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Graphs which are intervals
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Abstract

A graph G is called an interval if there exist a, b ∈ V (G) such that G is the union
of shortest paths connecting a and b. In this paper we show that

1. If G is an interval between a and b, then there exists a path H with diameter
d(H) = d(G) such that there is a homomorphism f : G → H and the distance
ρ(a, b) + 1 ≤ |H| ≤ |G| − 1;

2. Every interval is a connected bipartite graph;

3. If G is an interval between a and b that is not a path, then G has a path P with
internal vertices (if any) all of degree 2 such that deletion of the internal vertices
of P from G gives rise to an interval (if P = uv then G− uv is an interval).
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1 Intervals

The surface of the sphere S in 3-dimensional Euclidean space has the property that if a, b
are the end points of any diameter then S is the union of all geodesics connecting a and b.
The metric is the intrinsic path metric of S; the distance between x, y ∈ S is the length of a
geodesic arc connecting x and y in S. A general question is: which metric spaces in which
every two points are connected by a geodesic has this property. While we are not able to
resolve the question in general, we are able to determine the graphs with this property.

Let G be a connected graph. If there exist a, b ∈ V (G) such that the union of shortest
paths connecting a and b is G, then G is called an interval. The vertices a, b are called
extremal, or diametrical vertices of G. Our aim is to determine all intervals. The family of
graphs we abbreviate as intervals in this note appear as important computational models
in task scheduling [4] and parallel computing [4, 5, 6]. We cannot use the more appropriate
term geodesic graphs as the term was already in use in a different context [2]. The term
interval is not an abuse since each graph we call an interval is the union of shortest paths
connecting a pair of vertices and hence it possesses a faithful embedding as an interval in a
partially ordered set with a rank function.

Let G be a graph and let A,B ⊆ V (G). Define [A,B] = {ab ∈ E(G) : a ∈ A, b ∈ B}.
Note that we did not require that A∩B = ∅. Note also that if a graph is not specified, then
[A,B] is the set of all edges with one end in A and the other end in B. Hence if A∩B = ∅
and |A| = m, |B| = n, then [A,B] = Km,n the complete bipartite graph with parts of m
and n vertices.
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Let G be an interval. Then a replacement of a set of multiple edges between two vertices
by a single edge gives rise to an interval. Hence we may assume that graphs in this note
are simple. That is, the graphs have no loops or multiple edges.

We show some examples of intervals in the figure below.
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Figure 1. Examples of intervals.

Let G be an interval with extremal vertices a and b. For u, v ∈ V (G), ρ(u, v) denotes the
length of a shortest path connecting u and v in G. For every integer i ≥ 0, define the level
set Vi = {x ∈ V (G) : ρ(a, x) = i}. Let H be an interval with level sets Vi, i ≥ 0. Then the
graph G, obtained from H by subdivision of every edge of [Vi, Vi+1] for a fixed index i, by
exactly r vertices each, is also an interval. A subdivision of this type is called balanced. For
each n ≥ 1, any balanced subdivision of the graph K2,n is an interval.

If H is an interval and x, y ∈ V (H) with k = ρ(x, y) > 0, then the addition of a path
of length k connecting x and y, internally disjoint from H, gives an interval G. More
precisely, let k be a positive integer and H be an interval. Let x ∈ Vi(H), y ∈ Vi+k(H).
Let w1, w2, . . . , wk−1 ̸∈ V (H). Then G = H ∪ xw1w2 · · ·wk−1y is also an interval. Note
that if k = 1 and xy ̸∈ E(G) then the path added is just the edge xy. The operation of
addition of a path, as defined in this paragraph, produces an interval from a given interval.
A main aim of this note is to prove that every interval may be obtained by a finite number
of iterations of this operation, beginning with a path.

2 Homomorphisms

For a graph G, denote |G| = |V (G)| and ∥G∥ = |E(G)|. Let G be an interval and P ⊆ G
be a path. If P is contained in a shortest path between a and b then P is called a shortest
path path.

Let G,H be graphs and let f : V (G) → V (H) be a mapping. If xy ∈ E(G) implies
f(x)f(y) ∈ E(H), then f is called a (graph) homomorphism. An injective homomorphism is
called a monomorphism or an embedding (of G as a subgraph of H). A surjective homomor-
phism is called an epimorphism. It is well understood that if there exist a monomorphism
f : G → H and a monomorphism g : H → G, then G and H are isomorphic and this is
denoted G ≃ H. Denote by d(G) the diameter of a graph G.

