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Abstract
The main purpose of the present paper is to introduce the twists for the weak
Turaev m-coalgebras. We mainly show that a new weak Turaev m-coalgebra could be
constructed from the given one through the twists. The relationship between their
representations is also discussed.
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1 Introduction

For a group m, Turaev ([9]) introduced the notion of a braided m-monoidal category, called
braided crossed m-category, and showed that such a category gives rise to a 3-dimensional
homotopy quantum field theory. A purely algebraic study of Hopf group-coalgebras was
initiated by Virelizier ([12]), and then continued by Wang ([11], [15]-[18]) and Zunino ([21],
[22]). Tt turns out that many of the classical results in Hopf algebra theory can be generalized
to the m-(co)algebra setting. Recently, several new results are reported in the construction
of a braided crossed m-category, see [2]-[4], [6]-[7], [14]-[18], [20]-[22].

The gauge transformations or twists were first introduced by Drinfeld [5] on quasi-Hopf
algebras, in order to twist the coproduct without changing its product. Indeed, a Drinfeld
twist for a Hopf algebra H is an invertible element ¢ € H ® H, satisfying the 2-cocycle
condition

(c@1)(A®id)(c) =(1®0)(id® A)(o).
They have become an important tool in the classification of finite-dimensional Hopf algebras.
The twisting elements for the generalized Hopf-type algebra have been discussed in [1], [6],
[19] and so on.

It is now very natural to ask several questions: can we get another weak Turaev -
coalgebra from the given one? What kind of relationship should be between their represen-
tations? How to describe the twists under the crossed structures? In order to investigate
this question, in this article, we essentially construct a class of new braided 7-crossed cat-
egory (in the setting of weak Turaev w-coalgebras) by Drinfeld twists. This is the purpose
of the present article.

This paper is organized as follows. In Section 2, we first review some basic definitions.
In Section 3, we give the definition of the twists of a weak Turaev m-coalgebra. Further,
we use these twists to obtain a new weak Turaev m-coalgebra. We show that this construc-
tion is quasitriangular-preserving. In Section 4, we mainly show that their representation
categories are monoidal crossed isomorphic.
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2 Preliminaries

2.1 Braided crossed w-categories

Throughout the paper, we let k be a fixed field and all algebras are supposed to be over k.
For the comultiplication A of a coalgebra C, we use the Sweedler-Heyneman’s notation:

Ale) = ¢1 ® ca,

for any ¢ € C. In this section, we will review several definitions and notations related to
Turaev crossed braided category.

Let 7 be a group with the unit e. A m-graded monoidal category C (or shortly m-category)
is given by the following datum:

e a monoidal category (C,®,1I,a,l,1);

e a family of subcategories {Cy }aer such that C is a disjoint union of this family and
such that U ® V' € Cqup, for any o, € 7, if the U € C, and V € Cg. I € C.. Here the
subcategory C, is called the ath component of C.

We recall that a crossed m-category (see [9]) is a m-category C = {C,} endowed with a
group homomorphism ¢ : 7 — aut(C), 8 — g, (where aut(C) is the group of invertible
strict tensor functors from C to itself) such that pg(Co) = Cgap-1 for any a, 5 € 7. Here
the functors g are called conjugation isomorphisms.

We will use the left index notation in [8] or in [10]. Given 8 € 7 and an object V € Cg,
the functor ¢g will be denoted by V' (-) or #(-). We use the notation V() for 571(-). Then
we have Vidy = idvy and V(go f) = YgoVf. We remark that since the conjugation
¢ — aut(C) is a group homomorphism, for any V, W € C, we have VW (.) = V(W (.))
and °(-) =V (V(-)) = V(Y (+)) = id¢ and that since, for any V € C, the functor V' (-) is strict,
we have V(f®g) =" f®Vg, for any f,g € C, and Vid = id. And we will use C(U, V) for a
set of morphisms (or arrows) from U to V in C.

