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Abstract
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arithmetic properties of binomial coefficients. In this paper, we aim to give new results
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1 Introduction

Let n and k be nonnegative integers. The binomial coefficient
(
n
k

)
is defined by n!

k!(n−k)!

if k ≤ n, and is 0 otherwise. Binomial coefficients is an important class of integers in
mathematics. Accordingly, it has many properties and appears in all kinds of mathematical
fields.

For any prime p, we use νp(n) to denote the largest nonnegative integer e such that pe

divides n, that is, pe | n and pe+1 ∤ n. Here νp(n) is called the p-adic valuation of n. For
the calculation of the p-adic valuation of the binomial coefficient, we have the following
remarkable result of Kummer.
Theorem ([6], cf. [3]) For any integers 0 ≤ k ≤ n and any prime p:

νp

((
n

k

))
= ♯{carries when adding k to n− k in base p}.

Arithmetic properties of binomial coefficients are studied extensively in literature and
we refer the interested reader to consult articles [3], [2], [7]. Closely related to our object
in this article, in 2014, Guo and Krattenthaler [4] proved that Conjecture 1.2 of Sun [8] is
correct. Their result states that if a, b, n are positive integers and (bn+ 1) |

(
an+bn

an

)
for all

sufficiently large positive integers n, then each prime factor of a divides b. In other words,
if a has a prime factor not dividing b, then there are infinitely many positive integers n such
that (bn+ 1) ∤

(
an+bn

an

)
.

Guo and Krattenthaler [4] proposed the following conjecture:

Conjecture 1.1. ([4, Conjecture 7.2]) For any odd prime p, there are no positive integers
a > b such that (

an

bn

)
≡ 0 (mod pn− 1)

for all n ≥ 1.
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Yaqubi and Mirzavaziri [10] proved Conjecture 1.1 under the additional hypothesis ab ̸≡
0 (mod p) and they also provided a partial proof if p divides a. In this article we prove the
following general result.

Theorem 1.2. Let p be a prime, and let a, b, γ > 0, β ≥ 0 be integers. Suppose a > b
and aγ ̸= pu − p for any positive integer u ≥ 2. Then there exist infinitely many positive
integers n for which (

an

bn+ β

)
̸≡ 0 (mod pn− γ).

When γ = 1, we obtain the following consequence that improves a theorem of Yaqubi
and Mirzavaziri [10, Theorem 2.1].

Corollary 1.3. Let p be a prime, and let a, b, β ≥ 0 be integers. Suppose a > b and
a ̸= pu − p for any positive integer u ≥ 2. Then there exist infinitely many positive integers
n for which (

an

bn+ β

)
̸≡ 0 (mod pn− 1).

Using some properties of the p-adic valuation, Yaqubi and Mirzavaziri [10] confirmed
another conjecture of Guo and Krattenthaler[4]: For any positive integer m, there are
positive integers a and b such that am > b and(

amn

bn

)
≡ 0 (mod an− 1)

for all n ≥ 1 ([4, Conjecture 7.3]). Regarding this conjecture, we will prove in Section 4 the
following result.

Theorem 1.4. For any positive integer m, there exist positive integers a such that(
4amn

an

)
≡ 0 (mod (4an− 1)(2an− 1))

for all n ≥ 1. Furthermore, there exist positive integers a such that(
12amn

an

)
≡ 0 (mod (12an− 1)(6an− 1)(4an− 1)(3an− 1)(2an− 1))

for all n ≥ 1.

Guo and Krattenthaler [4] also proposed the following conjecture.

Conjecture 1.5. ([4, Conjecture 7.1]) Let α, β, a, b be integers and let p be a prime number.
Suppose 0 < b < a and p does not divide a. Then, for each r = 0, 1, . . . , p − 1, there are
infinitely many positive integers n such that(

an+ α

bn+ β

)
≡ r (mod p).
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For Conjecture 1.5, Vsemirnov [9] showed that
(
4n+α
2n+β

)
≡ 0, 1, 4 (mod 5) if (α, β) ∈

{(0, 0), (1, 0), (1, 1)} and
(
4n+α
2n+β

)
≡ 0, 2, 3 (mod 5) when (α, β) ∈ {(2, 1), (3, 1), (3, 2)}, which

can be used as counterexamples.

Much to our surprise, even knowing Conjecture 1.5 is false, proving the fact that there
exists a positive integer n such that

(
an+α
bn+β

)
̸≡ 0 (mod p) is not easy, and that is still open

now. We will give a partial result below.

Theorem 1.6. Let α, β, a, b be integers, and let p be a prime. Suppose p > a > b > 0.
Then there exists a positive integer n such that(

an+ α

bn+ β

)
̸≡ 0 (mod p).

In 2012, Sun [8] proposed the following conjecture.

Conjecture 1.7. ([8, Conjecture 1.10]) Let k and l be integers greater than one. If
(
kn
n

)
|(

ln
n

)(
kln
ln−1

)
for all n ∈ N, then k = l or l = 2 or {k, l} = {3, 5}. If

(
kn
n

)
|
(

ln
n−1

)(
kln
ln

)
for all

n ∈ N, then k = 2 and l + 1 is a power of 2.

In this paper, we confirm Conjecture 1.7 partially by proving the following two theorems.

Theorem 1.8. Let k and l be integers greater than one. If
(
kn
n

)
|
(
ln
n

)(
kln
ln−1

)
for all n ∈ N,

then k = l or l = 2 or {k, l} = {3, 5}.

Theorem 1.9. Let k and l be integers greater than one with k ̸= l. If
(
kn
n

)
|
(

ln
n−1

)(
kln
ln

)
for

all n ∈ N, then k = 2 and l + 1 is a power of 2.