Proposition 2.1. Let G be an interval with extremal vertices a and b. Then d(G) = ρ(a, b).
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Proof. The diameter of G bounds the distance between every pair of vertices in G from
above. Since a, b ∈ V (G), we have ρ(a, b) ≤ d(G).

It remains to show that for every u, v ∈ V (G), ρ(u, v) ≤ ρ(a, b). Since every vertex x is
on a shortest path connecting a and b, ρ(a, b) = ρ(a, x) + ρ(x, b). It may be assumed that
ρ(a, u) ≥ ρ(b, v). Then

ρ(u, v) ≤ ρ(u, b) + ρ(b, v) = ρ(a, b)− ρ(a, u) + ρ(b, v) ≤ ρ(a, b).

Theorem 2.2. If G is an interval with extremal vertices a and b, then there exists a path H
with d(H) = d(G) and ρ(a, b)+1 = |H| ≤ |G| such that there is an epimorphism f : G → H.

Proof. Let G be an interval with extremal vertices a and b and suppose that d = ρ(a, b).
By the definition of an interval, G is the union of shortest paths connecting a and b. As
defined above, let Vi = {x : ρ(a, x) = i}, i = 0, 1, . . . , d. Then {V0, V1, . . . , Vd} is a partition
of V (G). Define H with V (H) = {V0, V1, . . . , Vd} and E(H) = {ViVi+1 : 0 ≤ i ≤ d − 1}.
Then H is path connecting V0 = {a} and Vd = {b}. Define f : G → H by f(v) = Vi if
v ∈ Vi. Then f is a mapping V (G) → V (H). For each x, y ∈ V (G) with xy ∈ E(G), by the
definition of an interval, it may be assumed that x ∈ Vi and y ∈ Vi+1 for some i ≥ 0. By
the definition of f , f(xy) = f(x)f(y) = ViVi+1 ∈ E(H). Hence f is an epimorphism from
G onto H. We have d(H) = ρ(a, b) = d(G) and ρ(a, b) + 1 = |H| ≤ |G| − 1. The second
inequality follows from the assumption that G is not a path and hence there exists i such
that |Vi| ≥ 2.

The levels give a partial order on an interval G in which the function ρ(a, x) acts as
rank function. Let G be an interval and u ∈ V (G). If u ∈ Vi and the edges incident with u
are all in [Vi−1, u] then u is called a local maximum. Local minimum vertices are similarly
defined. In intervals, global extrema are the only local extrema.

Lemma 2.3. If G is an interval and if u ∈ V (G) \ {b}, then u is not a local maximum.

Proof. Assume that u ∈ V (G) \ {b} is a local maximum. By definition, every edge incident
with u, the other end is in a lower level. No such edge is on a shortest path connecting a
and b. This is a contradiction to the assumption that G is an interval.

Similarly, an interval G with extremal vertices a and b has no local minimum other than
a.

Theorem 2.4. Let G be an interval. If G has a cycle then G has a cycle which is the union
of two shortest paths.

Proof. Let a, b ∈ V (G) be the extremal vertices of G. For every v ∈ Vi, 0 ≤ i < ρ(a, b),
that is, v ∈ V (G) \ {b}, let d+(v) = |[v, Vi+1]|. By Lemma 2.3, for every v ∈ V (G) \ {b},
d+(v) ≥ 1. If for every v ∈ V (G) \ {b}, d+(v) = 1, then G is a path. Hence, if G contains
a cycle, then there exists v ∈ V (G) \ {b} such that d+(v) ≥ 2. Suppose that v ∈ Vi and let



422 Graphs which are intervals

x, y ∈ Vi+1 with vx, vy ∈ E(G). Start two walks W1,W2 up from v towards b; and suppose
that for walks W1,W2, vx is the first edge of W1 and vy is the first edge of W2. By Lemma
2.3, if either of W1 and W2 reaches a vertex other than b, there is an edge connecting it
to the next level higher. Complete W1 and W2 as shortest paths from v to b. Since both
paths are shortest path, there exists x ∈ V (G) \ {v} with a minimum level number such
that z ∈ W1 ∩W2. Let P be the shortest path on W1 from v to z, and Q be the shortest
path on W2 from v to z. Then C = P ∪Q is a cycle in G.

