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Abstract

Recently, Liu provided several nice supercongruences. Inspired by his work, in this
paper, we establish a new g¢-supercongruence with two free parameters modulo the
fourth power of a cyclotomic polynomial. By taking suitable parameter substitutions
in this g-supercongruence, we derive some new results including a partial g-analogue
of Liu’s supercongruence. Our main auxiliary tools are Watson’s g¢7 transformation
formula for basic hypergeometric series, the ‘creative microscoping’ method introduced
by Guo and Zudilin and the Chinese remainder theorem for coprime polynomials.
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1 Introduction

In 1997, Van Hamme [17] conjectured 13 Ramanujan-type supercongruences which were
labeled as (A.2)—(M.2). The supercongruences (C.2) and (D.2) can be stated as follows:

(p—1)/2 4
(C.2) (4k + 1)(115733’“ =p (modp?), p#2;
k=0 ’
(p—1)/3 (1/3)¢ .
(D.2) (6k + 1) e k=_pl,(1/3)" (modp*), p=1 (mod 6).
k=0 ’

Here and throughout the paper, p is a prime, (z)o =1, (), = z(z+1)--- (x+n—1) stands
for the the Pochhammer symbol and I'(z) is the p-adic Gamma function. In 2006, making
use of Dougall’s formula, Long and Ramakrishna [14] gave an extension of Van Hamme’s
(D.2):

- (1/3)8 —plp(1/3)7 (mod p°), if p=1 (mod 6),
2O DTS = i 1/ mod ), i =5 (mods)
k=0 2719 D odp), i p= mo .

Similarly, Liu [11] established a new supercongruence: for p > 5,

K16

p—1 4 : — m
Z(Gk_l)(—yg)g_{mop r,(2/3)° (modp®), if p=1 (mod 6), 1)

= - 378pI',(2/3)?  (mod p°), if p=5 (mod 6).
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Also, Guo and Schlosser [4] proposed one conjecture as follows: for p =2 (mod 3),

(p+1)/3 B .
kzzo (Gk_l)mzp (mod p°). (1.2)

By using the hypergeometric series identities and p-adic Gamma functions, Jana and Kalita
[8] first confirmed the supercongruence (1.2). Later, based on combinatorial identities
arising from symbolic summation, Liu [10] provided a stronger version of (1.2): for odd
primes p = 2 (mod 3),

(p+1)/3

(=1/3)i(Dak 5 (1
Z (6k — 1)% =p-p° §Bp—2 (1/3) =2 (mod p*), (1.3)
k=0 k
where the Bernoulli polynomials are given by
tewt e tk
et — 1 = ;Bk(l’)k|
=0

During the past few years, there has been an increasing attention to the issue of finding
g-analogues of congruences and supercongruences. The reader may be referred to [3, 6, 7,
9, 13, 16, 18, 19, 20, 21] for some of their work. Recently, in [4], Guo and Schlosser gave a
partial g-analogue of supercongruence (1.2): for integers n > 2 with n =2 (mod 3),

(n+1)/3 (q—l; q3)4 (q3;q3)
6k —1 k 2k =0 (mod ®,(q)). 14
1;) [ ] @) %0 ( (2)) (1.4)

Here and throughout the paper, the g-shifted factorial is defined as (a;q)o = 1 and (a; q), =
1-a)(l—-aq)--- (1 — aq"‘l) with n € Z*. For brevity, its product form can be written
as (a1,a2,- .., am; Qn = (@1:@)n(a2:@)n - (@m;@)n- And [n] = [n]g =1+q+--- +¢"!
denotes the g-integer. Moreover, ®,,(g) represents the n-th cyclotomic polynomial in gq.

Motivated by the work just mentioned, in this paper, we shall establish a new ¢-
supercongruence with two free parameters ¢ and e, from which we can deduce a partial
g-analogue of Liu’s congruence (1.1).

The rest of this paper is arranged as follows. Our main results will be shown in the
next section. Then the proof of our g-supercongruence will be presented in Section 3, where
the ‘creative microscoping’ method introduced by Guo and Zudilin [5] and the Chinese
remainder theorem for coprime polynomials will be used.