Remark: To completely solve Conjecture 1.7, we need to show that for any positive
integer k ≥ 3, there exists a positive integer n such that

((k − 1)n+ 1) ̸ |
(
k2n

kn

)
.

However, we cannot do this now.

This paper is structured as follows. In Section 2, we state and prove several preliminary
results. Following that, in Section 3, we focus on introducing a special set that consists of
residue classes of binomial coefficients modulo a prime number p. In Section 4, we present
the proofs of Theorems 1.2 and 1.4, along with additional results related to Theorem 1.2.
Finally, in the last section, we provide the proofs for Theorems 1.8 and 1.9. Throughout
this paper, for a real number x, we let ⌊x⌋ denote the largest integer which is less than or
equal to x, and let {x} = x− ⌊x⌋ denote the fractional part of x.

2 Preliminary works

In 1878, Lucas [5] established an important result about the congruence of binomial coeffi-
cients that we recall below.
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Lemma 2.1. (Lucas [5]) Let n,m be nonnegative integers and p be any prime. Then(
n

m

)
≡

(
n0

m0

)(
n1

m1

)
. . .

(
nk

mk

)
(mod p),

where n = n0 + n1p + · · · + nkp
k and m = m0 + m1p + · · · + mkp

k, 0 ≤ mi, ni < p for
i = 0, 1, . . . , k are the p-adic expansions of n and m, respectively.

As an immediately consequence of Lucas’ result, we have the following lemma.

Lemma 2.2. Let n and m be nonnegative integers, k and ti be positive integers, where
1 ≤ i ≤ k. Rewrite n = n0+n1p

t1+· · ·+nkp
t1+···+tk and m = m0+m1p

t1+· · ·+mkp
t1+···+tk ,

where 0 ≤ mk, nk and 0 ≤ mi, ni < pti+1 for 0 ≤ i ≤ k − 1. Then we have(
n

m

)
≡

(
n0

m0

)(
n1

m1

)
. . .

(
nk

mk

)
(mod p).

For a rational number x = m/n, where m ∈ Z and n ∈ N, we set νp(x) = νp(m)− νp(n)
for any prime p. The following lemma follows from the definitions of νp(x) and ⌊x⌋, and we
will use it in this paper.

Lemma 2.3. (1) A rational number x is an integer if and only if νp(x) ≥ 0 for all prime
numbers p.

(2) Let n be a positive integer. Then, for any integer m > 1, we have⌊n+ 1

m

⌋
−
⌊ n

m

⌋
=

{
1, if m | (n+ 1),
0, otherwise.

We also need the following two results of Bober [1] and a result of Sun [8].

Lemma 2.4. (Bober [1, Lemma 3.2]) Let a1, . . . , aK , b1, . . . , bL be nonnegative integers and
let

un =
(a1n)! . . . (aKn)!

(b1n)! . . . (bLn)!
.

Then un is an integer for all n if and only if the function

f(x) =

K∑
k=1

⌊akx⌋ −
L∑

l=1

⌊blx⌋

is nonnegative for all x between 0 and 1.

Lemma 2.5. (Bober [1, Table 2]) Let n be a positive integer. Then

(15n)!(2n)!

(10n)!(4n)!(3n)!
∈ Z and

(15n)!(4n)!

(12n)!(5n)!(2n)!
∈ Z.

Lemma 2.6. (Sun [8, Theorem 1.6]) Let n be a positive integer. Then (10n + 1)
(
3n
n

)
|(

15n
5n

)(
5n−1
n−1

)
.

The following result is a direct consequence of Bober’s result in [1, Theorem 1.4].
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Lemma 2.7. Let k, l be positive integers greater than one. Then(
ln
n

)(
kln
ln

)(
kn
n

) =
(kln)!((k − 1)n)!

(kn)!((l − 1)n)!((k − 1)ln)!
∈ N

if and only if k = l or k = 2 or l = 2 or {k, l} = {3, 5}.

To prove our main results, we also need the following technical lemmas on the floor
function.

Lemma 2.8. Let n > 0 and m > 1 be integers. Suppose m ̸= 7, 11 and m|(4n+ 1). Then⌊15n
m

⌋
+
⌊2n
m

⌋
=

⌊10n
m

⌋
+
⌊4n
m

⌋
+
⌊3n
m

⌋
+ 1. (1)

If m = 7 or 11, then
⌊
15n
m

⌋
+
⌊
2n
m

⌋
=

⌊
10n
m

⌋
+
⌊
4n
m

⌋
+

⌊
3n
m

⌋
.

Proof. For m ̸= 7, 11, it is sufficient to prove that{
15n

m

}
+

{
2n

m

}
=

{
10n

m

}
+

{
4n

m

}
+

{
3n

m

}
− 1. (2)

Since m | (4n + 1), there is a positive integer t such that 4n + 1 = mt, where t ≡ 1, 3
(mod 4). We have{4n

m

}
=

{mt− 1

m

}
=

m− 1

m
,

{2n

m

}
=

{ 4n

2m

}
=

{mt− 1

2m

}
=

m− 1

2m
,{10n

m

}
=

{20n

2m

}
=

{5mt− 5

2m

}
=

m− 5

2m
(ifm > 3),{3n

m

}
=

{12n+ 3− 3

4m

}
=

{3mt− 3

4m

}
=

{
3m−3
4m , if t ≡ 1 (mod 4),

m−3
4m , if t ≡ 3 (mod 4),{15n

m

}
=

{60n+ 15− 15

4m

}
=

{15mt− 15

4m

}
=

{
3m−15

4m , if t ≡ 1 (mod 4) and m > 3,
m−15
4m , if t ≡ 3 (mod 4), m > 11.

Therefore, we get {
15n

m

}
+

{
2n

m

}
=

{
10n

m

}
+

{
4n

m

}
+

{
3n

m

}
− 1.

