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Abstract

Combining two well-known types, we present a new class of partial latin squares which
are not completable and minimal with respect to this property.
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1 Introduction

A partial latin square P of order n is an n × n-array partially filled with symbols from
N = {1, . . . , n} each symbol occurring at most once in each row and each column. If there
are no empty cells we speak of a latin square L, and if for r, s ∈ N the non-empty cells form
a rectangle R of r rows and s columns, we speak of an r×s - latin rectangle. A partial latin
square P is said to be completable, if there is a latin square L of the same order in which
P (i, j) = L(i, j) for each non-empty cell (i, j) of P . Characterizing for a given n those
partial latin squares that are completable, is an open question. Partial results include the
proof of Evan’s conjecture [7] by Smetaniuk [10] and Andersen and Hilton[1], which states
that a partial latin square containing at most n− 1 filled cells is always completable. Hall
[8] has shown that an r×n - latin rectangle can always be completed and Ryser’s result [9]
states that an r × s - latin rectangle R can be completed if and only if each symbol i ∈ N
appears at least r + s− n times in R.

In Euler and Oleksik [6], we have given a complete answer to the question: when is a
partial 3×n latin rectangle completable? To explain our approach, observe that any partial
latin square P can be identified with a subset E(P ) of E = {e(i, j, k), 1 ≤ i, j, k ≤ n} as fol-
lows: e(i, j, k) ∈ E(P ) if and only if P (i, j) = k. In particular, any latin square corresponds
to a specific n2-element subset of E, and the family B of all these subsets constitutes a
clutter , say of bases, in the sense of matroid theory. Any such clutter induces a (unique)
clutter C of circuits, i.e., subsets of E that are not contained in any member of B and
minimal with respect to this property. Consequently, a complete knowledge of C would give
an answer to the completability question in the following sense: a partial latin square P
can be completed if and only if E(P ) does not contain any circuit. We may also think of a
hypergraph H = (E, C) defined over the vertex set E, whose maximal independent sets are
given by B and whose hyperedges are to be described explicitly.
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Not much work has been done on describing the clutter C for latin squares of a given or-
der, and by Colbourn’s result [3] there is little hope to ever completely describe this clutter.
There are, however, partial results which may be of interest beyond purely combinatorial
aspects, in particular for related applications such as time-tabling, statistics or information
theory.

Andersen and Hilton [1] have fully characterized those non-completable, partial latin
squares which contain n symbols (see Figure 1 for two examples of order 4).
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Figure 1:

In 1985, Euler et al. [4] have studied the clutter C in view of the application of linear
programming techniques to the solution of the planar 3-dimensional assignment problem
(3PAP), the solutions of which correspond to the latin squares of the given order. In this
context, the members of C give rise to facet-defining inequalities for associated polyhedra.

In 2002, Brankovic et al. [2] have coined the term of premature partial latin squares,
i.e., non-completable partial latin squares, which are completable after deletion of any of
their symbols, and studied their spectrum, i.e., the set of integers t such that there exists a
premature partial latin square of order n with exactly t non-empty cells.

Some types of premature partial latin squares, related to r × n - latin rectangles, are
studied in Euler [5] and our work on 3 × n - latin rectangles [6] contains a complete de-
scription of minimal, non-completable partial 3 × n - latin rectangles. Moreover, we had
generated the complete family of circuits for order 4, one type of which was not covered
by this description, i.e., the associated partial latin square contains all 4 symbols and no
empty row or column. This type can be generalized to a partial latin square of order n,
say P̂ , as follows: P̂ (1, j) = j for j = 2, . . . , p, P̂ (i, 1) = n + 2 − i for i = 2, . . . , n − p + 1,
P̂ (i, i) = 1 for i = 2, . . . , n − 1, P̂ (n, n) = 2 and all remaining cells being empty. It is the
objective of this paper to show that this generalization to arbitrary n, illustrated in Figure
2, represents a premature, partial latin square of order n for all values p with 3 ≤ p ≤ n−1.
Our proof will also show that we hereby obtain a whole new class of such latin squares.

Quite obviously, P̂ cannot be completed and what remains to be shown is its minimality.
If for instance, we delete symbol 2 in cell (n, n), we can complete the resulting array to what
is known as a (forward) circulant latin square, that we denote by CL (see Figure 3 for an il-
lustration) and whose definition can be given as follows:
CL(1, j) = j for j = 1, . . . , n, CL(i, 1) = n − i + 2 for i = 2, . . . , n and CL(i + 1, j + 1) =
CL(i, j) for i, j = 1, . . . , n − 1. In a similar way, deleting symbol 1 in cell (n − 1, n − 1)
allows completability to CL with an interchange of the last two rows.
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Figure 2: The partial latin square P̂
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Figure 3: The circulant latin square CL

The completions that we are going to propose for a deletion of the remaining symbols
of P̂ will be constructed so as to be as close as possible to CL. For this we introduce the
following definitions.