3 Leveled graphs

Let G be a graph. If there exist a, b ∈ V (G) such that for each x ∈ V (G) there exists a
shortest path P connecting a and b such that x ∈ V (P ), then G is called a leveled graph.

Theorem 3.1. If G is a leveled graph with extremal vertices a and b, then there exist an
interval H and a set S ⊆ {uv ̸∈ E(H) : ρ(a, u) = ρ(a, v)}, such that G = H ∪ S and
E(H) ∩ S = ∅.

Proof is routine.
Every interval is a leveled graph. It is possible that a leveled graph is not bipartite, and

hence not an interval. Let e = ab ∈ E(K4). Then the graph G = K4 − e is a leveled graph
whose spanning interval is K2,2 with extremal vertices a and b.

We now consider a generalization of intervals. Let G be a connected graph. If there
exist A,B ⊆ V (G) such that A ∩ B = ∅ and G is the union of shortest paths connecting
A,B, then G is called a semi -interval. The sets A,B are called the extremal sets. The
vertices of G may be partitioned into level sets from A to B.

Lemma 3.2. Every connected bipartite graph is a semi-interval.

Proof. Let G be a connected bipartite graph with bipartition {A,B}. Then G is a semi-
interval with extremal sets A and B.

Problem. If G is a semi-interval with extremal sets A and B, then is it true that there
exist a ∈ V (G) and C ⊆ V (G) such that G is a semi-interval with extremal sets {a} and
C?

Let G be any connected graph. Let x ∈ V (G) with the property that there exists a vertex
y ∈ V (G) such that ρ(x, y) = d(G). A vertex x with this property may be called extremal,
peripheral or diametrical vertex. Let a ∈ V (G) an extremal vertex. For integers i ≥ 0, let
Vi = {x ∈ V (G) : ρ(a, x) = i}.

Then V (G) may be partitioned into level sets V0, V1, . . . , Vd. Suppose that for each i ≥ 0,
Vi is an independent set. Then there is a homomorphism f : G → H with d(H) = d(G).

If |Vd| = 1 then G is a leveled graph. By Theorem 2.2, there exist a path H and
a homomorphism f : G → H with d(H) = d(G). If Vd is independent then there is a
homomorphism f : G → H such that d(H) = d(G). We do not state these statements
explicitly as theorems.
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4 Reduction

Let G be an interval. Since no shortest path uses an edge between two vertices of the same
level, no interval has such an edge.

Proposition 4.1. Every interval is a connected bipartite graph.

Proof. Let G be an interval and suppose that a, b are two extremal vertices. Since for
each vertex, there is a path connecting it to a, G is connected. With Vi as in the proof of
Theorem 2.2, let

X =
⋃

i even.

Vi, Y =
⋃

i odd.

Vi.

Since each edge of G is between two vertices of consecutive levels, {X,Y } is a bipartition
of G such that E(G|X) = ∅ = E(G|Y ). Hence G is bipartite.

Note that not all connected bipartite graphs are intervals. The complete bipartite graph
K3,3 is not an interval. Let the two parts be denoted X and Y . For any a, b ∈ V (K3,3), it
may be assumed that a ∈ X. If b ∈ X, then the third vertex of X and each of the three
edges incident with it cannot be on a shortest path connecting a and b. If b ∈ Y , then
each vertex of X different from a and edges incident with it cannot be on a shortest path
connecting a and b. Hence K3,3 is not an interval.

Lemma 4.2. Let G be an interval with extremal vertices a and b. If u, v ∈ V (G) and
ρ(a, u) = ρ(a, v) then uv ̸∈ E(G).

Proof. The assumption of the lemma implies that no shortest path connecting a and b in
G contains uv.

This theorem is closely related to Theorem 3.1.
Let G be an interval and P be a shortest path connecting u, v in G. If |P | = 2 then

denote I(P ) = E(P ) = uv and if |P | ≥ 3 then denote I(P ) = P − {u, v}. Let P,Q be
shortest paths in G. If I(P ) ∩ I(Q) = ∅ then P,Q are said to be internally disjoint .

Theorem 4.3. Let G be an interval with extremal vertices a and b. Suppose that G is not
a path. Then there exists a shortest path P in G with each vertex of I(P ) (if any) of degree
2 in G, such that G− I(P ) is an interval with extremal vertices a and b.

