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Abstract
In this paper, we provide two new g-congruences associated with double basic
hypergeometric sums. A related conjecture on g-congruences modulo the cube and
fourth powers of a cyclotomic polynomial is also proposed.
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1 Introduction

In 1997, Van Hamme [21] conjectured the following nice p-adic analogue:
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where p is an odd prime such that p =1 (mod 6), I, (z) is the p-adic Gamma function and
(), = T'(x 4+ n)/T(z) is the shifted-factorial for any nonnegative integer n and complex
number z. In 2016, Long and Ramakrishna [15, Theorem 2] showed that (1.1) can be
generalized to the modulus p® case. Later Guo and Schlosser [8, Theorem 2.3] established a
partial g-analogue of the generalization of (1.1). Quite recently, together with the creative
microscoping method developed by Guo and Zudilin [9] and the Chinese remainder theorem
for coprime polynomials, Wei [25] further extended this partial g-analogue as follows: let n

be a positive integer, then for n =1 (mod 3), modulo [n]®, (q)*,
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and for n =2 (mod 3), modulo [n]®,(q)®,
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Here (a;q)n = (1 —a)(1 —aq) -+ (1 — ag™ 1) is the g-shifted factorial; [n] = [n], =1+ q +
-+ 4 ¢"~ ! denotes the g-integer and ®,,(q) stands for the n-th cyclotomic polynomial in g:

ou(g)= I (@—=¢h,

1<k<n
ged(k,n)=1

where (,, is an n-th primitive root of unity. During the past few years, congruences and
g-analogues have attracted broad attentions of many authors [6, 10, 11, 12, 13, 16, 17, 18,
19, 23, 24, 26]. Especially, in 2015, Swisher [20] proved the following congruence involving
double sums: for any odd prime p,
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which was originally conjectured by Long [14]. Later, Gu and Guo [3] gave a g-analogue of
(1.4): for any positive odd integer n, modulo ®,(q),
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Shortly afterwards, Guo and Lian [7], Wang and Yu [22] as well as Fang and Guo [1] carried
on this topic and presented several similar results.

Motivated by the above work, in this paper, we shall provide two new g-supercongruences
on double basic hypergeometric sums, which are analogous to (1.5).

Theorem 1. Let n > 1 be an odd integer. Then, modulo ®,(¢*)?,

(n+1)/2 —2. 4\4 k 4j—6 4j
dh — 1) o 4 — 120D 9 -2 )=0. (16
2, Wk llelik -1 inta ) | gy—ae, ~ BT

Setting n = p be a positive odd prime and then taking ¢ — 1 in (1.6), we obtain
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Theorem 2. Let n be a positive integer such that n =t (mod 3) with t € {1,2}. Then,
modulo ®,,(q)?,
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When n = p is a positive prime with p =¢ (mod 3) and ¢ — 1 in (1.7), we arrive at
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Conjecture 1. The q-congruence (1.7) holds modulo ®,,(q)® when t = 1 and holds modulo
®,,(q)* when t = 2.

2 Proof of Theorem 1

We first require the following assistant results. Note that the first one was in fact given in
the proof of Guo [4, Eq. (5.5)] and the second one due to Guo [5, Eq. (1.11)].

Lemma 1. Let n > 1 be an odd integer. Then
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Proof. Recall Watson’s g¢7 transformation formula [2, Appendix (I11.18)]:
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where the basic hypergeometric series ,.11¢, is defined as
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The expression on the left-hand side of (2.1) is equal to
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The proof of (2.1) is completed because of (¢ ¢")(n+1)/2 in the numerator. g
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Lemma 2. Let n > 1 be an odd integer. Then
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Proof of Theorem 1. By (2.1), we get
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since the remaining terms are multiples of (1 — ¢™)*. Similarly, there holds
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Inserting (2.2) and (2.4) into (2.3), we conclude
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which is equal to (1.6) since (¢*~2";¢%)k(¢*2"; ¢%)k = (¢*;¢*); (mod @,,(¢%)?). O

3 Proof of Theorem 2

We first give the following lemma (or see the proof of [25, Proposition 4.1]).

Lemma 3. Let n be an odd integer. Then, for n =t (mod 3) with t = {1, 2},
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Proof of Theorem 2. We first consider n = 1 (mod 3) case. By (3.1), we arrive at
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Analogous to (2.4), we deduce

()@ )@ )k — (5 )h (a6 (@ ¢k

2 k 33 n—2 q3j—n .
=(q; d o, . .
@O Y (g~ ) et @ 63)
Substituting (1.2) and (3.3) into (3.2), we obtain
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which is equivalent to the t = 1 case of (1.7).

Using the similar argument as above, for n = 2 (mod 3), we replace n by 2n in (3.2)
and (3.3) respectively and then substitute the responding results into (1.3). This finishes
the proof of the case t = 2 of (1.7). 0
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