For m = 3, then n ≡ 2 (mod 3) since 3|(4n+ 1). Hence
{

15n
3

}
+
{

2n
3

}
= 0 + 1

3 = 1
3 and{

10n

3

}
+

{
4n

3

}
+

{
3n

3

}
− 1 =

2

3
+

2

3
+ 0− 1 =

1

3
.

Hence the identity (2) holds for m = 3.
If m = 7, then n ≡ 5 (mod 7) since 7|(4n+ 1). Hence

{
15n
7

}
+
{

2n
7

}
= 5

7 + 3
7 = 8

7 and{
10n

7

}
+

{
4n

7

}
+

{
3n

7

}
=

1

7
+

6

7
+

1

7
=

8

7
.
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Consequently, we get
{

15n
7

}
+
{

2n
7

}
=

{
10n
7

}
+
{

4n
7

}
+

{
3n
7

}
.

If m = 11, then n ≡ 8 (mod 11) since 11|(4n+1). Hence
{

15n
11

}
+
{

2n
11

}
= 10

11 +
5
11 = 15

11
and {

10n

11

}
+

{
4n

11

}
+

{
3n

11

}
=

3

11
+

10

11
+

2

11
=

15

11
.

Therefore, we obtain
{

15n
11

}
+
{

2n
11

}
=

{
10n
11

}
+
{

4n
11

}
+

{
3n
11

}
. This proves the lemma.

Proposition 2.9. Let n be a positive integer. Then

(4n+ 1) | 7 · 11 · (15n)!(2n)!

(10n)!(4n)!(3n)!
. (3)

Proof. Let

An :=
7 · 11 · (15n)!(2n)!

(4n+ 1)(10n)!(4n)!(3n)!
.

Then, for any prime p, we have

νp (An) = νp (7) + νp (11) +

∞∑
i=1

(⌊15n
pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n+ 1

pi

⌋
−
⌊3n
pi

⌋)
.

By Lemmas 2.4 and 2.5, for any x ∈ [0, 1], we have

⌊15x⌋+ ⌊2x⌋ − ⌊10x⌋ − ⌊4x⌋ − ⌊3x⌋ ≥ 0. (4)

For a prime p and a positive integer i, if pi ̸ |(4n + 1), then by Lemma 2.3 (2) and by
applying (4) to x = n/pt, we have⌊15n

pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n+ 1

pi

⌋
−
⌊3n
pi

⌋
=

⌊15n
pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n
pi

⌋
−
⌊3n
pi

⌋
≥ 0;

If pi|(4n+ 1) and pi ̸= 7, 11, then by Lemma 2.8, we have⌊15n
pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n+ 1

pi

⌋
−
⌊3n
pi

⌋
=

⌊15n
pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n
pi

⌋
−
⌊3n
pi

⌋
−1 = 0;

If pi|(4n+ 1) and pi = 7 or 11, then by Lemma 2.8 again, we have⌊15n
pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n+ 1

pi

⌋
−
⌊3n
pi

⌋
=

⌊15n
pi

⌋
+
⌊2n
pi

⌋
−
⌊10n

pi

⌋
−
⌊4n
pi

⌋
−
⌊3n
pi

⌋
−1 = −1.

Therefore νp (An) ≥ 0 for any prime p. This completes the proof.

Lemma 2.10. Let n > 0 and m > 1 be integers. Suppose that m ̸= 7, 9, 11, 13 and
m | (2n+ 1). Then ⌊15n

m

⌋
+
⌊4n
m

⌋
=

⌊12n
m

⌋
+
⌊5n
m

⌋
+
⌊2n
m

⌋
+ 1. (5)

If m = 7 or 9 or 11 or 13, then
⌊
15n
m

⌋
+
⌊
4n
m

⌋
=

⌊
12n
m

⌋
+

⌊
5n
m

⌋
+
⌊
2n
m

⌋
.
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Proof. For m ̸= 7, 9, 11, 13, it suffices to prove that{
15n

m

}
+

{
4n

m

}
=

{
12n

m

}
+

{
5n

m

}
+

{
2n

m

}
− 1. (6)

Since m | (2n + 1), 2n + 1 = mt, where t ≡ 1 (mod 2). Suppose that m = 3, 5, 7, 9, 11, 13,
since m|(2n + 1), we get n ≡ 1 (mod 3), 2 (mod 5), 3 (mod 7), 4 (mod 9), 5 (mod 11), 6
(mod 13), respectively. Hence

({15n

m

}
,
{4n

m

}
,
{12n

m

}
,
{5n

m

}
,
{2n

m

})
=



(
0, 1

3 , 0,
2
3 ,

2
3

)
, if m = 3,(

0, 3
5 ,

4
5 , 0,

4
5

)
, if m = 5,(

3
7 ,

5
7 ,

1
7 ,

1
7 ,

6
7

)
, if m = 7,(

2
3 ,

7
9 ,

1
3 ,

2
9 ,

8
9

)
, if m = 9,(

9
11 ,

9
11 ,

5
11 ,

3
11 ,

10
11

)
, if m = 11,(

12
13 ,

11
13 ,

7
13 ,

4
13 ,

12
13

)
, if m = 13.

If m ≥ 15, then we have{4n

m

}
=

{2mt− 2

m

}
=

m− 2

m
,

{2n

m

}
=

{mt− 1

m

}
=

m− 1

m
,{12n

m

}
=

{6mt− 6

m

}
=

m− 6

m
,

{15n

m

}
=

{15mt− 15

2m

}
=

m− 15

2m
,{5n

m

}
=

{5mt− 5

2m

}
=

m− 5

2m
.

Therefore, for m ̸= 7, 9, 11, 13, we have⌊15n
m

⌋
+
⌊4n
m

⌋
=

⌊12n
m

⌋
+
⌊5n
m

⌋
+
⌊2n
m

⌋
+ 1.