Recall from [9] that a braided crossed w-category (or shortly braided w-category) is a
crossed m-category C endowed with a braiding, i.e., with a family of isomorphisms

T={wy eCUaV,("V)@U)}uvec,
satisfying the following conditions:

e for any arrow f € Co(U,U’) witha € 7,g € C(V, V'), we have

("g) @ f)etuy =70 v o (f ®9); (2.1)

o forall U V,W €C, we have
TUev,w = avevy,u,y © (Tyvw ®idy) o a&le’V o (idy @ Tv.w) © av,v,w, (2.2)
TUvew = Goy oy © (iduv) @ Tuw) o avyyw o (Toy @idw) cag vy, (23)
o forany U,V € C,a € T, 00(Tu,v) = T, (U).pu (V) (2.4)

Definition 2.1. (1) Let ® and @' be two groups, C be a w-category, D be a 7'-category. A
group-graded functor is a couple (f,G), where f : m — 7' is a group homomorphism and
G = (G,G4,Gy) : C = D is a monoidal functor, satisfy

G(U) € Dy, foranyU €Cq, a€m. (2.5)
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(2) Let (C, ) be a crossed w-category, (D, ') be a crossed w'-category. A group-graded
functor (f,G) : C — D is called a crossed functor, if the following condition is satisfied

Gowa=¢ oG, foranyacm. (2.6)

(8) Let (C,,C) be a braided w-category, (D,¢’,C") be a braided ©’-category. A crossed
functor (f,G) : C — D is called a braided crossed functor, if the following condition is
satisfied

Go(YV,U) o C'gugv = GCuy 0 Go(U, V),  for anyU €Cq, V €Cps, a,B €. (2.7)

2.2 Weak Turaev m-coalgebras

Recall from [12] that a w-coalgebra is a family of k-spaces C = {Cy }aer together with a
family of k-linear maps A = {A, g : Cap — Co ® Cgla,pen (called the comultiplication)
and a k-linear map € : C. — k (called the counit), such that A is coassociative in the
sense that,

° (Aaﬁ X idCA)AaB,A = (idca ® A57A)AQ7BA, for any o, ﬂ, A\ ET.
o (idg, ®e)Aqe =1dc, = (e ®ide, )Ac o, for all a € 7.

We use the Sweedler’s notation (see [16]) for a comultiplication in the following way: for

any o, B € mand c € Cyp, we write
Ra,p(0) = ) @ C2p)-

Recall from [11] that a weak Turaev w-coalgebra is a m-coalgebra H = ({H,}, A, ¢)
together with a family of k-linear maps S = {S, : Hy — Hy-1}aer (the antipode), and a
family of algebra isomorphisms ¢ = {¢s : Ho = Hpgap-1}a,per (the crossing) such that for
all a, B, A\ €m, g,h,z € H., a € H,, we have:

(WTGC1) The comultiplication Ay g : Coap —> Co ® Cs is a (not necessary unit-
preserving) homomorphism of algebras such that

(Aap ®@idp,)Aaga(lapr) = (Aas(lag) @ 1x)(1a @ Aga(1a)),
(Ao, @idm,)Aapa(lagr) = (Lo @ Aga(1pr))(Aa,s(lag) © 13).
(WTGC2) The counit € : H, — k is a k-linear map satisfying the identity:
e(grh) = (g (2,e))e(T(1,0)h) = (92 (1,0))e(2(2,0) P)-
(WTGC3) The properties of the antipode:
Ma(Sa-1 ®@idp, )An-10(h) = 11,0)8(hl(2,e)),
ma(idHa ® Sa—l)Aa)a—l (h) = 5(1(17e)h)1(27a),
Sa(a1,0))a2,6-1)Sa(a(3,0)) = Sal(a).
(WTGC4) The properties of the crossing:

(SDOZ ® @a)Aﬁ,)\ = Aa,@a_%a)\a_l(pom
EOQPa =&, Pap = PaPB-
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Remark 2.2. If the m-coalgebra H = ({Ha}, A, ) only satisfies (WTGC1)-(WTGC?2),
then we call H o weak semi-Hopf m-coalgebra. If H only satisfies (WTGC1)-(WTGCS),
then we call H a weak Hopf w-coalgebra. Note that a weak Hopf w-coalgebra H is said to be
of finite type if, for all o € w, H,, is finite-dimensional as a k-vector space. The antipode
S ={Sa}aer of the weak Hopf w-coalgebra H is said to be bijective if each S, is bijective.
Note that if H is of finite type, then the antipode S is bijective.