Proof. The proof is by induction on |G|+ ∥G∥. Since G is connected, |G|+ ∥G∥ ≥ 2|G|− 1.
If |G| + ∥G∥ < 8, then we have |G| ≤ 4. Since G is an interval but not a path, G = K2,2

(the cycle of length 4) and the conclusion of the theorem in true. Assume therefore that
|G| + ∥G∥ ≥ 8 and that the statement of the theorem is true for every interval H with
|H|+ ∥H∥ < |G|+ ∥G∥. In this proof, for v ∈ V (G), d(v) denotes the degree of v in G.

Suppose that G is not a path. If d(a) = 1, then let the only neighbour of a be a′. Then
G− a is an interval with extremal vertices a′, b, and G− a is not a path. By the inductive
hypothesis, there exists a shortest path P in G − a with each vertex of I(P ) (if any) of
degree 2 in G− a, such that G− a− I(P ) is an interval, with extremal vertices a′, b. Since
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P ⊆ G− a ⊆ G, P is a shortest path in G with each vertex if I(P ) (if any) of degree 2 in
G. And G− I(P ) is an interval with extremal vertices a, b.

Assume, therefore, that d(a), d(b) > 1. Recall the definition of level sets Vi. As usual,
for v ∈ V (G), the set of neighbors of v is denoted by N(v). For v ∈ Vi, 0 < i < ρ(a, b),
define d−(v) = |N(v) ∩ Vi−1| and for 0 ≥ i < ρ(a, b), define d+(v) = |N(v) ∩ Vi+1|. In this
proof only, we called d−(v) the down-degree of v, and d+(v) the up-degree of v. We may
also agree that the up-degree of b and the down-degree of a are both 0. Since for every i
and every x, y ∈ Vi, xy ̸∈ E(G), we have that for each v ∈ V (G), d(v) is the sum of the up-
and the down-degrees of v.

Let P be a shortest path connecting vertices u, v with ρ(a, u) < ρ(a, v). If
(1) either u = a or d(u) > 2,
(2) either v = b or d(v) > 2, and
(3) each vertex of I(P ) is of degree 2 in G;
then P is called an admissible path. There exists an admissible path in G. In fact, each
u ∈ V (G) \ {b} with either u = a or d(u) > 2 is the lower end of an admissible path. This
may be seen by beginning at u and traversing any edge incident with u and a vertex in the
level immediately above u. Continue until b is reached or a vertex v ∈ V (G) \ {a, b} with
d(v) > 2 is reached. Similarly, each v ∈ V (G) \ {a} such that either v = b or d(v) > 2 is
the upper end of an admissible path P in G.

Let P be an admissible path in G with ends u and v. Suppose that ρ(a, u) < ρ(a, v).
Claim. If d+(u) ≥ 2 and d−(v) ≥ 2, then G − I(P ) is an interval with extremal vertices
a, b.

As usual, if P is a path and x, y ∈ V (P ), then P [x, y] denotes the sub-path from x to
y in P . Let H = G − I(P ). A path in H is said to be shortest path in H, if it is shortest
path in G. From this convention, it follows that any shortest path connecting a, b in H is
a shortest path connecting a, b in H. To show that H is an interval with extremal vertices
a and b, it suffices to show that each member of V (H) ∪ E(H) is on a shortest path path
in H connecting a and b.

By our assumption, each vertex of I(P ) is of degree 2 in G and the two edges incident
with each vertex of degree 2 of P are edges of P . Hence each path Q in G with Q ̸⊆ P and
P ̸⊆ Q is internally disjoint from P . Hence such a path Q must be a path in H.

Let c ∈ V (H) ∪ E(H). Since H ⊆ G, there is a shortest path in G connecting a and
b, that contains c. Since the paths P and Q are internally disjoint, Q ⊆ H. Hence c ∈ Q.
That is, c ∈ Q[a, u] or c ∈ Q[v, b].

If c ∈ Q[a, u], since d+(u) > 1, there exists e ∈ E(G) incident with u with its other end
in the level above u. Since P,Q are internally disjoint, e ̸∈ E(P ). Since e is contained in
a shortest path connecting a and b in G, e is contained in a shortest path R′ connecting u
and b in G. Then R = Q[a, u] ∪ R′ is a shortest path connecting a and b in G, internally
disjoint from P . Hence R ⊆ H. Hence c is contained in a shortest path connecting a and b
in H.