2 Main results

Theorem 1. Let n =2 (mod 3) be a positive integer. Then, modulo [n]®,(q)?,

M — 4 — — k
S 6k - 1 (07" 0%), (gt eq 5 %), <q9>
=0 (03 63)y (63)c, a3 /e; %), \ce

o, , . 1 3\3
= [n]g(n+1/3 (076" iy . [n]2<n§:)/3 ¢ (731:)/3 (¢*/ce; ), (a7 %5 4%), 7
(@*0%) (s 1y/3 —~ Bi* | = (@/c.d®/e.d®,qa7% ),

Y
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where here and in what follows M = (n+1)/3 orn — 1.

Setting ¢ — 1, e — 1 in Theorem 1, we obtain a partial g-analogue of Liu’s congruence
(1.1) as follows.

Corollary 1. Let n =2 (mod 3) be a positive integer. Then, modulo [n]®,(q)3,

M -1..3)\6
Z[Gk—l](q 7q)kq9k
(¢3; 3)6
k=0 q 7q k
-2, 3 (n+1)/3 g\ (n+1)/3 (4. 3 -1..3)3
E[n}q(n—&-l)/i?w 1— [n]? Z ¢ Z (¢4, (g ’q>kq3k.
(QSE(I&)(H+1)/3 i1 [34]? =0 (C]?’}C]?’)i (a724%),

Furthermore, letting ¢ — ¢? and ¢ = e = ¢7 in Theorem 1, we obtain a new result as
follows.

Corollary 2. Let n =2 (mod 3) be a positive integer. Then, modulo [n],.2®,(¢*)?,

M 9. 4 _ n-T 4. 6 (n+1)/3 i
Z[6k—1] 2[6k—1]2 (q 2’q6>kq4k _ 2[n]q2q 3 (q 14 )(n+1)/3 1— [n]22 Z q6
=0 ! (4% 4% (L +a72) (0% %) (413 T Bl

By using the following congruence from [15]: for primes p > 5, |z| denotes the integral
part of x,

Lp/3] 1 1/p

=5 (8)Bya1/3) (mod ) (2.1)
k=1

and letting n = p with p = 2 (mod 3) and p > 5, ¢ — 1 in Corollary 2, we get the

supercongruence: for primes p =2 (mod 3) with p > 5, modulo p*,

(p+1)/3

sCCUBE oy (v
kz:(:) (6k — 1) = (1) 772732 (2/3) (1 - -5 (§> B,_» (1/3)) (2.2)

P
Moreover, taking ce = ¢* in Theorem 1, we get the following g-supercongruence.

where ( i) denotes the Legendre symbol.

Corollary 3. Let n =2 (mod 3) be a positive integer. Then, modulo [n]®,(q)3,

M —-1. .3 4 q72;q3 (’I’L+1)/3 31
Z[Gk —1] (q 4 )k 5k _ [n]q(n+1)/3( )(n+1)/3 1_ [n}z Z q

k=0 (4% 4%)y (@6%) (ny1)/3 — [34)?

Letting n = p with p = 2 (mod 3) and p > 5, ¢ — 1 in Corollary 3, we obtain a new
congruence: for primes p =2 (mod 3) with p > 5, modulo p?,

(p+1)/3
(=1/3); ¥

EPNTEtyE 2 /p
kgo (6k — 1)t = (=) FFDprT (2/3) <1 — -t (g) By-s (1/3)> . (23)
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Combining (2.2) and (2.3), we get a new and rare supercongruence: for primes p = 2
(mod 3),

(p+1)/3
S (6k — 1)(18K — 6k + 1)(‘]1%)?@ —0 (mod ph). (2.4)
k=0 ’

3 Proof of Theorem 1

In fact, the proof of Theorem 1 can be transformed into confirming the following generalized
theorem.

Theorem 2. Let n > 1, d > 2 be integers with n = r (mod d) and r € {1,—1}. Then,
modulo [n)®,(q)?,

w d 4
cq”,eq";q b (243
Z[leH- ] ( Zk(d : D (ce) kg (2d—3r)k
k=0 k( /e.q%/e;q?)
rr n)/d (n— T)/d qdi
=hl———— - 3.1
@ 1) @il (31)
(n— r)/d 2r+dk q () k( =T /ce; q) (q q )k "

X q,
Z (q?/c q%/e,q% a%)y
where here and in what follows W = (n —r)/d orn — 1.