Remark 2.3. It is easy to get the following identities:
(a) pc|Hy = idy, and ot = o1 for all a € 7;
(b) ¢ preserves the antipode, i.e., p3Sa = Sgas-19p for all a, B € 7;
(c) Su is an anti-algebra morphism, and satisfies

Ap-14-10843 = (S8 ®8,)0 Ag‘jg, €08, =e.

Example 2.4. Let H = ({Hy}, A€, S,¢) be a weak Turaev w-coalgebra. For any o € m,
set Ho = Hy-1 as an algebra, A, g = (g ®idg-1) 0 Ag-14-155-1, E=¢, Sa = a0 541
and Py |ﬁa: g |Ha_1. It is easy to check that this is also a weak Turaev w-coalgebra. We
call it the mirror of H, denoted by H.

Example 2.5. Let m be a group acting on a weak Hopf algebra (H,m,n, A, e, S) by endo-
morphisms. Set H™ = {Hy }oer where for each o € w, the algebra Hy is a copy of H. Fix
an identification isomorphism of algebras i, : H — H,, h— «a(h). For o, B € w, we define
a comultiplication
Aap:Hag = Ho @ Hp,  Aapliap(h)) = ia(hn) @ig(hs),
where h € H and A(h) = hy ® ho. The counit € : H, — k is defined by €(ic(h)) = e(h) for
allie(h) € He. For a € w, the antipode Sy, : Hy, — H,-1 is given by
Salia(h)) = ia-1(S(h)),

for all iq(h) € H,. Then it is easy to check that H™ is a weak Hopf w-coalgebra, and is
crossed with the homomorphism ¢o : Hg — Hypgo-1 defined by o (ig(h)) = iqga-1(h) for
all a, € m.

Let H be a weak Hopf 7-coalgebra. Define the family of linear maps & = {&!, : H, —
Hy}oer and €% = {e2 : H. — H, }aer by the formulae

g(h) = 6(1(17€)h)1(27a) = ma(idHa ® Sa—l)Aa’a—l(h),
Z(h) = 1(1’04)6(}11(2,6)) = ma(Sa71 (24 idHQ)Aofl’a(h),

for any h € H,, where €%, &° are called the m-target and m-source counital maps. Introduce
the notations H' := e'(H) = {H! := ¢! (H.)}aer and H® :=e%(H) = {H? := &5,(He) }aen
for their images. Further, we have the following identities:

Ay s(lap) EH;(X)HE, ctoet =€t o’ =¢®, eloe®=c%0cl.

Similarly, we can define a family of linear maps et — {é/‘\ta : Ho — Ha}oeq and £ =
{e%« : He = Hy}aeq by the formula

ela(h) =e(hl1e)l(2,a), E%a(h) = 1ame(lzeh),
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for any h € H,. Their images are denoted by H = {}/ﬁa = ;ta(He)}aeG and H* =
{H%, = sAsa(He)}aeg. And then we obtain the following identities

—~ —~ ~ ~

Ay p(la )GHS Q Htg, etoegt=ct, eSo0e’=¢% ctoe’=c%o0ct.

