥−1q−ε + qε

)
.

Proof. We start by Lemma 2.2, then∑
a⩽δq

a∈Bα,β

e(θa) =
∑
a⩽δq

1α,β(a)e(θa),
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where

1α,β(m) ..=
⌊
−α−1(a− β)

⌋
−
⌊
−α−1(a+ 1− β)

⌋
= α−1 + ψ(−(ω(a+ 1− β)))− ψ(−ω(a− β)).

We deduce that ∑
a⩽δq

a∈Bα,β

e(θa) = α−1
∑
a⩽δq

e(θa) + S1 +O(S2),

where
S1 =

∑
a⩽δq

e(θa)
∑

0<|h|⩽H

ah(e(ωh(a+ 1− β))− e(ωh(a− β)))

and
S2 =

∑
a⩽δq

e(θa)
∑

|h|⩽H

bh(e(ωh(a+ 1− β)) + e(ωh(a− β)))

by Lemma 2.1 and H ..= qε. Let

υh ..= e(−ωhβ)(e(ωh)− 1) ≪ 1.

For S1, we have that

S1 =
∑

0<|h|⩽H

ahυh
∑
a⩽δq

e((θ + ωh)a). (1)

By Lemma 2.3, we have∑
a⩽δq

e((θ + ωh)a) ⩽ min

(
⌊δq⌋ , 1

2∥θ + ωh∥

)
. (2)

For any sufficiently small ε0 > 0, since θ/h+ω is of type τ , there exists some constant c > 0
such that ∥∥∥∥( θh + ω

)
h

∥∥∥∥ > ch−τ−ε0 , h ⩾ 1. (3)

Insert (2) and (3) to (1), it follows that

S1 ≪
∑

0<h<H

h−1hτ+ε0 ≪ Hτ+ε0 ≪ qε.

The contribution from h = 0 of S2 is∑
a⩽δq

1

H
e(θa) ≪ H−1∥θ∥−1 ⩽ ∥θ∥−1q−ε.

The contribution from h ̸= 0 of S2 is similar to S1, which is

≪
∑

0<h<H

H−1hτ+ε0 ≪ Hτ+ε ≪ qε.
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We remark that by taking

H = ∥θ∥−
1

τ+1+ε,

we have the optimal error term in Lemma 2.4, which gives that∑
a⩽δq

a∈Bα,β

e(θa) = α−1
∑

a⩽δ1q

e(θa) +O
(
∥θ∥−(

τ
τ+1+ε)

)
.

However, this optimization gives no better bound to our theorem. That is the reason we
keep the easy estimation of Lemma 2.4.

Lemma 2.5. Let a, q be positive integers, δ ∈ (0, 1) be a real number, θ be a rational
number. Let α be an irrational number of finite type τ . We have∑′

a⩽δq

a∈Bα,β

1 = α−1δφ(q) +O
(
(φ(q))

τ
τ+1+ε

)
.

Proof. The method is similar to the proof of Lemma 2.4. By Lemma 2.1 and Lemma 2.2∑′

a⩽δq

a∈Bα,β

1 =
∑′

a⩽δq

1α,β(a) = T1 + T2 + T3,

where

T1 ..=
∑′

a⩽δq

α−1;

T2 ..=
∑′

a⩽δq

∑
0<|h|⩽H

ah(e(ωh(a+ 1− β))− e(ωh(a− β)));

T3 ..=
∑′

a⩽δq

∑
|h|⩽H

bh(e(ωh(a+ 1− β)) + e(ωh(a− β))),

with
H ..= (φ(q))

1
τ+1−ε, ah ≪ |h|−1, bh ≪ |H|−1.

By a well-known estimation, it follows that

T1 = α−1δφ(q) +O(1).

To be short, let

g(a) ..=
∑

d|(a,q)

µ(d),

and
υh ..= e(−ωhβ)(e(ωh)− 1) ≪ 1.

We conclude that

T2 =
∑
a⩽δq

∑
0<|h|<H

g(a)ahυhe(ωha)
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=
∑

0<|h|<H

ahυh
∑
a⩽δq

g(a)e(ωha)

=
∑

0<|h|<H

ahυh
∑
d|q

µ(d)
∑

b⩽δq/d

e(ωhbd)

=
∑
d|q

µ(d)
∑

0<|h|<H

ahυh
∑

b⩽δq/d

e(ωhbd).