Clearly, when d = 3, r = —1, Theorem 2 reduces to Theorem 1. Actually, by making
appropriate parameter substitutions in Theorem 2, more results can be obtained. For
example, letting d = 3,7 = 1, ¢ - 1,e — 1 and ¢ — 1 in Theorem 2, we reprove Van
Hamme’s (D.2). In addition, setting d = 2,7 =1 and ¢ = e = ¢'/? in Theorem 2, we get
a new g-analogue of Van Hamme’s (C.2) modulo p* as follows: for positive odd integers n,
modulo [n]®,(¢%),

S (4:4°) (1-m)/ ez g
A2k — 1-n)/2 _ 1,13, (1-n)/2
k=0 4k k=0

where N = (n—1)/2 or n— 1. It should be point out that Guo [2] gave another g-analogue
of Van Hamme’s (C.2) modulo p*: for positive odd integers n,

(n—1)/2 . ,2)4 2 2
Stk 5 = gt PO 0o G i )
k=0 )

In the process of proving Theorem 2, we shall utilize Watson’s g¢7 transformation for-
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mula [1]:
(ZS a, qa%a _qa%7 b7 & d7 €, q_n . w
YT az, —az, aq/b, aq/c, aq/d, aqle, aq""! D Thede
_ (ag,aq/de; q)n " [ ag/be, d, e, g7

; . 3.2
(aq/d,aq/e;q)n 478 | aq/b, aq/c, deq™" /a 4 (3:2)

Here, the basic hypergeometric series 416, following Gasper and Rahman][1], is defined as

- 0o k
A1,02, ..., Qrq1 (a17a27---7ar+1;q)k3 f
X X R = s O 0< < 1.
r+19r [ bi,ba,... by D kzzo (@, b1, - b Q) r 0<ld

Before proving Theorem 2, we first list the following two related results, which have
been proved in [12].

Lemma 1. Let d, n be positive integers with ged(d,n) = 1. Let r be an integer and a, b,
¢, e be indeterminates. Then, modulo [n],

%[20% . (a" ca" eq”,q"/boag”,q" Jasa®), (DN" uak 0
= (a7, a7/, q? /e, b, ¢ a, aq® g7), \ce ) 7
§[2dk+r] (¢" ca" eq”.q"/b,aq",q" a;a®), ( bN\" Ga s 0
P (¢7.q7/e.q7 e.bg® q7 a, ag® ¢V, \ce) -
where 0 < my <n—1 and dm; = —r (mod n).

Lemma 2. Letn > 1,d > 2, r be integers with ged(r,d) =1 and n = r (mod d) such that
n+d—nd <r <n. Then, modulo ®,(q) (1 —ag™) (a — q"),

(n—r)/d r T ror ror . ,d k
S [2dk+1] (¢",cq" eq",q" /b,aq", " /a;q7), <b) Jem
P (q%,q%/c.q/e;bq?, q%/a, aq?; q%),, \ ce

_ (3.3)

[n] (b>(nr)/d (% /5:9%) 10 "X (g7 Jee a7 byag” q" [asqY), g
q 0a%qY) oryye = (@ha%/ e 0%/ e, ¢ /bqt),
In order to complete our proof of Theorem 2, we still need the following lemma.

Lemma 3. Let n > 1, d > 2 be integers with n = r (mod d) and r € {1,—1}. Then,
modulo b — q",

w r r ror ror . ,d k
S 2k 41 (¢",cq" eq",q" /b,aq", " /a;q7), (b) LAk
(q%,q%/c,q%/e,bq?, q%/a, aq?; q),, \ ce
r d—r. d —r)/d —r roor r
(@034 oy "L (a7 eesaq” " ayq bia)
(@/a,aq%q%) oy = (@ a/c.q/e,d® [bq?), T

k=0

(3.4)

=n

where W = (n—r)/d orn — 1.
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Proof. Letting ¢ — ¢, n — (n—7r)/d,a=¢q",b=1cq",c=eq",d=aq" and e = ¢"/a in
Watson’s g¢7 transformation formula (3.2), we have

—r/d - k
(nzr:)/ [2dk+7_] (qrchr,eqr’qr n’aqrjqr/a;qd)k (q2d+n—3r>
= (¢4, q%/c,q%/e,q™ ™, q%/a, aq%; q%),,

ce

d—r. ,d —r)/d _ _
(qr7q T7q )(n—r)/d (n (qd T/ceaaqraqr/avqr n;qd)kqdk

:[n
(¢?/a,aq%9%) ooy = (a%a?/c 4% e, 7500,

In light of the fact that (¢"~"; qd)k =0forn—12>k > (n—r)/d, we confirm the correctness
of (3.4). 0

Now, we present a parametric generalization of Theorem 2.