Now we will list some formulas frequently used in our computation for any «, 5 € 7:
(W1) 2(1,0) ®e5((2,0)) = L1.0)T ®@ L2,y €5(T(1,0) @ T(2,0)) = L(1,8) @ (2,095
(W2) Aap(e55(h) = 11,0) ® Lz, p)5(h) = L(1,0) ® €5(R)1(2,5);
A%B(gfxﬂ(h)) = 1(1,a)5?(h) ®Llieg = 6ta(h)l(l,a) ® 12,p);
(W3) Sa(x) = Sa(ra,0))el -1 (T(2,e) = €51 (2(1,¢)) Sa(T(2,0));
(WA4) e(gh) = e(gec(h)), e(gh) = e(ei(9)h);
(W5) Z(1,0) ® E%(l‘@,e)) = 331(170‘) ® 5571(1(2”371)),
e5(T(1,6)) ® T(2,0) = Sp-1(L(1,5-1)) ® L(2,0); R
(W6) e(z1,eyh)x(2,0) = 2L (R), 2(1,0)e(T(2,0)h) = Lissa(h);
(W ) m(l a)s(hx(Q e)) = €5 (h)xv E(lﬁbx(l,e))x(la) = Eta(h)x;
(W8) el (xel(y)) = el (2y) = (1,066 (¥)Sa—1 (T(2,a-1)),
ealed(z)y) = Ei(wy) = Sa-1(Y(1,0-1))ea(2)Y(2,0)-

Let H be a weak Turaev 7-coalgebra with bijective antipode and H its mirror with the
comultiplication A, g = (g ®idg-1) 0 Ag-1,-15 -1 for all a, B € m. We write Zzog(h) =
h(Qﬁ—l) ® sﬁﬁ(h(l,ﬁ—la—lﬂ)) S Hﬂ—l ® H,-1 for any h € Hﬁ—la—l.

A weak Turaev m-coalgebra H = ({Hy }acr, A €,5, @) is called a quasitriangular weak
Turaev mw-coalgebra if H endowed with a family of elements

R={Rap € A5" o 1(lag)(Ha @k Hg)Aa,5(1ap) tapen

(the R-matrix) such that the following identities hold:

cop

1) R, ,@Aa B(h) EB@ 1o 1(h)Ra 85

2) YRy ARaﬁ®Raﬁ®Ra)\_ZRaﬁ>\®Raﬁ)\( ﬁ)®Raﬁ>\(2,\)

)
)
3) ZR ,BAB~ 1®Rﬁ)\®@ﬁ (sz,@)\,@ )RBA_ZRaB)\(l )®Raﬁ)\(2ﬂ)®Raﬁ)\7
)
)

OO O

4 (<P/\®<P/\)(R 5) = Ryar—1 821 o
there exists R = {Ra,5 € Aap(lag)(Ha ® Hg)Ag~1 P a-1(lag)}, such that

R, BRap = A 73(1a5) RaﬁR B = Aﬁ _1(1a5).

3 Twists for crossed structures

This section will extend Drinfeld’s twisting construction to the (weak) crossed case, and
construct a new quasitriangular weak Turaev m-coalgebra by a twist.
Now let H be a weak Turaev m-coalgebra.

Definition 3.1. A twist for H is a pair (F,f), where F' = {Fo 5 = Y FJ;® Ffﬁ €
Ao s(lap)(Ha ® Hp)Yaper, f = {fas = L fSs® i 5 € (Ha @ Hg)Ag 5(1ap)}apen,

satisfying the following azioms
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T1 aﬁfaﬁ*Aa (1045);

(T1)
(T2) (907 ® SD’Y)(F ) F’yav_l,’yﬁ'y—la (SD’Y ® wv)(fa,ﬁ) = f’ya’y—17'y,8'y—1;
(T3) > ¢ ( W =2 FE e (FE ) = 2 e(fEa) fea = 2 fEas(fEn) = La
(T4)

a Oéﬁ B Y
T4) 3F, aﬁ'y( )F 58 Fapy, o Fap®@Fasy
Jalel B By 0
=2 Fap® Fay gy ® Ly, ) For

for any o, B,y € 7.