If c ∈ Q[v, b] then the proof is similar. This completes the proof of claim.
It may, therefore, be assumed that

(A) if P is an admissible path in G connecting u and v, with ρ(a, u) < ρ(a, v),
and if d+(u) ≥ 2 then d−(v) = 1.

Since d(a) = d+(a) > 1, an edge incident with a may be traversed into V1. Continue the
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traversal up, starting at a, traversing vertices of degree 2. If b is reached, then the path
traversed is an admissible path connecting a and b. Then d(b) = d−(b) > 1 is a contradiction
to the assumption (A).

Hence such a path terminates at a vertex w with ρ(a,w) < ρ(a, b) and d(w) > 2. This
path connecting a and w is admissible and d+(a) > 1. By the assumption (A), d−(w) = 1.
Since d(w) > 2 and d(w) = d+(w) + d−(w), we have d+(w) ≥ 2.

Begin a new admissible path Q, starting with w, by traversing up into the immediate
level above w. If Q reaches b, since d+(w) ≥ 2 and d−(b) ≥ 2, this would contradict our the
assumption (A) that if an admissible path in G connects u and v, with ρ(a, u) < ρ(a, v), and
if d+(u) ≥ 2 then d−(v) = 1. If Q terminates at a vertex z with d−(z) = 1 and d+(z) ≥ 2,
then the process of traversal will be continued upwards from z.

Since the number of levels is finite, such a process will terminate at b. This is a contra-
diction to the assumption (A).

Corollary 4.4. Every interval that is not a path is obtained from a path with the same
diameter by repeatedly adding paths of length k ≥ 1 connecting vertices of level difference
k, internally disjoint from the current interval.

For the concepts of partially ordered sets, lattices and rank functions, the reader is
referred to [1].

Corollary 4.5. Let X be a finite partially ordered set with a rank function and with unique
maximal and minimal elements. Then X is obtained from a chain by attachment of chains
between two points of different rank with the length (the number of elements) of chain one
bigger than the difference between ranks of the two points chosen.

Note that an interval is not necessarily planar. In fact, not only can an interval contain
a minor isomorphic to K3,3, it can contain an induced subgraph K3,3. Let r ≥ 2 be an
integer and the two parts in a bipartition of Kr,r be denoted X and Y . Let a, b ̸∈ V (Kr,r).
Let G = Kr,r ∪ [a,X]∪ [b, Y ]. Then G is an interval and Kr,r ⊆ G as an induced subgraph.

Since every interval is bipartite, no interval contains K5 as a subgraph. An interval can
contain a K5 minor. The graph of Figure 2 has a K5 minor.

a

b

Figure 2. An interval with a K5-minor.

5 Extremal intervals

Consider the graph G obtained by subdivision of each edge of K2,n by r vertices. Then
|G| = rn + n + 2. Let a and b be the extremal vertices of G. Since each edge is an edge
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of a unique shortest path connecting a and b, for each e ∈ E(G), G − e is not an interval.
Hence G is a minimal interval. We have not determined minimal intervals in this note.

Let H be any interval. Then the (edge) maximal interval containing H as a spanning
subgraph may also be determined. Suppose that ρ(a, b) = d. Then

G = H ∪ [a, V1] ∪ [V1, V2] ∪ · · · ∪ [Vd−1, b]

Here the square brackets do not make reference to the graph H. That is, they are bipartite
completions between consecutive levels. It is routine to verify thatG is the (edge) maximum,
with H as a spanning subgraph.

Comments and remarks

Theorem 4.3 determines the structure of intervals. By Theorem 4.3, the family of intervals
has an almost partial ordering under subgraph inclusion, and hence under minor inclusion.
If the operation of deletion of an end vertex of a path that is of degree 1 is introduced, then
under the subgraph inclusion, every antichain is finite in the almost partial ordering. This
makes the almost partial ordering a well quasi ordering. That is, the relation is reflexive,
transitive and every antichain is finite. In addition to these conditions, the family also
satisfies another important condition, namely, every strictly descending chain is finite (the
well-known Dedekind descending chain condition). Corollary 4.5 provides a constructive
definition of ranked lattices with unique maximum and minimum elements using the opera-
tion of attachment of chains. This corollary resembles the “ear decomposition” of bipartite
graphs [3].

Note that the graph of the 3-cube and any even cycle have the property that every
vertex is extremal. That is, every vertex is the end of a diameter. We conclude this note
with a question.

Problem. Determine intervals in which every vertex is extremal.
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