By Lemma 2.3, we have ∑
b⩽δq/d

e(ωhbd) ⩽ min

(⌊
δq

d

⌋
,

1

2∥ωhd∥

)
. (4)

For any sufficiently small ε0 > 0, since ωd is of type τ , there exists some constant c > 0
such that

∥ωhd∥ > ch−τ−ε0 , h ⩾ 1. (5)

Insert (5) to (4), we derive that

T2 ≪
∑
d|q

∑
0<h<H

h−1hτ+ε0 ≪ Hτ+ε0
∑
d|q

1 ≪ Hτ+ε ≪ (φ(q))
τ

τ+1+ε.

The contribution from h = 0 of T3 is

≪ H−1
∑′

a⩽δq

1 ≪ H−1φ(q) ≪ (φ(q))
τ

τ+1+ε.

The contribtuon from h ̸= 0 of T3 is similar to T2, which is

≪
∑
d|q

∣∣∣∣µ(d) ∑
0<h<H

H−1hτ+ε0

∣∣∣∣≪ Hτ+ε0
∑
d|q

1 ≪ (φ(q))
τ

τ+1+ε,

which is the same as T2.

3 Proof of Theorem 1.1

We begin by the definition

rn(δ1, δ2, c, α, β; q) = S1 − S2,

where

S1
..=
∑′

a⩽δ1q

∑′

b⩽δ2q

ab≡c mod q

a∈Bα,β

1
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and

S2
..=
∑′

a⩽δ1q

∑′

b⩽δ2q

ab≡c mod q

n|a+b

a∈Bα,β

1.

We work on S1, then

S1 =
∑′

a⩽δ1q

∑′

b⩽δ2q

ab≡c mod q

1α,β(a)

=
1

φ(q)

∑′

a⩽δ1q

∑′

b⩽δ2q

∑
χ mod q

χ(ab)χ(c)1α,β(a)

= S11 + S12,

where

S11
..=

1

φ(q)

∑′

a⩽δ1q

∑′

b⩽δ2q

1α,β(a)

and

S12
..=

1

φ(q)

∑
χ mod q
χ ̸=χ0

χ(c)

∑′

a⩽δ1q

χ(a)1α,β(a)

∑′

b⩽δ2q

χ(b)

 .

For S2, it follows that

S2 =
1

φ(q)

∑′

a⩽δ1q

∑′

b⩽δ2q

n|a+b

∑
χ mod q

χ(ab)χ(c)1α,β(a)

= S21 + S22,

where

S21
..=

1

φ(q)

∑′

a⩽δ1q

∑′

b⩽δ2q

n|a+b

1α,β(a)

and

S22
..=

1

φ(q)

∑
χ mod q
χ ̸=χ0

χ(c)
∑′

a⩽δ1q

∑′

b⩽δ2q

n|a+b

χ(ab)1α,β(a).

3.1 Estimation of S11

By the classical bound ∑′

a⩽δ1q

1 = δ1φ(q) +O(d(q)),
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and Lemma 2.5, we have

S11 =

(
δ2 +O

(
d(q)

φ(q)

)) ∑′

a⩽δ1q

1α,β(a)

=

(
δ2 +O

(
d(q)

φ(q)

))(
α−1δ1φ(q) +O

(
(φ(q))

τ
τ+1+ε

))
= α−1δ1δ2φ(q) +O

(
(φ(q))

τ
τ+1+ε

)
. (6)

3.2 Estimation of S21

Our estimation follows from the argument of [5, Equation (9)], which is

S21 =
1

φ(q)

∑′

a⩽δ1q

1α,β(a)
∑
b⩽δ2q

b≡−a mod n

∑
d|(b,q)

µ(d)

=
1

φ(q)

∑′

a⩽δ1q

1α,β(a)
∑
d|q

µ(d)
∑
b⩽δ2q
d|b

b≡−a mod n

1

=
1

φ(q)

∑′

a⩽δ1q

1α,β(a)
∑
d|q

µ(d)

(
δ2q

nd
+O(1)

)

=
1

φ(q)

∑′

a⩽δ1q

1α,β(a)

(
δ2φ(q)

n
+O(d(q))

)

=
1

φ(q)

(
α−1δ1φ(q) +O

(
(φ(q))

τ
τ+1+ε

))(δ2φ(q)
n

+O(d(q))

)
= α−1δ1δ2n

−1φ(q) +O
(
(φ(q))

τ
τ+1+ε

)
. (7)

Combining (6) and (7), we have

rn(δ1, δ2, c, α, β; q) = (1− n−1)α−1δ1δ2φ(q)

+S12 − S22 +O
(
(φ(q))

τ
τ+1+ε

)
.