Corollary 3.2. Let (F,f) be a twist for a weak Turaev mw-coalgebra H. We have the
following identities

Z& oc eazl@’ ngez ge :104’ (31)
Zf:faga ee7a):10n ZES FY o =1,. (32)

Proof. Straightforward. 0

Corollary 3.3. If H is a Turaev w-coalgebra, then each of the four conditions Eq.(T4) -
Eq.(T7) implies the other three, where

(T5) ngﬁ'\/@fﬂ,’yf [3’Y (1,8) fﬂWfa7ﬂ7(2 )

a B .
- Zf a7, 677 ® fa ﬁf TaB g ﬂ) aﬁﬂ’
F af FB'Y Y FB’Y
( ) Z ﬁ 'y(l ) o, By ® fOlB ’7(2 8) anB’Y(LB) ® 04,37’)’017,/3"/(2,7)
=2 E aﬂ /3fﬁv®ﬁfﬁw » PR
(T7) Z fa By aﬁ 7(1 ) ® « 5V(1)5)Faﬂ,’y(2ﬁ) f ’ﬁ’Y(Q ) 0‘5 2l

=2 fas ®Fﬁ,vf576 ® Fy
Proof. For any «, 3,7 € m, we set

' _ af o af
Faﬂa’Y_ZFa,B,'y( )Fa ®Fa,8,'y( B)Faﬁ(g)Faﬁ'w

By B By
’ﬁ’y Z O‘B’Y Faﬁ')’( 5)F:B'Y®Fa57(2 )Fﬁ’Y’

a B Y
foc,ﬁ’y Zfaﬁfaﬂy(l ®f,ﬂf ﬁ7(2ﬂ)®faﬁ77
fapn = Zfa,ﬁv@)fﬁ vf JaBy ;g ® f3, "/f BY(9)

Since H is a Turaev m-coalgebra, we immediately get Fy g fag = fa,8Fas = 1a®1s. Further,
it is clear that F' and f , Fand f are inverses with each other, respectively. Hence Eq.(T4)
is equivalent to Eq.(T5). Similarly, Eq.(T6) and Eq.(T7) are also equivalent.

Let us now prove Eq.(T5) is equivalent to Eq.(T6). Since Fi, 3 ® 1, and 1, ® fz are
all invertible, we obtain

(Faﬁ ® 1W)Jéﬁ(1a ® fﬁﬁ) = (Fa,ﬁ ® 17)(1a ® fﬁ,’y)

which implies the conclusion. 0
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Lemma 3.4. Let (F, f) be a twist for a weak Turaev mw-coalgebra H. Define a comultipli-
cation AF by

Ag (h) = hj1,0) @ hj2,8) = fa,pRa,5(h)Fap, where h € Hyp.
Then HY = ({H,}, AT ¢) is a weak semi-Hopf m-coalgebra.
Proof. Assume that o, 8,y € 7, a € Hy, b,c,d € He, h,g € Huop, * € Hopg,. Firstly, since
Ay 5(hg) = fa.pBa,p(hlasg) Fa.p
2 fasBas (W 5 fe B s (9)Fas = AL (WAL 5(9)

AT is an algebra homomorphism. We also have

(5 & ida)AeF:a(a’) = Z E(fee,aa(l,e))f (a(2 e)F ) a3, a)Fa

(W6, 3.1) (W7, 5.2)

Zg(f:,aa(l,e))fgaa(le) = @s

and similarly we can prove (idy ® €)AE (a) = a, thus ¢ is still a counit.
Secondly, we compute

(Aa B id )Aaﬁ 7( r) = fa,Bn/(Aa,B ® id7>Aa6ﬁ($)Fa,b’ﬁ
fap(ida ® Dp ) Aa sy () Fa gy = (ida ® AF )AL 5. (2),
for the coassociativity law. We also have
e(bepe)e(cpad) =Y e(bf L e .e)elceFLu)e(f 2 s .e)e(Ca,0 F A d)
= > ebf e e)e(f 3 c@e))E(cs.e Fle)elcu.e Fad)
R SE(PEETN e>>ca,e>)e(c@,e)sz(FSﬁ>F§?:>d>
e(be(r,e))e(c(z,e)d) = e(bed),

and similarly we can prove

(T4, T5)

(3.1, 3.2)

E(bC[Qve])é:(C[l,e] d) = e(bed).
At last, we compute

111,0] ® 12,8 ® 1i3.9)

fapr(Lta) ® Liap) ® 13,9)) Fapy = faprFasy = faprFasny

(1a ® fo4)(1a ® Fy)(fas ®1,)(Fas ® 1)
= lpa @1 g lpe © Ly,

(T7)

and similarly we can get

11,0] ® 12,6 @ Lz = Lin,a) @ g g l12,0) © Loy

which implies the conclusion. 0
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Theorem 3.5. Let (F, f) be a twist for a weak Turaev w-coalgebra H. Define a new antipode
SE by

