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Abstract

‘We use planar circular inversions to show that the Titeica-Johnson theorem, Euler’s
triangle theorem, and the porism of triangles for two circles are all equivalent.

Keywords: Three-circles theorem, Euler’s triangle theorem, Poncelet’s porism.
2020 Mathematics Subject Classification: Primary 51M04; Secondary
51N20.

1 Introduction

Many years ago, T. Zamfirescu informed one of the authors that the three-circles theorem,
which has many interesting applications, goes back to the Romanian mathematician G.

Titeica (see, e.g., [11]) who derived it in 1908. It was rediscovered in 1916 by R. A. Johnson,
cf. [3].

(i) Titeica-Johnson theorem: If three pairwise different circles of equal radii intersect
at a point, then the circle passing through the remaining three points of intersection also
has the same radius, see Figure 1.

A

Figure 1: The Titeica-Johnson theorem

Johnson says that “singularly enough, this remarkable theorem appears to be new. A
rather cursory search in several of the treatises on modern elementary geometry fails to
disclose it, and the author has not yet found any person to whom it was known.” He
observes that the four intersection points of the whole system form an orthocentric system
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(i.e., each of these points is the orthocenter of the triangle created by the other three), and
he presents the three-circles theorem also in his book [4] (see page 75). Generalizations in
Euclidean elementary geometry were, for example, obtained by Popescu [10] via the known
propeller theorem, and (omitting the concurrence of the three given circles) by Mackenzie
[5], getting the so-called triquetra theorem which shows interesting relations to Poncelet’s
POTISMN.

More recent extensions of the theorem (i) refer to normed planes, also called Minkowski
planes. Namely, Asplund and Griinbaum [1] confirmed that (i) even holds in all smooth,
strictly convex normed planes obtaining from it further results which are basic for de-
veloping elementary geometry in normed planes. Martini and Spirova [6] continue these
studies by showing immediate connections to orthogonality concepts and notions like the
orthocenter and the Feuerbach (or nine-point) circle of triangles in such planes (also delet-
ing the smoothness assumption). In the papers [7] and [8] the authors directly extend the
three-circles theorem to Clifford’s chain of theorems for congruent Minkowskian circles, and
to a deeper study of the concept of orthocentricity with respect to suitable orthogonality
concepts in normed planes.

By a tangent circle of a triangle in the plane we mean a circle that is tangent to the
three lines determined by the three sides of the triangle. The unique tangent circle that is
containd in the triangle is the inscribed circle, and other (three) tangent circles are called
escribed circles of the triangle. Figure 3 below shows an escribed circle.

(ii) Euler’s triangle theorem: Let R,r denote the radii of the circumscribed circle and
a tangent circle of a triangle in the plane, and let d denote the distance between the centers
of these two circles. Then

9 R? —2rR  if the tangent circle is the inscribed circle,
R? +2rR if the tangent circle is an escribed circle.

Let K, C be two circles in the plane such that either C' lies in the interior of K, or they
cross each other. Note that if K is the circumscribed circle and C' is an escribed circle of
one and the same triangle, then K and C cross each other. When K and C' cross, there
are exactly two common tangents of K and C. In this case, the contact points of these
common tangents with the circle K are denoted by a1, as, and the intersection points of
K, C are denoted by by, by as shown in Figure 2.

e

T

Figure 2: The crossing case
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(iii) The porism of triangles for two circles: Suppose that (K, C) is the pair consisting
of the circumscribed circle and a tangent circle of a triangle A.

(1) If C is the inscribed circle of A, then for every point x € K there are y,z € K such
that C' is also the inscribed circle of the triangle Axyz.

(2) If C is an escribed circle of A, then for any point x € K \ {a1,az} that lies in the
exterior of C, there are y,z € K such that C is also an escribed circle of the triangle xyz.

Poncelet’s porism for a pair of conics in general position is derived in [2] as a consequence
of Pascal’s theorem.
From (2) of (iii), we have the following corollary.

Corollary. If there is a triangle with circumscribed circle K and escribed circle C, then
the line a1by is tangent to C.

For a circle in the plane R? with center p and radius r, the inversion ¢ of the plane R?
with respect to this circle is the map

¢ :R*\ {p} - R*\ {p}

such that for every z € R2\ {p}, ¢(z) lies on the ray p# and satisfies ||z —p|||¢(z) —p|| = 2.
Note that ¢(p) is not defined. For properties of inversions of the plane see, e.g., [9]. In the
following, we show that, under inversions of the plane, (i),(ii) and (iii) are all equivalent.

