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Abstract

In this paper, we establish two new g-congruences involving double basic hyper-
geometric series. As conclusions, we give several congruences including the following

one:
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where p is an odd prime.
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1 Introduction
For a complex variable x, define the shifted-factorial to be

(x)o=1 and (z)p,=x(x+1)---(x+n—1) when neN.

In 2011, Long [12] conjectured the following interesting congruence involving double series:
for any odd prime p,

(p—1)/2

6k +1(3)} & 1 1)
kZ:o (—1)k = ]5!316 > { TS 16j2} =0 (mod p). (1.1)

This conjecture was proved by Swisher [14] in 2015.
For two complex numbers x and ¢, define the g-shifted factorial to be

(r;9)o =1 and (2;¢)n =1 —2)1 —2q)---(1 —2¢""') when n€N.
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For shortening many of the formulas in this paper, we also adopt the notation

(1,22, 2 On = (13O0 (@2 On -+ (5@

Recently, Gu and Guo [2] discovered the beautiful g-analogue of (1.1): for any positive odd
integer,

(n—1)/2 i (¢: qz)i g1 q%
2, (U “]<q4;q4>%;{[2j112‘ [41'}2}50 (mod &n(g)

Here and throughout the paper, [n] = 1+ ¢+ --- + ¢"~! denotes the g-integer and ®,,(q)
stands for the n-th cyclotomic polynomial in g¢:

o.(g)= [ @—¢b,
1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. Furthermore, Wand and Yu [16, Theorem 1]
gave the following conclusion: for any integers n, d > 1 with n =1 (mod d),

n—1)/d .
| Z)/ ok 4+ 1) L (1) k ( TrE ] >
Pt (g% 9%)3 S\ -d+1P2 [4P
=0 (mod ?,(q))- (1.2)

For more g-analogues of supercongruences, the reader is referred to the papers [3, 4, 5, 7,
6, 8,9, 11, 13, 15, 17].
Inspired by the work just mentioned, we shall establish the following two theorems.

Theorem 1. Letn > 1, d > 1, r > 0 be integers with ged(r,d) = 1 and n = r (mod d)
such that n > r. Then

n—r)/d
( z:)/ [2dk+’r] qr’qd) (xqr yqr qu.qd) q(2d—3r)k
= (% a2, q%y, /2 ¢k (zy2)*
k qi—d+r q¥
Xy <[dj T [dj]g) =0 (mod ®,(q)). (1.3)
j=1

Theorem 2. Let n be a positive odd integer. Then, modulo ®,(q)?,

. 7°)i(g; g g9 _ q2j_1
Z (G + 1 q*)k(q* ’ Z( 1]2>

(@3 d )y R g
(1-n)/a\d 59 )(n-1)/4 —, ifn=1 (mod 4),
Inlg (0% q") (n-1)/4 2 [45]? ( ) (1.4)

j=1

0, ifn=3 (mod 4).
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With the change of the parameters x, y and z, Theorem 1 can produce a lot of concrete
g-congruences. Six ones of them are laid out as follows.

Choosing (z,y,2) — (¢%~",¢%", 00) in Theorem 1, we obtain the following g-congruence.
Corollary 1. Letn > 1, d > 1, r > 0 be integers with gcd(r,d) =1 and n = r (mod d)
such that n > r. Then

—r)/d .
( r; —d+r qd] B
Z b+l 7 Z ( PR [dj]?) =0 (mod ®,(q)).

Fixing (z,y,2) = (¢*~",¢%"",1) in Theorem 1, we get the following result.

Corollary 2. Letn > 1,d > 1, r > 0 be integers with ged(r,d) =1 and n = r (mod d)
such that n > r. Then

(n=r)/d :
(qr; qd)Z —rk —d+r qdj _ o
2 [k rlia Z ( G () =0 el )

Taking (z,y,2) — (¢, 1,00) in Theorem 1, we have the following formula.

Corollary 3. Letn > 1,d > 1, r > 0 be integers with ged(r,d) =1 and n = r (mod d)
such that n > r. Then

(n—r)/d rod dr di

Y T(Q§Q)k (%) +(d—r)k + q”
2, (bl Z([dadm o)
=0 (mod ,(q)).

e

When r = 1, Corollary 3 reduces to (1.2). So the former can be regarded as a general-
ization of the latter.
Choosing (z,y,2) = (¢¢~",1,1) in Theorem 1, we obtain the following g-congruence.