= Fe o Salfer ) Salh)Sa(FS o )FS o1, where h € H,.
Then HY = ({Hy}, A 2,8 ) is also a weak Turaev w-coalgebra.
Proof. We only prove (WTGC3). For any « € 7, h € H., we compute
Sh-1(hra-17)h2,0
-1 —1

= ) i Sar (f2 ) Samt (Flas ) Sam1 (ha—1))Sa1 (F221 2)Sa1 (FE2 )
sfl,afafl,ozh@,oé)Flg_l,a

(T1) a a™! ot s o

= Zfa,aflsafl(F/a—l,a a,a*l)ga(h)F/a—l,a

(T7) a e e e s e a
= Z fa,eFe,a(l a)Sa—l (fa,e(l Dﬁl)‘Fe,oz(2 _ ))Ea(h) a,e(2’a)Fe,oz

D D A RERUN I Nl S A LY
Y s dawda F;e>F3,es<hfg,el<2,e>>
= D fllamFeee(hfs deeoFs.) = pae(hli.g).
Similarly, we have
hia)Sa-1 (Bza-1)) = €a(lp,gh)Liz,a)-
Then we get
Sh(ap,a))ap,a-155 (ap,a) = S5 (a), Va € Hy,
which implies (WTGC3). 0
Proposition 3.6. Let (F, f) be a twist for a quasitriangular weak Turaev 7-coalgebra
(H,R). For any «, B € 7, define RY by

(RF)(X,B = (ida ® @oﬁl)(fozﬁa*l,cszl)Ra,ﬁFa,ﬁ € Z;o—pl,a—l(laﬁ)(Ha Rk Hﬂ)Aa,ﬁ(laﬁ)}a,Ben,

aBa~1a’
quasitriangular weak Turaev w-coalgebra.

here faﬁafl’,lZl = Efsﬁa,l W ® faﬁai1 then HY = ({H,},AY e, ST o, RF) is also a

Proof. Firstly, for any «, 8, \ € w, we compute

o2 @ ©A)((RT)a,)
Px @ pa)(lda @ Pa—1)(fapa1t.a, ) (P2 @ ¢x)(Ra,p)(Pr ® 0r)(Fa,p)

idyar-1 @ Pra-1x- )(f/\aﬁa—lz\—l,)\a)\—l21)R)\a/\—1,Aﬁ)\—lF)\az\—l,)\BA—l

(
(
(
(

R JAar-1 ABA-1,
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thus Eq.(Q4) holds.
Secondly, for any h € H,g, we have

AF g (M) (R )a,s
= ((lda ® o) 0 (AL 1 )(h)(ida @ Po-1)(Faapar)Rapfos
= (ida ® pa- 1)(faﬁa La, )Ra,ﬁAaﬁ(h)Fa,B
= (RM)apAl 5(h)

which implies Eq.(Q1).
Thirdly, since

(ida ® AF ) (R )a,py)
afBa?t afya?t
= Z fs,aﬂ'ya*IRg,B'yFaa,,{i"y ® Pa-1 (faga—l aya~—1 By — )Rﬂﬂy

afya i hga-1y/ 0B gy
By aya” afya~t By By
Zaby, B)Fﬁ’v ® pa- 1(faﬁa Laya~ 1faﬂva Japyamlary (o0-1y R, ZaBry )F @875, ,Y)FB ¥
(T4, T5) Ba~! 8
Z aya~ 1’04 a,Ba 1,(1,7(2 )Ra,ng,BFaB’y( )F(iﬁ®<pa71(fsﬁg_l,av)Ra,,B
af 8 ya~l pay vy
FaB,W(Q,B)Fa,B ® Pa-( a’va“7afa/3aflya’y(17ma71)> anapy