Definition 1.1. For i, j, k ∈ N , a symbol k in cell (i, j) of a partial latin square P is said
to be in circulant position if CL(i, j) = k. More generally, a completely filled row Pi or
column P j or a permutation Pk, i.e., n symbols of a same type k no two of which in a
same row or column, is called circulant, if all of its symbols are in circulant position.

Definition 1.2. An (a, b)-alternating path p in a partial latin square P is given by a
sequence (i1, j1, a), (i1, j2, b), (i2, j2, a), (i2, j3, b), . . . , up to α) : (il, jl, a) or β) : (il, jl+1, b),
where a, b, l ∈ N , i1, . . . , il, j1, . . . , jl+1 ∈ N for all l, and ir ̸= is, jr ̸= js for r ̸= s. In case
α), p is said to be of odd length 2l − 1, in case β) of even length 2l. Finally, if jl+1 = j1,
we speak of an (a, b)-alternating cycle (of length 2l).

Just observe, that the symbols a, b may start to appear in a same column, and that the
notion of conjugacy gives us two more variations of such a path, i.e., all symbols a, b appear
in two rows of P , different in each column, or in two columns of P and different in each
row.
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2 Our proof for the first row of P̂

It will be sufficient to consider the first row of P̂ since playing with the value of p allows to
cover all cases in the first column of P̂ , except for p = n − 1. Let q denote the symbol to
be deleted in row 1 of P̂ and P̂ (q) the result of this deletion. The basic idea of our proof
for most of the cases is to start with a partial latin square induced by P̂ (q) that we call a
basic form BF , in which symbol q is placed in cell (1, 1), replaced by symbol n in cell (1, q)
and symbol 2 in cell (n− q+2, 1), and which contains the completed permutations P̂1 and
P̂2. Then we insert a number of circulant permutations in such a way that we obtain a
completion to a full latin square by completing the 3 symbols of type q and n to a union of
disjoint (q, n)-alternating cycles.

We will consider two cases, q odd and q even, and start with q = 3, 5, 7, . . . , n − 1 for
n even and q = 3, 5, 7, . . . , n − 2 for n odd. The basic form BF1 represented in Figure 4
illustrates the first step of our construction. In BF1, we complete the permutations Pk for
k = 3, . . . , n − 1, k ̸= q to become circulant. The remaining empty cells can then be filled
along the disjoint union of (q, n)-alternating cycles.
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Figure 4: Basic form BF1

Suppose now that q is even. For q = 6, 8, . . . , n − 2 for n even and q = 6, 8, . . . , n − 3
for n odd we use the basic form BF2 represented in Figure 5, in which the n− q symbols of
type n− 1 are placed in cells (7, 6), (8, 7), (9, 8), . . . , (n− q+5, n− q+4) and (n− q+6, 5)
for n− q = 3, 5, 7, . . .. For n− q = 2, 4, 6, . . ., the n− q symbols of type n− 1 are placed the
same way. We then proceed as in BF1 to end up with a disjoint union of (q, n)-alternating
cycles providing a complete latin square.

Some cases remain to be covered:

For q = 2 and n even,, we complete BF1 for q = 2 with circulant permutations Pk,
k = 3, . . . , n− 1 to obtain a complete latin square by filling the remaining n− 2 symbols of
type n.
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Figure 5: Basic form BF2

For q = 2 and n odd, we completeBF2 (the n−q symbols of type n−1 being deleted) with
circulant permutations Pk, k = 3, . . . , n− 2 to be left with a unique (n− 1, n)-alternating
cycle providing a complete latin square.

For q = 4 and n even or odd, we complete BF1 for q = 4 by exchanging in column 1
symbol 2 against symbol 3, deleting symbol 2 in cell (n − 1, n − 2) and placing symbol 3
in cells (n− 1, n) and (n, 2). Then we complete symbols 3 as well as the permutations Pk,
k = 5, . . . , n − 1 to become circulant. This will leave a disjoint union of (4, n)-alternating
cycles allowing to obtain a complete latin square.

For q = n, i.e., the first symbol in P̂2, with n even and q = n − 1, n odd, we com-
plete BF2 (without the n − q symbols of type n − 1) with circulant permutations Pk for
k = 3, . . . , n− 2, which leaves a disjoint union of (n− 1, n)-alternating cycles for an entire
completion.

Finally, for the same q = n and n odd, we complete BF1 for q = n with circulant
permutations Pk, k = 3, . . . , n − 1, which leaves a disjoint union of (n − 1, n)-alternating
cycles for an entire completion.