(8)

3.3 Estimation of S22 and S12

We begin with

S22 =
1

nφ(q)

∑
χ mod q
χ ̸=χ0

χ(c)
∑′

a⩽δ1q

1α,β(a)
∑′

b⩽δ2q

χ(ab)

n∑
l=1

e

(
a+ b

n
l

)

=
1

nφ(q)

∑
χ mod q
χ ̸=χ0

χ(c)

n∑
l=1

 ∑
a⩽δ1q

1α,β(a)χ(a)e
(a
n
l
)
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·

∑
b⩽δ2q

χ(b)e

(
b

n
l

) (9)

Let

G(r, χ) ..=

q∑
h=1

χ(h)e

(
rh

q

)
be the Gauss sum. For any nonprincipal character χ mod q,

χ(a) =
1

q

q∑
r=1

G(r, χ)e

(
−ar
q

)
=

1

q

q−1∑
r=1

G(r, χ)e

(
−ar
q

)
and

l

n
− r

q
̸= 0

for 1 ⩽ l ⩽ n, 1 ⩽ r ⩽ q − 1 and (n, q) = 1. By the same argument of [5, Equation (13)],
we have ∑

b⩽δ2q

χ(b)e

(
b

n
l

)
=

1

q

q−1∑
r2=1

G(r2, χ)
f(δ2, l, r2;n, q)

e
(

r2
q − l

n

)
− 1

, (10)

where

f(δ, l, r;n, q) ..= 1− e

((
l

n
− r

q

)
⌊δq⌋

)
and

|f(δ2, l, r;n, q)| ⩽ 2.

For a, by Lemma 2.4 we have∑
a⩽δ1q

1α,β(a)χ(a)e
(a
n
l
)

=
1

q

∑
a⩽δ1q

1α,β(a)

q−1∑
r1=1

G(r1, χ)e

((
l

n
− r1

q

)
a

)

=
1

q

q−1∑
r1=1

G(r1, χ)
∑

a⩽δ1q

1α,β(a)e

((
l

n
− r1

q

)
a

)

=
1

αq

q−1∑
r1=1

G(r1, χ)

 ∑
a⩽δ1q

e

((
l

n
− r1

q

)
a

)
+O

(
q−ε

∥ l
n − r1

q ∥
+ qε

)
=

1

αq

q−1∑
r1=1

G(r1, χ)

 f(δ1, l, r1;n, q)

e
(

r1
q − l

n

)
− 1

+O

(
q−ε

∥ l
n − r1

q ∥
+ qε

) (11)

Combining (9), (10) and (11), we bound S22 by bounding

S23
..=

1

αnφ(q)q2

n∑
l=1

∑
χ mod q
χ ̸=χ0

χ(c)

q−1∑
r1=1

G(r1, χ)
f(δ1, l, r1;n, q)

e
(

r1
q − l

n

)
− 1
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·
q−1∑
r2=1

G(r2, χ)
f(δ2, l, r2;n, q)

e
(

r2
q − l

n

)
− 1

,

S24
..=

1

αnφ(q)q2+ε

n∑
l=1

∑
χ mod q
χ ̸=χ0

χ(c)

(
q−1∑
r1=1

G(r1, χ)
1

∥ l
n − r1

q ∥

)

·

 q−1∑
r2=1

G(r2, χ)
f(δ2, l, r2;n, q)

e
(

r2
q − l

n

)
− 1

 ,

S25
..=

1

αnφ(q)q2−ε

n∑
l=1

∑
χ mod q
χ ̸=χ0

χ(c)

q−1∑
r1=1

G(r1, χ)

q−1∑
r2=1

G(r2, χ)
f(δ2, l, r2;n, q)

e
(

r2
q − l

n

)
− 1

.

By the same argument of [5, Page 1273], it follows that

S23 ≪ d2(q)

q3/2

n∑
l=1

q−1∑
r=1

(r, q)∣∣e( r
q − l

n

)
− 1
∣∣
2

≪ q1/2d6(q) log2 q,

S24 ≪ d2(q)

q3/2+ε

n∑
l=1

q−1∑
r=1

(r, q)∣∣e( r
q − l

n

)
− 1
∣∣
2

≪ q1/2d6(q) log2 q,

S25 ≪ d2(q)

q3/2−ε

n∑
l=1

q−1∑
r1=1

(r1, q)

q−1∑
r2=1

(r2, q)∣∣e( r2
q − l

n

)
− 1
∣∣ ≪ q1/2+εd4(q) log q.

Hence eventually we derive
S22 ≪ q1/2+ε.

Taking that n = 1, we know that
S12 ≪ q1/2+ε.

With (8), the proof is complete.
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