If m = 7 or 9 or 11 or 13, then
⌊
15n
m

⌋
+

⌊
4n
m

⌋
=

⌊
12n
m

⌋
+

⌊
5n
m

⌋
+

⌊
2n
m

⌋
. This completes the

proof.

Lemma 2.11. Let n and m be positive integers with m > 1 such that m | (12n+ 1). Then⌊15n
m

⌋
+
⌊4n
m

⌋
=

⌊12n
m

⌋
+
⌊5n
m

⌋
+
⌊2n
m

⌋
+ 1. (7)

Proof. It is sufficient to prove that{
15n

m

}
+

{
4n

m

}
=

{
12n

m

}
+

{
5n

m

}
+

{
2n

m

}
− 1. (8)
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Now m | (12n + 1) implies that there exists a positive integer t such that 12n + 1 = mt,
where t ≡ 1, 5, 7, 11 (mod 12). By calculation, we obtain{12n

m

}
=

m− 1

m
,{15n

m

}
=

{5mt− 5

4m

}
=

{
m−5
4m , if t ≡ 1, 5 (mod 12),
3m−5
4m , if t ≡ 7, 11 (mod 12),{4n

m

}
=

{mt− 1

3m

}
=

{
m−1
3m , if t ≡ 1, 7 (mod 12),
2m−1
3m , if t ≡ 5, 11 (mod 12),{2n

m

}
=

{mt− 1

6m

}
=

{
m−1
6m , if t ≡ 1, 7 (mod 12),
5m−1
6m , if t ≡ 5, 11 (mod 12).

{5n

m

}
=

{5mt− 5

12m

}
=


5m−5
12m , if t ≡ 1 (mod 12),
m−5
12m , if t ≡ 5 (mod 12),
11m−5
12m , if t ≡ 7 (mod 12),

7m−5
12m , if t ≡ 11 (mod 12).

Therefore, the equality (8) holds for all integers n > 0 and m > 1 with m | (12n + 1).
Hence the lemma is proved.

Proposition 2.12. Let n be a positive integer. Then

(2n+ 1) | 7 · 9 · 11 · 13 · (15n)!(4n)!

(12n)!(5n)!(2n)!
. (9)

Proof. Let

Bn :=
7 · 9 · 11 · 13 · (15n)!(4n)!
(2n+ 1)(12n)!(5n)!(2n)!

.

For any prime p, the p-adic valuation of Bn is given by

νp (Bn) = νp (7) + νp (9) + νp (11) + νp (13)

+

∞∑
i=1

(⌊15n
pi

⌋
+
⌊4n
pi

⌋
−
⌊12n

pi

⌋
−

⌊5n
pi

⌋
−
⌊2n+ 1

pi

⌋)
.

Using Lemma 2.10, by similar arguments to the proof of Proposition 2.9, we get νp (Bn) ≥ 0
for any odd prime p. This completes the proof.

Similarly, by Lemma 2.11, we also have the following result.

Proposition 2.13. Let n be a positive integer. Then

(12n+ 1) | (15n)!(4n)!

(12n)!(5n)!(2n)!
. (10)
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3 A special subset of the residue class group Zp

In this section, we will consider a special subset of the residue class ring Zp. Throughout
this section, we let a > b be positive integers, α, β be any integers and p be prime satisfying
gcd(p, a) = 1. Let

A(a, b;α, β; p) :=

{(
an+ α

bn+ β

)
(mod p), n ∈ N

}
,

and write A(a, b;α, β) for short when the prime p does not need to be mentioned, and
A(a, b) for short when (α, β) = (0, 0) in addition.

Let’s begin with the following useful lemma.

Lemma 3.1. (i) For any x, y ∈ A(a, b), we have xy ∈ A(a, b).
(ii) For any x ∈ A(a, b), y ∈ A(a, b;α, β), we have xy ∈ A(a, b;α, β).

Proof. Since x, y ∈ A(a, b), there are positive integers n1, n2 ∈ N such that(
an1

bn1

)
≡ x (mod p) and

(
an2

bn2

)
≡ y (mod p).

Let m be a positive integer with pm > an2. By Lemma 2.2, we have(
a(n1p

m + n2)

b(n1pm + n2)

)
=

(
an1p

m + an2

bn1pm + bn2

)
≡

(
an1

bn1

)(
an2

bn2

)
≡ xy (mod p).

This proves (i).
As for (ii), by the same argument as in (i), we choose m such that pm > max{an2 +

α, bn2 + β}. Then(
a(n1p

m + n2) + α

b(n1pm + n2) + β

)
=

(
an1p

m + (an2 + α)

bn1pm + (bn2 + β)

)
≡

(
an1

bn1

)(
an2 + α

bn2 + β

)
≡ xy (mod p).

This completes the proof of (ii).

Here is an example of using this useful lemma to prove that there exist infinitely many
positive integers n such that (

4n+ 21

2n

)
≡ r (mod 5)

for each r = 0, 1, 2, 3, 4. By the result of Vsemirnov [9], we have that
(
4n1

2n1

)
≡ 0, 1,−1

(mod 5) holds for any positive integer n1. Note that when n2 = 2, n3 = 68, Lemma 2.1
gives(
4n2 + 21

2n2

)
≡

(
4

4

)(
0

0

)(
1

0

)
≡ 1 (mod 5) and

(
4n3 + 21

2n3

)
≡

(
3

1

)(
3

2

)(
1

0

)(
2

1

)
≡ 3 (mod 5),

respectively. Hence, {0, 1, 2, 3, 4} ⊂ A(4, 2; 21, 0; 5) by Lemma 3.1. That is, the conclusion
is established.
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Remark 3.2. For any positive integers a, b,m and any prime p, by Lemma 2.2, we note
that (

anpm

bnpm

)
≡

(
an

bn

)
(mod p).