2 (i) = (i)

Let (K, C) be a pair consisting of the circumscribed circle and a tangent circle of a triangle
Azyz, and let R, r be the radii of K and C, respectively. We consider here only the case
that the tangent circle C' is an escribed circle tangent to the side yz. Let p be the center of
C and ¢ be the center of K. Hence d = ||g — p||. Since the line zy meets C at a point on
the prolongation of xy beyond y, and the line xz meets C' at a point on the prolongation
of zz beyond z, we have Zzyp > m/2 and Lxzp > w/2. Hence the center p of C' must lie in
the exterior of K. Let s,t be the intersection points of the line pg and the circle K, where
s lies between g and p, as shown in Figure 3.

Figure 3: C' is an escribed circle of Axyz

Let ¢ be the inversion of the plane with respect to the circle C. The three lines xy, yz, zx
are sent by ¢ to the circles of diameter r intersecting at p. Since z,y,z € K, the image
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©(K) is the circle passing through the three intersection points ¢(x), p(y), (z) of the
circles p(xy), ¢(yz), ¢(zx). Hence by (i), ¢(K) has diameter r. Since ||t —p|| = d + R and
s — p|| = d — R, we have

r2

2
,
le(®) =l = . llpls) = pll = 7—.

Thus ) ) 2p
r r 2r
— t = — = .
S Ol Rl oy -y Sl Sy S

Since ||¢(s) — ¢(t)] is equal to the diameter of ¢(K), we have

2r’R
r= =

P2 _R2’
and hence d? = R? + 2rR. 0

3 (i) = (i)

Suppose that three circles By, Bo, B3 of the same diameter r intersect at the point p. Let
w1, we, w3 be the remaining three intersection points of By, Bs, B3, and let D be the circle
that passes through wy, wo, w3. Let us show that the diameter of D is also 7.

Let C be the circle with center p and radius r. Then, for each i = 1,2, 3, the circle B;
is internally tangent to C'. Let ¢ be the inversion of the plane with respect to the circle
C. Then the images ¢(B;),i = 1,2, 3, are lines tangent to C. Hence, C is a tangent circle
of the triangle zyz, where z = p(w1),y = @(wa),z = p(ws). Let us consider the case
that C' is the escribed circle of the triangle xyz tangent to the side yz. (The case that C
is the inscribed circle of the triangle zyz follows similarly.) The circle K := (D) is the
circumscribed circle of the triangle xyz. Let ¢ be the center of K and R be the radius of
K. Put d = ||g — p||, the distance between the centers of C' and K. By (ii), we have

d*> = R* + 2rR.
Let s,t be the points where the line pq intersects K, as shown in Figure 3. Then
[t—pll=d+R, |s—pll=d-R.

Hence ) )
T

,
o) = pll = =, llels) = pll = =,

and therefore

lo(s) (Bl = 7 — 1 = 2K

AVTENT IR T d4R T PR
which is equal to by (ii). Since ||p(s) — ¢(t)]| is the diameter of ¢(K) = D, we are done.
O
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4 (i) = (i)

Let us derive only the case (2) of (iii). Let r be the radius of C, and p be the center of
C. Denote by ¢ the inversion of the plane with respect to the circle C. Since the three
lines 1, l2, I3 determined by the three sides of A are at distance r from the center p of C,
the images ¢(11), ¢(l2), ¢(l3) are circles of diameter r passing through p. Since the circle K
passes through the three intersections of the lines Iy, 15,3, the circle ¢(K) passes through
the three intersection points of the circles p(11), ¢(l2), ¢(l3) other than p. Hence, by (i),
p(K) is a circle of diameter 7.

Let © € K\ {a1, a2} lie in the exterior of C. Then there are two tangent lines of C' that
pass through x. And since z is different from aq, as, these two tangent lines intersect K
at two points y,z € K \ {z}, that is, the lines xy, xz are tangent to C. Then the images
p(zy), p(xz) are circles passing through p and tangent to C. Hence they are circles of
diameter r. Note that the three circles p(zy), p(zy) and p(K) are all circles of diameter
r, passing through ¢(x), and hence the circle, say D, determined by the three points
©(y), p(2),p is also a circle of diameter r by (i). Hence D is tangent to C, and ¢~ (D) =
(D) is a line tangent to C. Since (D) passes through y, z, it is the line yz. Thus the line
yz is also tangent to C, that is, C' is an escribed circle of the triangle zyz. ]