Theorem 3. Let n > 1, d > 2 be integers with n = r (mod d) and r € {1,—1}. Then,
modulo ®,,(¢)* (1 — aq™) (a — q"),

(n—r)/d r. d)2 r r oo d 2d—3r\ K
S Pk (q,qQ)k(cq,eq,aq,Q/a,q)k (q >
=0 (a% g% (@?/c,q¥ /e, q?/a, aqd; q?), \  ce

() (nf/d (q2r+dk; qd)(nfr)/dfk (qdfr/ce’ aq”,q" /a,q"; qd)k » 5
IR~ (a2, q%/c, 4%/ e; %), T '
where
BTN IS YR 2 S W iy Py
o (I—a)? (q ;qd)(n—r)/d (qd/aaaqd;qd)(n_r)/d
qr(rfn)/d

d. od ‘
(a%q )(n,r)/d

Proof. Tt is easy to see that ®,,(q) (1 —aq™) (a — ¢") and b — g™ are relatively prime poly-
nomials. Noting the relations

(b—q") (ab—1—a® + aq™)

1 (mod (1 —aq")(a—q")),

(a —b)(1 — ab)
(1—-ag")(a—q") _ n
@t —ay) o medb=d)

and employing the Chinese remainder theorem for coprime polynomials, we arrive at the
following result from Lemma 2 and Lemma 3: modulo ®,,(¢) (1 — ag™) (a — ¢™) (b — ¢"),

(”_7')/d r r r T r T . d k
S Pk (¢",cq" eq” . q"/baq”, " Ja;q%) [ D\" 5u s
(q%,q%/c,q?/e,bq?, q%/a, aq?; q), \ ce
k=0 ) ) ) ) ) ) k

(n—r)/d
= [n)04(a,b,n) >

k=0

(¢*"/ce,aq™,q" [a,q" b;q%),. o
(¢4 q%/c,q%/e,q?" [b; q?), ’
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where the notation 6,(a,b,n) on the right-hand side denotes

(b—q") (ab—1—a® +aq") O/a)" (¢ /bia%) ., g
(a —b)(1 — ab) (bg%; qd)(nf'r)/d
(1-ag") (a—q") (@0"750%) s a
(a—b)(1—ab) (¢%/a,a0% 4%\ 0’

04(a,b,n) =

It is not difficult to see that

(qdfr; qd)(n_.,«)/d —(1— qdfr) (1 . q2d7r) . (1 . qn72r)

(mod b — ¢"),
(qr; qd)(nir)/d =(1- qr) (1 - qurT) e (1 - qnid)
1— bqrfn) (1 _ quJrrfn) . (1 _ bqfd)

n—rp (n=r)(n—d+r) n
_1)( )/dq 2d (qd/b§ qd)(n—r)/d (mOd b— q )

Therefore, we can rewrite (3.6) as, modulo ®,(¢) (1 — ag™) (a — ¢") (b — ¢"),

(n—r)/d T T ror o . k
S Pkt (¢",¢q" eq",q" /b,aq", q" [a; q%), (b) (2=
= (q%,q%/c,q%/e,bq?, q%/a, aq; q%), \ ce

(@ by q%) oy jai (@777 cesad”, a7 fa,q" /by q%)

= [n]Qy(a,b,n)
,;) (g%, q%/c,q%/e;q%);

Bglk, (3.7)

where the notation Q4(a,b,n) on the right-hand side denotes

(b—q") (ab—1—a?+ag") (b/g")" """
(a—b)(1 —ab) (bg;q%)(,,_1y/a
(1—ag") (a—q") (b/a")" ™" (¢/b:0%) (11 10
(a—0)(1—ab) (@, a0 qD) g

Qq(a,b,n) =

+

It is easy to say that the limit of b — ¢™ as b — 1 has the factor ®,(q). Meanwhile, since
n = r (mod d), i.e., ged(d,n) = 1, the factor (bg?;¢?) (n_ry/a 10t the denominator of the
left-hand side of (3.7) as b — 1 is relatively prime to ®,(g). Thus, letting b — 1 in (3.7),

we conclude that (3.5) is true modulo ®,,(¢)? (1 — aq™) (a — ¢") with the relation:

(1—q”)(1+a2—a—aq"):(1—a)2+(1—aq")(a—q").
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Proof of Theorem 2. By the L'Hospital rule, we have

d. d
o (L= ag")(a - g") N i rnyy
a—1 (1-a)? (@0 —ryja (a0%q%/a;q%) 0r) )4

[n}Z (n—r)/d qdi

(qd;qd>(n77‘)/d i1 [di]?