This implies that, for any integer r, if there exists a positive integer n such that
(
an
bn

)
≡ r

(mod p), then there are infinitely many positive integers n satisfying
(
an
bn

)
≡ r (mod p).

For a positive integer m, let φ(m) denote the Euler function, that is, φ(m) is the
number of elements in the sequence 1, 2, . . . ,m which are relatively prime to m. We have
the following proposition.

Proposition 3.3. Let α, β, a, b be integers, and let p be a prime. Suppose 0 < b < a and p
does not divide a. Then 0 ∈ A(a, b;α, β).

Proof. Since gcd(p, a) = 1 and
(
an
bn

)
=

(
an

(a−b)n

)
, we may assume that gcd(ab, p) = 1, then

b | pφ(b) − 1. Let m ∈ N and let nm be the positive integer such that

bnm = pmφ(b) − 1.

As bnm = (p− 1)+ p(p− 1)+ · · ·+(p− 1)pmφ(b)−1, we have
(
anm

bnm

)
̸≡ 0 (mod p) if and only

if anm ≡ bnm ≡ pmφ(b) − 1 (mod pmφ(b)). Hence a ≡ b (mod pmφ(b)), which is impossible
for sufficiently large m. Therefore, there are infinitely many positive integers n such that(
an
bn

)
≡ 0 (mod p). Hence the result follows from Lemma 3.1.

The following corollary follows immediately from Lemma 3.1 and Theorem 3.3.

Corollary 3.4. Let p be a prime and g be a primitive root modulo p. If there exists a
positive integer n such that (

an

bn

)
≡ g (mod p),

then r ∈ A(a, b) for each r = 0, 1, . . . , p− 1.

Moreover, Lemma 3.1 and Theorem 3.3 lead to the following two problems:

Problem 3.5. Is it true that there exists an n ∈ N such that
(
an+α
bn+β

)
̸≡ 0 (mod p)?

Problem 3.6. What are the elements of the set A(a, b)?

We present partial results about these two problems. Let p be a prime, by Wilson’s
Theorem one always has (

p− 1

b

)
≡ (−1)b (mod p),

hence (−1)b ∈ A(p − 1, b). Theorem 1.6 is a special solution to Problem 3.5 under the
condition p > a > b > 0.

Proof of Theorem 1.6: Without loss of generality, we may assume that α ≥ 0. We
can also suppose that β ≥ 0 because

(
an+α
bn+β

)
=

(
an+α

(a−b)n+α−β

)
. Since gcd(p, a) = 1, we can

find 0 ≤ m1 ≤ p − 1 such that am1 + α ≡ p − 1 (mod p), so am1 + α = α1p + p − 1
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and bm1 + β = β1p + w1, where α1, β1 ≥ 0 and 0 ≤ w1 ≤ p − 1. Assume that α = up + v
and β = sp+ t, where u, v, s, t ≥ 0 and 0 ≤ v, t ≤ p− 1. Since b < a < p, we have

α1 =
⌊am1 + α

p

⌋
=

⌊am1

p

⌋
+

⌊α
p

⌋
≤ u+ p− 2

and

β1 =
⌊bm1 + β

p

⌋
=

⌊bm1

p

⌋
+
⌊β
p

⌋
+ ε1 ≤ s+ p− 2,

where ε1 ∈ {0, 1}.
Let n = n1p+m1. Then(
an+ α

bn+ β

)
=

(
an1p+ am1 + α

bn1p+ bm1 + β

)
≡

(
an1p+ α1p+ p− 1

bn1p+ β1p+ w1

)
≡ ±

(
an1 + α1

bn1 + β1

)
(mod p).

Repeating the above procedure, we finally have a nonnegative integer j such that αj < p,
βj < p, and it holds (

an+ α

bn+ β

)
≡ ±

(
anj + αj

bnj + βj

)
(mod p),

where

αj =
⌊amj + αj−1

p

⌋
and βj =

⌊bmj + βj−1

p

⌋
.

If αj < βj < p, then

αj+1 =
⌊amj+1

p

⌋
and βj+1 =

⌊bmj+1

p

⌋
+ εj+1,

where εj+1 ∈ {0, 1}. Hence
p > αj+1 + 1 ≥ βj+1. (11)

If αj+1 < βj+1 < p, then, by (11),

αj+1 + 1 = βj+1 < p.

Since b < a < p, it holds

αj+2 =
⌊amj+2 + αj+1

p

⌋
=

⌊amj+2 + βj+1 − 1

p

⌋
≥

⌊bmj+2

p
+ βj+1

⌋
= βj+2.

Consequently, we can find a non-negative integer u such that p > αu ≥ βu ≥ 0. Let
nu = pk, where k ≥ 1. Therefore, by Lemma 2.1,(

an+ α

bn+ β

)
≡ ±

(
anu + αu

bnu + βu

)
≡ ±

(
a

b

)(
αu

βu

)
̸≡ 0 (mod p)

as desired. This completes the proof of Theorem 1.6. 2

Remark 3.7. Theorem 1.6 gives a partial result for Problem 3.5. The general problem is
difficult, we even do not know the answer of Problem 3.5 for p = 2.
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For Problem 3.6, we give in Theorem 3.8 the answer when a ≡ b (mod pm+2) and
b < pm − 2pm−1.

Theorem 3.8. Let p be an odd prime, m ∈ N, and let a and b be positive integers such
that a > b, a ≡ b (mod pm+2) and b < pm − 2pm−1. Then, for each r = 0, 1, . . . , p − 1,
there exist infinitely many positive integers n for which(

an

bn

)
≡ r (mod p).