(T7) -
= D e R e e o R s s © Carr (fofe BL 5FL 5

a1 (f1°, )RYF

aya~la/ oyt oy
= ((BM)an)1ps((RT)a,p)12v;

we obtain Eq.(Q2). And we can get Eq.(Q3) in a similar way.
At last, define RF = f, gRa p(ida ® @o-1)(Fy apa-1), then we obtain Eq.(Q5). |

4 On the representations

Recall from [11], Rep(H) = {Rep,(H)}acq, the representation category of a weak
Turaev w-coalgebra H is a crossed m-category with the following structures:

e For any a € G, the ath component of Rep(H), denoted Rep,, (H), is the category of
left representations of the algebra H,,.

e The tensor product U ® V of U € Rep,,(H) and V' € Repg(H) is obtained by

UiV =27A451ap)(U®LV),

with the action of Hng given by h- (u®;v) = h(1 ) - u® ha gy - v, for any h € Hap, u € U,
veV.

e The tensor product of two morphisms f € Rep,(H) and g € Repg(H) is given by
the tensor product of k-linear morphisms, i.e., the forgetful functor from Rep(H) to the
category of k-spaces is faithful.
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e For any h € H., x € H!, H! is the unit object of Rep(H) with the action: h-z = e! (hz),
and for any z € H!, v € V,, the unity constraint are defined by

Iy, (z @ v) = el (x) - v; Z;al(v) =1e®v=¢{(la,e) @ la@a) - v = Sc(la@,e)) @ la(2,a) - v,
and
v, (V@ x) = E34(x) v = Sitel i (x) v, r‘;al(v) =0 ®t le = la(1,a) -V ® la(2,e)-

e The automorphism ¢, of H defines an automorphism, ¢, of Rep(H). For U €
Repg(H), then “U := ¢, (U) has the same underlying k-space as U and each h € H,g,-1
acts by

Hopoor ®°U = °U,  hx®u="(pq-1(h)u), (4.1)

here we denote “u the corresponding element for v € U in *U. For any morphism f: M —
N in Rep(H), then @ f : *M — “N satisfies

“f(*m) = *(f(m)), for all m € M.

Note that if H is quasitriangular, then Rep(H) is a braided crossed m-category with the
following braiding

v UV = (V)eU, ueve (R, v)® RS, u,
where U € Rep,(H) and V' € Repg(H).

Theorem 4.1. Let (F, f) be a twist for a weak Turaev m-coalgebra H. Then Rep(H) and
Rep(HT') are isomorphic as crossed w-categories.

Proof. For any m € M,n € N, M € Rep,(H), N € Repg(H),{: M — N € Mor(Rep(H)),
define the functor
G = (G, G2, Gy) : Rep(H) — Rep(H")

by G(M):= M, G(§):=¢ Go=idy,, and
Go(M,N):G(M)®;G(N) — G(M ®; N),
men —  Fog(m@gn).

Now we have

G2(M,N)(h-(m®mn)) = G2(M,N)(AL 5(h)(m @ mn))
= Fo5(fa,80a,5(h)Fapg(m@n))
=h-(Gao(M,N)(m@n)),

where h € H,s. Obviously G satisfies G o ¢, = ¢, 0 G for any o € 7, so (id,,G) is a
crossed isomorphic functor. 0

Corollary 4.2. Let (F, f) be a twist for a quasitriangular weak Turaev 7-coalgebra (H, R).
Then Rep(H) and Rep(HT') are isomorphic as braided w-categories.
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Proof. We only need to show the crossed functor (id.,G) defined above satisfies Eq.(2.7).
Indeed, for any u € U € Rep®(H),v €V € Rep’B(H)7 a, B € w, we compute

(G2(YV,U) o C'cuav)(u @)
= Go(UVU)Y pat (F25000 DRE 4FE 5 0@ [2501 o R 5FS 5 w)
= > ot (Fsgs:ll,a)%—l (fggsjll,a)Rg,BFfﬂ VO Figa-1 afapa—1,aRaslas U
- Z RZ,BFgﬁ W@ Ry gFy 5 -u=(GCyy o G2(U,V))(u®wv),

hence the conclusion holds. O
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