3 Our proof for the diagonal of P̂

For P̂ , let us denote with d the position of symbol 1 in cell (d, d) on the diagonal that is
to be deleted and with P̂ (d) the result of this deletion. Similar to our proof for the first
row, we will consider two basic cases, namely d even and d odd, whose presentation we are
now going to prepare. We start with d = 2 and consider the cases: n even and n odd. A
completion to a full latin square L̂ of P̂ (2) can be obtained by completing to circulant form:
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- columns P̂ k for k = 3, 4, . . . , n− 1,
- for n even, rows P̂n−k+1 as well as the permutations P̂ k for k = 4, 6, 8, . . . , n− 2, n;
- for n odd, rows P̂n−k+1 as well as the permutations P̂ k for k = 3, 5, 7, . . . , n − 2, n

(with a slight modification for P̂3).

We also complete permutation P̂1 in a unique way by placing symbol 1 in cells (2, n) and
(n, 2), so that the remaining cells can now be uniquely filled, too. Our construction for
both cases is illustrated in Figure 6.

8      9

7

6      7

5             7

4      5     6     7

        3     5     6     7

3      1     4     5     6     7

.

.

.

.

.

.

6

.

.

.

.

.

.

7

n-3     n-2     n-1     n

          n-3     n-2     1

                    n-3    n-2

 1      2     3

 n             2

n-1    n     1

n-1

        3

2

3

7

5

3

5

6

4

2

 1     2     3     4      5

 n     1     2     3

        n     1     2      3

               n     1

                      n      2

8

6

4

n-1

n-3     n-2     n-1     n

          n-3     n-2     1

                    n-3    n-2

 1      2     3

 n             2

n-1    n     1

1     2     3     4

n     1     2

       n     1

              n     2

8

7      8

6             8

5      6     7     8

4             6     7     8

        4     5     6     7     8

        1     4     5     6     7     8

Figure 6: d = 2 for n even and for n odd

The question arises whether we could exploit some kind of symmetry to settle other
cases. The answer is yes, as is shown by

Observation 3.1 (Symmetries). The following operation allows to obtain a completion for
the case d = n− 2 and n even:

i) place the last column of L̂ before the first;
ii) transpose the resulting latin square along its anti-diagonal;
iii) replace the first column after the last.

For n odd, a slight modification of step ii) will give the corresponding completion:

iia) exchange symbol 4 against symbol 5 along the alternating cycle of length 4
in rows n−2, n−3 and columns 2, 3 and then symbol 3 against symbol 4 in such a cycle
in rows n− 1, n− 2 and columns 1, 3;

iib) transpose the resulting latin square along its anti-diagonal.

We should mention at this point that this operation will also be valid for the completions
that we will construct for the two basic cases d even and d odd, i.e., when d′ = n− d.

Let us now suppose that d > 2.



R. Euler 185

We first consider the case that d divides n with d an even number. The completion of
P̂ (d) is similar to the one we proposed for d = 2, i.e., we complete into circulant form:

- columns P̂ k for all k ∈ N \ {1, 2, d, n}
- rows P̂n−k+1 as well as the permutations P̂ k for k = 4, 6, 8, . . . , d; d + 2, d + 3, ..., n,
except k = 2d+ 1, . . . , n− d+ 1.

Finally, we complete permutation P̂1 in a unique way by placing symbol 1 in cells (1, 1),
(2, n) and (n, 2) so that the remaining cells can now be uniquely filled, too. Figure 7 illus-
trates this completion.

If d is odd, we obtain a similar result if we complete into circulant form the same columns
as before and

- rows P̂n−k+1 as well as the permutations P̂ k for k = 3, 5, 7, . . . , d; d + 2, d + 3, ..., n,
except k = 2d+ 1, . . . , n− d+ 1.
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Figure 7: d divides n

We now turn to the case n = md + r with 0 < r < d. We may suppose that m = 2,
both from our previous Observation 3.1 and since a completion for n = 2d + r can easily
be extended to n = md+ r for any m > 2 (see again Figure 7).
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Case 1: d and r are both even.

Setting d = mr+ s with 0 ≤ s < d, it turns out that for s = 2 a completion of P̂ (d) can be
obtained by a (d + 1, d + r + 1)-alternating path starting in row n − r and terminating in
row n− d+ 2 (M ′ being empty in Figure 8). For the remaining cases and to stay as close
as possible to CL we combine our path with a particular subarray M ′ that will result from
a special calculation. The basic form BF3 represented in Figure 8 illustrates all essential
components from which a completion is obtained, if we insert circulant permutations P̂ k
for k = 4, 6, 8, . . . , d + r; d + r + 2, d + r + 3, . . . , n and place all remaining symbols into
circulant position.
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Figure 8: Basic form BF3 for d and r even

How can we obtain an appropriate array M ′?