Proof. Let u be the least nonnegative integer such that pm = bn1 − u, n1 ∈ N. Then
we have u < b < pm − 2pm−1 and bn1 = pm + u. Since b ≡ a (mod pm+2), we have
an1 = tpm+s + pm + u, p ∤ t, s ≥ 2. Let n2 = ps + g, 0 ≤ g ≤ p − 1. Now we consider the
residue class (

(tpm+s + pm + u)n2

(pm + u)n2

)
(mod p).

Then we have (pm + u)(ps + g) = pm+s + gpm + u(ps + g), (tpm+s + pm + u)(ps + g) =
tpm+2s+(tg+1)pm+s+gpm+u(ps+g), and gpm+u(ps+g) < pm+s since u < b < pm−2pm−1

and s ≥ 2. Hence by Lemma 2.2(
(tpm+s + pm + u)n2

(pm + u)n2

)
≡

(
tg + 1

1

)(
gpm + u(ps + g)

gpm + u(ps + g)

)
≡ tg + 1 (mod p).

Since g ranges from 0 to p− 1 and gcd(t, p) = 1, we get the desired result by Remark 3.2.

Next, we introduce several related examples.

Proposition 3.9. Let p be a prime, α, t be positive integers with p ∤ t. Then, for each
r = 0, 1, . . . , p− 1, there are infinitely many positive integers n for which(

(tpα + 1)n

n

)
≡ r (mod p).

Proof. Let n = pα + g, where 0 ≤ g ≤ p− 1. Then

(pα + g)(tpα + 1) = tp2α + (tg + 1)pα + g.

Now we choose the positive integer g such that tg + 1 is a primitive root modulo p (since
we have φ(p− 1) ways to choose g), then we have(

(pα + g)(tpα + 1)

(pα + g)

)
≡

(
g

g

)(
tg + 1

1

)
≡ tg + 1 (mod p).

In conclusion, Proposition 3.2 follows from Corollary 3.4 and Remark 3.2.

Proposition 3.10. Let p be a prime. Then, for each r = 0, 1, . . . , p−1, we have r ∈ A(2, 1).
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Proof. Let

Mn =

⟨(
2

1

)
,

(
4

2

)
, . . . ,

(
2n

n

)⟩
be the multiplicative subgroup of Q generated by

(
2
1

)
,
(
4
2

)
, . . . ,

(
2n
n

)
. Then we have q ∈ Mn

for any prime q ≤ 2n. We prove this by induction on n.
We have 2 =

(
2
1

)
∈ M1, 3 =

(
4
2

)
/
(
2
1

)
∈ M2. Assume that the statement holds for n, that

is, q ∈ Mn for any prime q ≤ 2n. If 2n+ 1 is not a prime, then the statement is obviously
true. If 2n+ 1 is a prime, then

2n+ 1 =
(n+ 1)

(
2n+2
n+1

)
2
(
2n
n

) ∈ Mn+1.

Therefore, any prime p ≤ 2n belongs to Mn. Let g be a primitive root modulo p and t be a
positive integer with 2t > p. Then g ∈ Mt. From Corollary 3.4, the proof of the proposition
is completed.

4 Proofs of Theorems 1.2, 1.4, and some results related
to Theorem 1.2

In this section, we will prove Theorems 1.2 and 1.4, and additionally obtain some results
related to Theorem 1.2.

Proof of Theorem 1.1: Since aγ ̸= pu − p for any positive integer u ≥ 2, p+ aγ has
a prime divisor q ̸= p, and hence q ∤ aγ. Let

nm =
qmφ(a) − 1

a
, m ∈ N.

For a positive integer m with (a− b)nm ≥ β and bnm + β ≥ 0, we have(
anm

bnm + β

)
=

(
qmφ(a) − 1

bnm + β

)
̸≡ 0 (mod q).

On the other hand, we have

pnm − γ = p · q
mφ(a) − 1

a
− γ ≡ −aγ + p

a
≡ 0 (mod q).

Therefore (
anm

bnm + β

)
̸≡ 0 (mod pnm − γ)

for large enough positive integersm. This completes the proof of Theorem 1.2. 2

The following is a result similar to Theorem 1.2.

Theorem 4.1. Let a > b be positive integers, β ≥ 0 and γ > 0 be integers and p be prime
such that a > p and aγ − p ̸= pu for any nonnegative integer u. Then there exist infinitely
many positive integers n for which(

an

bn+ β

)
̸≡ 0 (mod pn+ γ).



442 Results on some conjectures about binomial coefficients

Proof. Since aγ − p ̸= pu for any nonnegative integer u, aγ − p has a prime divisor q ̸= p,
and hence q ∤ aγ. Let

nm =
qmφ(a) − 1

a
, m ∈ N.

For the positive integer m with (a− b)nm ≥ β and bnm + β ≥ 0, we have(
anm

bnm + β

)
=

(
qmφ(a) − 1

bnm + β

)
̸≡ 0 (mod q).

On the other hand, we have

pnm + γ = p · q
mφ(a) − 1

a
+ γ ≡ aγ − p

a
≡ 0 (mod q).

Therefore (
anm

bnm + β

)
̸≡ 0 (mod pnm + γ)

for sufficient large positive integers m. This proves Theorem 4.1.

Now we introduce the interesting example when a = (p + 1), b = 1, β = 0, and γ = 1.
Here we have (

(p+ 1)n

n

)
=

pn+ 1

n

(
(p+ 1)n

n− 1

)
≡ 0 (mod pn+ 1)

since gcd(pn+ 1, n) = 1. Hence(
(p+ 1)n

n

)
≡ 0 (mod pn+ 1)

for all n ≥ 1.
Proof of Theorem 1.4: Let p1 = 2 < p2 = 3 < p3 = 5 < · · · be the sequence of prime

numbers. Choose s such that ps ≥ 8m− 1 and put

a =

s∏
i=1

pi.