Corollary 4. Letn > 1, d > 1, r > 0 be integers with ged(r,d) = 1 and n = r (mod d)
such that n > r. Then

(n—r)/d ‘
( ) . —d+r qd_] B
kZ:O [2dk + 7 ]Wq(d 2r)k Z ( G die [de) =0 (mod ®,(q)).

)

Taking (x,y,z) — (1,1,00) in Theorem 1, we get the following result.

Corollary 5. Letn > 1, d > 1, r > 0 be integers with ged(r,d) = 1 and n = r (mod d)
such that n > r. Then

(n-r)/d r. d\5 k —dtr dj
_1k2dk+rm 8)+2(d-r)k ( . q. >
,;) =1 ](qd;qd)i Jz::l [dj —d+r]*  [dj]?
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Setting (x,y,2) = (1,1,1) in Theorem 1, we have the following formula.

Corollary 6. Letn > 1, d > 1, r > 0 be integers with ged(r,d) =1 and n = r (mod d)
such that n > r. Then

(n—r)/d - )
RICET a’)i 42430 dtr g\ _ .
kZ:O 2dk + ](qva)k Z(d]dﬂ,] [de)_o (mod ®,(q)).

Letting n = p be an odd prime with p = r (mod d) and ged(r,d) = 1 such that p > r
and then letting ¢ — 1 in Corollaries 1-6, we arrive at the following congruences:

(p—r)/d

kZ:O (—1)%(2dk + 1) f ké{ . 7d+r) (d;)Q} o et
(ka:/d(Qdk:—i-r % é% ]z:{ = d—H") (djl)Q} =0 (mod p),
(pk:/d(_l)k@dk” G § Z_:{ G ) = )
(p:l/d(Qdk ) ((f))g“ é { G clz+ g (d;)Q} —0 (mod p)
<p:/d( ) (2dk + ) ((cll 22 ;{ 0 _;H) (djl) }EO (mod p),
(pk:d@dk” (dl ﬁk i{ OErEr Rl } =0 (modp).

Letting n = p be an odd prime and then letting ¢ — 1 in Theorem 2, we are led to the
following conclusion:

-1

X (3)i (D 1 1

2Ok 1 e ;{@m? 517
(p—1)/4

(mod p?), ifp=1 (mod 4),

0 (mod p?), if p=3 (mod 4).

The rest of the paper is arranged as follows. We shall display the proof of Theorem 1
in Section 2. The proof of Theorem 2 will be provided in Section 3. Two conjectures will
be proposed in Section 4.
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2 Proof of Theorem 1

Following Gasper and Rahman [1], define the basic hypergeometric series to be

o0
1,02, ..., 0p1 (a1,a2,. ., Qri1; QK g
7 4, = z.
T+1¢T |: bl»bQ;”'vbT q :| z;) (q,bl,bg,...7br;q)k

Then Watson’s g¢7 transformation formula (cf. [1, Appendix (II1.17)]) can be expressed as

¢ a, qaéa —qaz, bv c, d7 €, qin . a2qn+2
ST ab —ab, agfb, agfe, ag/d, agfe, ag™tt T Tbede
(ag, aq/de; q)n [ aq/be, d, e, ¢
_ .q, 4| - 2.1
(aa/dsaqfeiq)n *%| a/b, ag/e, deq™/a (21)
Now we begin to prove Theorem 1.
Proof. In terms of (2.1), we can catch hold of
(n—r)/d r r r r o r+n r—mn —3r
S [2dk 4] (¢" 2q" yq" 24", 4" " q" " g gPAEF
= (¢%.q%/=,q%/y.q%/ 2, q* ", ¢ s g (zy2)®
(n—r)/d —r r . r+n ,r—n
)(r n)/d (Zq )(” r)/d (qd /:cy,zq ) 4 + ) 4 7qd)k dk

=|n
el (za @24 m-rya = (040797 Y, 2677 %)