We start by considering within the circulant latin square CL the subarray M of all odd
symbols appearing in

- row n − d + 2 up to row n − d + r and column r up to column r + 2, if s = 0,
- row n− d+ 2 up to row n− d+ s and column s up to column r + 2, if s > 2.
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M has the structure of a band-matrix BM of size, say u× v, for which we may suppose
that u ≤ v:

BM =



2u− 1 · · · 2v − 1 · · · 2(u+ v)
...

7
. . .

. . .

5 7
3 5 7
1 3 5 7 · · · 2u− 1 · · · 2v − 1


and in which the entry 1 refers to symbol d+ 1 and 2(u+ v) to d+ r + 1. To describe an
array M ′ suitable to be combined with a (d+1, d+ r+1)-alternating path, we need symbol
d + 1 to appear in the first and symbol d + r + 1 in the last row of M ′. This leads to the
following problem for BM :

(P ) =


Transform BM into BM ′ in such a way that

−BM ′1
1 = 1 and BM ′v

u = 2(u+ v)

−in each row or column, the set of entries, up to 1 and 2(u+ v),

remains unchanged and no entry appears twice.

For matrix BM , and thus any array M , problem (P ) can be solved as follows:

1. Define BM(i) for i = 3, 5, 7, . . . , 2(u + v) − 5 to represent the unique square sub-
matrix of BM induced by symbols 3, 5, 7, . . . , 2(u + v) − 5 of order, respectively,
2, 3, 4, . . . , u, . . . , u, . . . , 4, 3, 2, order u appearing exactly v − u+ 1 times.

2. Start with an empty matrix BM ′ and set BM ′1
1 = 1 and BM ′v

u = 2(u+ v).

3. Insert a permutation Pi into sub-matrix BM ′(i) for i = 3, 5, . . . , 2(u+ v)− 5.

For the validity of this procedure we just observe that at no step i = 3, 5, . . . , 2(u+v)−5
there can exist a blocking sub-matrix within BM ′(i), i.e., an already filled sub-matrix of
size u′ × v′ such that u′ + v′ = order(BM ′(i))+ 1. Calculating the array M ′ for each value
s ̸= 2 thus provides a complete solution for Case 1.

Case 2: d is odd and r is even.

The characteristics for this case can be resumed as follows:

1. We use (d+ 1, d+ r − 1)-alternating paths starting in row n− r + 1.

2. M ′ is empty for s = 1 and s = r − 1, i.e., the alternating paths terminate in row
n− d+ 2.

3. For s ̸= 1, r − 1, M ′ is a u× v-array with u = (s+ 1)/2, v = (r − s+ 1)/2.
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4. We insert circulant permutations P̂ k for k = 3, 5, . . . , d, . . . , d + r − 2; d + r + 2, d +
r + 3, . . . , n and then place the remaining symbols in circulant position to obtain
completion.

Case 3: r is odd and s is even.

1. We use (d+ 1, d+ r + 1)-alternating paths starting in row n− r.

2. M ′ is empty for

- s = 0, i.e., the (d+1, d+ r+1)-alternating path terminates in row n− d if r > 1
and in row n− d+ 2 if r = 1,

- s = 2, i.e., the (d+ 1, d+ r + 1)-alternating path terminates in row n− d+ 2.

3. For s > 2, M ′ is a u× v-array with u = s/2, v = (r + 3− s)/2.

4. We insert circulant permutations P̂ k for k = 4, 6, 8, . . . , d+r−1; d+r+2, d+r+3, . . . , n
if d is even, and for k = 3, 5, 7, . . . , d+ r− 1; d+ r+ 2, d+ r+ 3, . . . , n if d is odd and
then place the remaining symbols in circulant position to obtain completion.

Case 4: r and s are both odd.

1. We use (d+ 1, d+ r)-alternating paths starting in row n− r + 1.

2. M ′ is empty for

- s = 1 and d = r + 1 even, case which requires a special solution whose basic
form BF4 is depicted in Figure 9. If we complete columns 2, d − 2, d − 1, d and
n as indicated and insert all remaining symbols in circulant position, we obtain
completion.

- s = 1 and d = mr + 1 with m ≥ 2, i.e., the alternating paths terminate in row
n− d+ 2.

3. For s ̸= 1, M ′ is a u× v-array with u = (s+ 1)/2, v = (r + 2− s)/2.

4. We insert circulant permutations P̂ k for k = 4, 6, 8, . . . , d+r−1; d+r+2, d+r+3, . . . , n
if d is even, and for k = 3, 5, 7, . . . , d+ r− 1; d+ r+ 2, d+ r+ 3, . . . , n if d is odd and
then place the remaining symbols into circulant position to obtain completion.
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Figure 9: Basic form BF4 for d = r + 1 in Case 4

Altogether, we have shown

Theorem 3.2. P̂ represents a premature, partial latin square for all p with 3 ≤ p ≤ n− 1.
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