By the choice of a, we have that q > ps ≥ 8m−1 for any prime divisor q of (2an−1)(4an−1).
We have, for a certain positive integer A,(

4amn

an

)
=

8m3A(4an− 1)(2an− 1)

(an− 1) · · · (an−m) · · · (an− 2m)

(
4amn− 2m− 1

an− 2m− 1

)
.

For any positive integer t with 1 ≤ t ≤ 2m, we have

gcd(4an− 1, an− t) = gcd(4t− 1, an− t) ≤ 4t− 1 ≤ 8m− 1 < q

and gcd(2an−1, an−t) ≤ 2t−1 ≤ 4m−1 < q. Hence gcd((4an−1)(2an−1),
∏2m

i=1(an−i)) =
1, which implies that (

4amn

an

)
≡ 0 (mod (4an− 1)(2an− 1))
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for all n ≥ 1.
Similarly, choose s so that ps ≥ 72m− 1 and put

a =

s∏
i=1

pi.

Now we have that q > qs ≥ 72m− 1 for any prime divisor q of (12an− 1)(6an− 1)(4an−
1)(3an− 1)(2an− 1). We have, for a certain positive integer B,(
12amn

an

)
=

12m6B(12an− 1)(6an− 1)(4an− 1)(3an− 1)(2an− 1)

(an− 1) · · · (an−m) · · · (an− 2m) · · · (an− 6m)

(
12amn− 6m− 1

an− 6m− 1

)
.

For any positive integer t with 1 ≤ t ≤ 6m, we have

gcd(12an− 1, an− t) = gcd(12t− 1, an− t) ≤ 12t− 1 ≤ 72m− 1 < q,

and similarly,

gcd(6an− 1, an− t) < q, gcd(4an− 1, an− t) < q, gcd(3an− 1, an− t) < q,

and gcd(2an− 1, an− t) < q. Hence

gcd((12an− 1)(6an− 1)(4an− 1)(3an− 1)(2an− 1),

6m∏
i=1

(an− i)) = 1,

which implies(
12amn

an

)
≡ 0 (mod (12an− 1)(6an− 1)(4an− 1)(3an− 1)(2an− 1))

for all n ≥ 1. This proves Theorem 1.4. 2

5 Proofs of Theorems 1.8 and 1.9

In this section, we will prove Theorems 1.8 and 1.9. Let k, l > 1 be fixed integers. Denote

Un :=

(
ln
n

)(
kln
ln

)(
kn
n

) . (12)

Our strategy for proving these two theorems is as follows: We rewrite the formula in
Theorems 1.8 and 1.9 in the form of

s

t
· Un, s, t ∈ N, gcd(s, t) = 1.

If Un is not an integer, we use a similar argument to the proof of Bober’s Lemma [1, Lemma
3.3]. If Un is an integer, then k = l or k = 2 or {k, l} = {3, 5} by Lemma 2.7. Finally, we
prove the results case by case.
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Proof of Theorem 1.8: Let k, l > 1 be fixed integers. Denote

Cn :=

(
ln
n

)(
kln
ln−1

)(
kn
n

) .

Then

Cn =
ln

kln− ln+ 1
Un.

We first consider the case when Un /∈ N. Our argument here is similar to the proof of
Bober’s Lemma [1, Lemma 3.3], and we state it as follows.

Let
f(x) := ⌊klx⌋+ ⌊(k − 1)x⌋ − ⌊kx⌋ − ⌊(l − 1)x⌋ − ⌊(k − 1)lx⌋.

Then, by Lemma 2.3, we know that there is at least one prime p, such that

νp (Un) =

∞∑
α=1

f

(
n

pα

)
< 0.

Since f is a step function, there is some interval, say [β, β + ϵ], such that f(x) < 0 for all
x ∈ [β, β + ϵ] . Besides, there exists δ > 0, such that f(x) = 0 for all x ∈ [0, δ] . Note that
if we could find some m and p such that m

p ∈ [β, β + ϵ] and m
p2 ∈ [0, δ], then we would

have f
(

m
p

)
< 0 and f

(
m
pα

)
= 0 for all α ≥ 2. That is, if m and p simultaneously satisfy

pβ ≤ m ≤ p (β + ϵ) and 0 ≤ m ≤ p2δ for fixed ϵ and δ, then

νp (Um) =

∞∑
α=1

f

(
m

pα

)
< 0.

For prime p large enough, say p > P1, we get p2δ > p (β + ϵ) and for p large enough,
say p > P2, we have pϵ > 2. Therefore, there are at least two consecutive integers in the
interval (pβ, pβ + pε). We choose the integer in the interval which is relatively prime to p,
say m0. Therefore, for any p > P = max{P1, P2, l}, there exists an integer m0 such that
gcd(m0, p) = 1 and νp (Um0

) < 0.
Let Um0 = A

B , where A,B ∈ N and gcd (A,B) = 1. Then p|B and gcd(lm0, p) = 1.
Since

Cm0
=

lm0

klm0 − lm0 + 1

A

B
,

it follows that Cm0
is not an integer. In other words, we can find m0 such that

(
km0

m0

)
∤(

lm0

m0

)(
klm0

lm0−1

)
in this case.

Next we deal with the case when Un ∈ N. By Lemma 2.7, we have k = l or k = 2 or
l = 2 or {k, l} = {3, 5}. We divide the remaining proof into five cases.

Case 1: k = l. Then, by the definitions of Un and Cn, we find that

Cn =
kn

k2n− kn+ 1
· Un =

kn

k2n− kn+ 1
·
(
k2n

kn

)
=

(
k2n

kn− 1

)
.