Letting a — 1 in Theorem 3 and utilizing the above limit, we deduce that (3.1) is true
modulo ®,,(¢)* by noticing that (q”;qd)i = 0 (mod ®,(q)*) for (n —7r)/d < k <n—1.
From Lemma 1 with » € {1,—1} and a = b = 1, we conclude that the congruence (3.1)
holds modulo [n]. Since the least common multiple of [n] and ®,,(¢)* is [n]®,,(q)3, we obtain
the desired result. 0

Acknowledgement This work is supported by National Natural Science Foundation of
China (12871331) and Natural Science Foundation of Shanghai (Grant No. 22ZR1424100).

References

[1]

G. GASPER, M. RAHMAN, Basic Hypergeometric Series, second edition, Encyclopedia
of Mathematics and its Applications 96, Cambridge University Press, Cambridge
(2004).

V. J. W. Guo, ¢g-Supercongruences modulo the fourth power of a cyclotomic poly-
nomial via creative microscoping, Adv. Appl. Math. 120 (2020), 102078.

V. J. W. Guo, Some g-supercongruences from Gasper’s Karlsson—-Minton type sum-
mation, Ramanugjan J. 60 (2023), 825-835.

V. J. W. Guo, M. J. SCHLOSSER, Some g-supercongruences from transformation
formulas for basic hypergeometric series, Constr. Approz. 53 (2021), 155-200.

V. J. W. Guo, W. ZUDILIN, A g-microscope for supercongruences, Adv. Math. 346
(2019), 329-358.

H. HE, X. WANG, Some congruences that extend Van Hamme’s (D.2) supercongru-
ence, J. Math. Anal. Appl. 527 (2023), 127344.

H. HE, X. WANG, Two curious g-supercongruences and their extensions, Forum
Math., Doi: 10.1515/forum-2023-0164.

A. JaNA, G. KaLiTA, Proof of some conjectural supercongruences of Guo and
Schlosser, Ramanugjan J. 54 (2021), 649-658.

L. L1, S.-D. WANG, Proof of a g-supercongruence conjectured by Guo and Schlosser,
Rev. R. Acad. Cienc. Fxactas Fis. Nat., Ser. A Mat. RACSAM 114 (2020), 190.



X. Wang, C. Xu 353

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J.-C. Liu, Some supercongruences arising from symbolic summation, J. Math. Anal.
Appl. 488 (2020), 124062.

J.-C. Liu, Supercongruences arising from transformations of hypergeometric series,
J. Math. Anal. Appl. 497 (2021), 124915.

Y. Liu, X. WANG, ¢g-Analogues of two Ramanujan-type supercongruences, J. Math.
Anal. Appl. 502 (2021), 125238.

Y. Liu, X. WANG, Some g-supercongruences from a quadratic transformation by
Rahman, Results Math. 77 (2022), 44.

L. Long, R. RAMAKRISHNA, Some supercongruences occurring in truncated hyper-
geometric series, Adv. Math. 290 (2016), 773-808.

Z. SuN, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128
(2008), 280-312.

R. TAURASO, Some g-analogs of congruences for central binomial sums, Collog. Math.
133 (2013), 133-143.

L. VAN HAMME, Some conjectures concerning partial sums of generalized hypergeo-
metric series, in p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure
and Appl. Math. 192 (1997), Dekker, New York, 223-236.

X. WaNgG, C. XU, g-Supercongruences on triple and quadruple sums, Results Math.
78 (2023), 27.

C. WEI, A ¢-supercongruence modulo the third power of a cyclotomic polynomial,
Bull. Aust. Math. Soc. 106 (2022), 236-242.

C. WEI, ¢-Supercongruences from Gasper and Rahman’s summation formula, Aduv.
Appl. Math. 139 (2022), 102376.

C. WEI, A g-supercongruence from a g-analogue of Whipple’s 3 F; summation formula,
J. Combin. Theory Ser. A 194 (2023), 105705.

Received: 20.07.2022
Accepted: 27.05.2023

W Department of Mathematics, Newtouch Center for Mathematics,
Shanghai University, Shanghai 200444, P. R. China
E-mail: xiaoxiawang@shu.edu.cn

@ (corresponding author) Department of Mathematics, Shanghai University,
Shanghai, 200444, P. R. China
E-mail: xchangi@shu.edu.cn