Then we can proceed as follows:

n— 7)/d s e T s —or
Z 9k + 1] q": N (zq", yq", 24" %) 243k
—~ (¢%qh)i(a/z qy, a )z 0N (wyz)*
T. (n—r)/d —r r r+n . r—nm
o [n](zqr)(r—n)/d (Zq2 7qd)(n_7“)/d "Z (qd /xy,zq ,q * ,q ;qd)kqdk
@24 m-nsa = (049070 Y, 26> ")
(n—r)/d r T T T —3r
=S [k o] 1q")i (2", yq", 2q" e qPIPR
= (a%a)i(a /@, ¢y, q/z a0k (zy2)*
(n—r)/d T T T r—r —
— Y [2dk 7] (¢" 2q",yq" 2¢", ¢ " " " gk PR
= (%, 9%/, q% y, q/ 20", gk (zy2)”
(n—r)/d r T r r —3r
(¢", 24", yq", 2q"; ¢%)y,  qPI3k

= ) Rk et (ap)F

k=0

(a7 aM)2(q™™, ¢ gk — (a%5 g2 (@™, ¢ g%
d+n_gd—n. gd : (2:2)
(g% g7 (g™, g4 ¢,
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Noticing that 1 — ¢™ =0 (mod ®,(q)), we find

k
(@™ ¢ g% = [T =gV (1 —q¥m)

k
~TI{a-a"? = -a"2¥}
j=1
k _ . n\2
= (¢~ (@5 e (med ().

Jj=1
(2.3)
The combination of the last two equation engenders
(@" 59D ¢ qe — (¢ aDE@ a5 q N
N2/, d. dy\2[,12 5 gyt gy 4
= (q"; : — 4 ®,(q)h). 2.4
(R0 (=g - ) oam@h. )
The (a,b,c,e) — (1,1/z,x,y) case of Liu and Wang [10, Lemma 2]) reads
(n—r)/d T r T T —3r
S f2dk ] G T L
prt (a4 aM)i(a? )z, q%/y,a%/ 2 4%k (zyz)*
(qd/z; qd)(nfr)/d
(n—r)/d d—r roor o r..d
" (¢ "/zy,2q". 4", 4" q )kqdk (mod @, (g)%). (2.5)

— (g% q%/x.q Y, 2¢*"5 4k
Substituting (2.4) and (2.5) into (2.2), we obtain
(n—r)/d —-r T T
@ " /2y, 24",4", 4" 4Dk _a

2r. d
= (g% %4y, 2> ")k

(q%/2,9%) (n—r)/d

(n—r)/d
(

- [n](zqr)(rfn)/d (Zq%; qd)(’ﬂ—T)/d qdir/x% 2q", qr+n’ " qd)k qdk
(@24 m-r)ya = (¢%,q%/2,q%/y, 2¢*"; ¢k
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(n—r)/d T r r r. d
2 (a" 29", yq", 2q"; ¢ )
=1In g 2dk +r
I = | ](qd,qd/x,qd/y,qd/Z;qd)k (vyz)*

k i _ i
(qr;qd)i ( qd] d+r—n qdj n

(¢ g gD S \[d —d+ o2 (42

¢(2d-3r)k

) (1m0d @, (q)%).

T—n

Multiplying both sides by ¢" and using (¢"*",¢" ";¢%)r = (¢";¢%)? (mod ®,(q)?), we
derive Theorem 1. 0

3 Proof of Theorem 2

In order to prove Theorem 2, we require Gasper and Rahman’s summation formula for basic
hypergeometric series (cf. [1, Equation (3.8.12)]):

oo

Z 1- aqSk ((L, b» Q/ba Q)k(d; fa GQQ/df; q2)k k
= l—a (¢°,aq?/b,abq; ¢*)x(aq/d,aq/ f,df /a; q)k
(aq, f/a,b,q/b; Q) (d, aq? /df, f¢2/d, df*q/a%; ¢%)
(a/f, fa/a,aq/d, df [a; q)(ag? /b, abq, fq/ab,bf /a;G*)oo
f,bf/a, fq/ab 2 2
| fe?/dydf2gfa? 7T Y
(aq, f/a; q)(ag?/bd, abq/d, bdf /a, df q/ab; ¢*) s

= “(aq/d df /a; q)oa(ag? /b, abq, b Ja, f /@b )0 (3-1)

X 3¢

Now we start to prove Theorem 2.