Hence

Cn =
kn

k2n− kn+ 1
Un ∈ N.
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Case 2: k = 3, l = 5. Then

Un =

(
5n
n

)(
15n
5n

)(
3n
n

) =
(15n)!(2n)!

(10n)!(4n)!(3n)!
, kln− ln+ 1 = 10n+ 1.

Lemma 2.6 implies that

(10n+ 1) |
(
5n
n

)(
15n
5n

)
5
(
3n
n

)
for all n ∈ N, so

Cn =
5n

10n+ 1
Un ∈ N.

Case 3: k = 5, l = 3. Then

Un =

(
3n
n

)(
15n
3n

)(
5n
n

) =
(15n)!(4n)!

(12n)!(5n)!(2n)!
, kln− ln+ 1 = 12n+ 1.

Note that Proposition 2.13 implies that (12n+ 1)|Un. It follows that

Cn =
3n

12n+ 1
Un ∈ N.

Case 4: k = 2. Then

Un =

(
ln
n

)(
2ln
ln

)(
2n
n

) , kln− ln+ 1 = ln+ 1.

In view of the case k = l, we may suppose that l ≥ 3. We take a prime number p that
satisfies p = lr − 1, where l, r ∈ N and r > 4. Now consider the situation when n = 2p− r.
Thus{

ln

p

}
=

p− 1

p
,

{
2ln

p

}
=

p− 2

p
,

{
n

p

}
=

p− r

p
,

{
2n

p

}
=

p− 2r

p
,

{
(l − 1)n

p

}
=

r − 1

p
.

At this point, notice that{
2ln

p

}
+

{
n

p

}
−
{
ln

p

}
−

{
2n

p

}
−
{
(l − 1)n

p

}
= 0,

which means that ⌊2ln
p

⌋
+
⌊n
p

⌋
=

⌊ ln
p

⌋
+
⌊2n
p

⌋
+
⌊ (l − 1)n

p

⌋
.

Take notice of
ln+ 1 = l(2p− r) + 1 = 2lp− p = (2l − 1)p

and
2ln+ 2 = (4l − 2)p = (4l − 2)(lr − 1) < l2r2 − 2lr + 1 = p2,

which means that 2ln < p2, so νp (Un) = 0 and νp

(
Un

ln+1

)
< 0. That is to say, ln+ 1 ∤ Un,

which proves that

Cn =
ln

ln+ 1
Un /∈ N.
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Case 5: l = 2. Then

Un =

(
2n
n

)(
2kn
2n

)(
kn
n

) , kln− ln+ 1 = 2kn− 2n+ 1.

By Example 1.9 in Sun[8], we can get that Cn ∈ N in this situation.
This completes the proof of Theorem 1.8. 2

Proof of Theorem 1.9: Let

Dn :=

(
ln

n−1

)(
kln
ln

)(
kn
n

) .

Then
Dn =

n

ln− n+ 1
Un.

The proof of the case of Un /∈ N is completely analogue to that of the proof in Theorem
1.8. Consequently, we only point out the essential differences between the two proofs.

Suppose that Un = A
B /∈ N, where A,B ∈ N and gcd (A,B) = 1. Then every prime

p > P = max{P1, P2} occurs as a factor in B. In addition,

Tm0
=

m0

lm0 −m0 + 1

A

B
.

Therefore, if prime p > max{P1, P2} with (p,m0) = 1, then Tm0
is not an integer. That is

to say, we can find m0 such that
(
km0

m0

)
∤
(

lm0

m0−1

)(
klm0

lm0

)
in this case.

Assume now Un ∈ N. Similarly, by Lemma 2.7, we have k = l or k = 2 or l = 2 or
{k, l} = {3, 5}. Hence we divide the remaining proof into four cases by the assumption that
k ̸= l.

Case 1: k = 3, l = 5. Then

Un =

(
5n
n

)(
15n
5n

)(
3n
n

) =
(15n)!(2n)!

(10n)!(4n)!(3n)!
, ln− n+ 1 = 4n+ 1.

Proposition 2.9 implies Dn /∈ N in this case.
Case 2: k = 5, l = 3. Then

Un =

(
3n
n

)(
15n
3n

)(
5n
n

) =
(15n)!(4n)!

(12n)!(5n)!(2n)!
, ln− n+ 1 = 2n+ 1.

Proposition 2.12 shows Dn /∈ N in this case.
Case 3: l = 2. Then

Un =

(
2n
n

)(
2kn
2n

)(
kn
n

) , ln− n+ 1 = n+ 1.

We can conclude from Sun’s result [8, Theorem 1.3(i)] that there are integers n ≥ 0 such
that

(n+ 1) | (2k + 1)

(
2n
n

)(
2kn
2n

)(
kn
n

) ,
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while

(n+ 1) ∤
(
2n
n

)(
2kn
2n

)(
kn
n

) .

Hence

Dn =
n

n+ 1

(
2n
n

)(
2kn
2n

)(
kn
n

) /∈ N.

Case 4: k = 2. Then

Un =

(
ln
n

)(
2ln
ln

)(
2n
n

) , ln− n+ 1 = ln− n+ 1.

We can conclude from Sun’s result [8, Theorem 1.3(ii)] that there are integers n ≥ 0 such
that

(ln− n+ 1) | (l + 1)′
(
2ln
ln

)(
ln
n

)(
2n
n

) ,

while

(ln− n+ 1) ∤
(
2ln
ln

)(
ln
n

)(
2n
n

) ,

where (l + 1)′ is the odd part of (l + 1). Note if (l + 1) is a power of 2, then (l + 1)′ = 1,
thereby

Dn =
n

ln− n+ 1

(
ln
n

)(
2ln
ln

)(
2n
n

) ∈ N.

In conclusion, the proof of Theorem 1.9 is completed. 2
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