Proof of the Corollary. Suppose that there is a triangle with circumscribed circle K,
escribed circle C, and so that the line a;bs is not tangent to C. Since the line asbs is also
not tangent to C (it clearly cuts C), there is a point € K \ {a1,as} such that the line xbs
is tangent to C. Then x lies in the exterior of C. Hence, by (iii), there is a triangle xbyz
that has the circumscribed circle K and the escribed circle C'. However, since the line xby
is tangent to C' at bs, the line zby is never tangent to C, a contradiction. Therefore, the
line a1by must be tangent to C. 0

5 (iii)=(i)

Let «, 8,7 be three pairwise distinct unit circles intersecting at a point p. We show that the
circle 7 passing through the remaining three intersection points is also a unit circle. Let C
be a circle with radius 2 and center p. Then three circles a, 3,y are all internally tangent
to C. Let ¢ denote the inversion of the plane with respect to the circle C. Then ¢(C) = C,
the lines ¢(a), ¢(B), () are tangent to the circle C, K := ¢(7) is the circumscribed circle
of the triangle determined by the three lines ¢(a), o(8), ¢(7), and C is a tangent circle of
this triangle. Our task is to show that ¢(K) = 7 is a unit circle.

Let g be the center of K, and & € K be the point lying on the prolongation of pg beyond
q. By (iii), there are 7,z € K such that C is also a tangent circle of the triangle AZyZz.
Note that AZgz is an isosceles triangle with base §z. Let x = ¢(Z),y = ¢(§),2z = ¢(2),
and X = ¢(92),Y = ¢(22),Z = ¢(Zy). Then X,Y, Z are unit circles internally tangent to
C = ¢(C). Let u,v,w be the centers of XY, Z, respectively, see Figure 4. Let ps be the
diameter of X. Then

(%) the quadrilateral yszz is a rhombus.
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This can be seen as follows. Since ywpu is a rhombus, the lines yu and wp are parallel.
Hence Lyws = Zuyw = Zupw, and since Zupw = Lyux (the triangle Auxp is an isosceles
triangle), we have Zyws = Zyuxz. Thus the two isosceles triangles Ayws and Ayuz are

congruent, and hence ||y — s|| = ||y — z||. Therefore yszx is a rhombus. Since the circle X
passing through y, s, z is a unit circle, the circle 7 = ¢(K) that passes through x,y, z is also
a unit circle. 0

Figure 4: Two cases for the location of X

Acknowledgement We wish to thank the referee for careful reading of the manuscript and
suggestions.

References

[1] E. AspLUND, B. GRUNBAUM, On the geometry of Minkowski planes, Enseign. Math.
IT 6 (1961), 299-306.

[2] L. HALBEISEN, N. HUNGERBUHLER, A simple proof of Poncelet’s theorem (on the
occasion of its bicentennial), Amer. Math. Monthly 121 (2014), 1-14.

[3] R. A. JOHNSON, A circle theorem, Amer. Math. Monthly 23 (1916), 161-162.

[4] R. A. JOHNSON, Advanced Euclidean Geometry, Dover Publications Inc., New York
(1960).

[5] D. N. MACKENZIE, Triquetras and porisms, College Math. J. 23 (1992), 118-131.

[6) H. MARTINI, M. SPIROVA, The Feuerbach circle and orthocentricity in normed
planes, Enseign. Math. 1T 53 (2007), 237-258.

[7] H. MARTINI, M. SPIROVA, Clifford’s chain of theorems in strictly convex Minkowski
planes, Publ. Math. Debrecen 72 (2008), 371-383.



H. Maehara, H. Martini 237

[8] H. MARTINI, S. WU, On orthocentric systems in strictly convex normed planes,
Extracta Math. 24 (2009), 31-45.

[9] C. STANLEY OGILVY, Ezcursions in Geometry, Dover Publications Inc., New York
(1990).

[10] M. PopEscu, Extension of a theorem of G. Titeica (in Romanian), Gaz. Mat. 81
(1976), 161 163.

[11] WIKIPEDIA, THE FREE ENCYCLOPEDIA, Gheorghe Titeica.

Received: 13.11.2023
Revised: 02.02.2024
Accepted: 03.02.2024

() Ryukyu University, Nishihara, Okinawa 903-0213, Japan
E-mail: hmaehara@edu.u-ryukyu.ac.jp

) Faculty of Mathematics, Chemnitz University of Technology,
09107 Chemnitz, Germany
E-mail: martini@mathematik.tu-chemnitz.de