Proof. Setting d = ¢~2" and then letting n — oo in (3.1), we get

o0

L g’ (a,b,4/b:9)u(f50%) )kq@ (a>k

~ 1-a (¢ aq?/b,abg;¢*)r(aq/ f;q f

_ (aq,aq? aq” /bf, aba/ f1¢*)s
(aq/f,aq?/ f,aq?/b,abq; %)

When n =1 (mod 4), the last equation gives

n—1

14+n ,1-—n. 2 .4 .
S (6k 41 (¢ a " )k )k B _ )

(1—n)/4 (q2§ q4)(n—1)/4
(¢4 =, ¢** 46?5 ¢ 1

(@5 ¢") (n-1y/a

q
k=0
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Then we have

2. 4
Kk un-ww
(@*9*) (n-1)/4
2\3 (. A n—1 1-n. 2 v’}
—g’ q2>k(q:1q 1k3 qk2+k - Z[6k+ 1] (Z q4 >Q4+ ’q4)k(q’2q gk K
(% ¢*)k(a* a*)y = (% ¢ a* q)e(@? ¢k

14+n

N ,
= [6]{+1}M k2 4k

Via (2.3), there hold
n —n — (1 —4q j—n
(@ q" gk = (¢4 4M)E — (a5 Yk Z qu4j (mod @,,(¢)*),
So(-g)?
(@ = (GO — (PR 597" (mod ®,(g)").

Combing the last two equations, we conclude that

(i@ ™ q e — (@5 a)id T d T Pk

k 2j—1-n 45—n
= (PR Y (e - T ) (el G

A g-supercongruence due to Wei [17, Theorem 1.3]) can be expressed as

n—1
(@ @)@ a2
kZ:()[6k U @t
_ o aemya (@54 oy . g 5
= ( )/47 —[n mod [n . .
= ojg - ey > Lo} moape,@). 69

Substituting (3.4) and (3.5) into (3.3), we arrive at

n—1 i—1—
> 6k + 1] g0 )(0; 1) g o Z( b ”)
= (4% @®)k(a*; ¢4 (q‘”” = g S\ WP 27 -1P

(n=1)/4 4

3 [ZjP (mod ®,,(q)?).

j=1

g yya (@30 m=1)/4
(q q )(n—l)/4
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Multiplying both sides by ¢" and utilizing (¢*™,¢*"; ¢*)r = (¢*;¢*)7 (mod ®,(q)?), we
deduce the n =1 (mod 4) case of Theorem 2.
When n = 3 (mod 4), equation (3.2) produces
n-l 1+n d—n. 2\ (. 4
Z[6k + ] (q7 q47 aq4+ 7q4)k(q;q gk k2 +k —0.
= (a* ¢ ¢ qh)k(a? 6w

A g-supercongruence due to Wei [17, Theorem 1.1]) can be written as

n—1

(@ @)@ ar w24 3
N [6k + 1] P LIS R K = 0 (mod [n]®,(g)%).
k:O[ ](q2§q2)k(q4;q4)% ( [ ] TL( ) )
The similar argument leads to the n =3 (mod 4) case of Theorem 2. O

4 'Two open problems

Numerical calculations indicate the following two open problems related to Corollaries 1-6.

Conjecture 1. Letn >1,d > 1, r >0, m > 0 be integers with ged(r,d) =1 and n = r
(mod d) such that n > r. Then

(n—r)/d d\2m+1 —d+r dj
(@54 a(5)+ma— )kz< q]>
2dk +r]———E—q mia=r -
k=0 ( ) [ ](q aq )im—i—l d_] — d+T] [dj]Q

=0 (mod @,(q))-

Conjecture 2. Letn > 1,d>1,r >0, m > 0 be integers with ged(r,d) =1 and n =r
(mod d) such that n > r. Then

(n—r)/d r. d\2m—+2 d d+r dj
(a"5q%); d—r)k—rk < i q” >
E 2dk +r|——E— m(d—r)k—r E -
=0 | 7 (q%qh)2m 7 1 [dj —d+r]> (&)

=0 (mod @,(q)).

Letting n = p be an odd prime with p = r (mod d) and ged(r,d) = 1 such that p > r
and then letting ¢ — 1 in Conjectures 1 and 2, we are led to the following congruences:

(P*T)/d (5)2m+1
(1

1
z;) 2dk‘+r 2m+12{ d]—d+ RE (dj)2}50 (mod p),

(p—r)/d (£)2m+2 k 1
2 d = .
(2dk + 1) 12m+22{d]—d+r (dj)2} 0 (mod p)

k=0
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