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Abstract
In this paper, we provide two new q-congruences associated with double basic

hypergeometric sums. A related conjecture on q-congruences modulo the cube and
fourth powers of a cyclotomic polynomial is also proposed.
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1 Introduction

In 1997, Van Hamme [21] conjectured the following nice p-adic analogue:

(p−1)/3∑
k=0

(6k + 1)
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k

k!6
≡ −pΓp

(1
3

)9
(mod p4), (1.1)

where p is an odd prime such that p ≡ 1 (mod 6), Γp(x) is the p-adic Gamma function and
(x)n = Γ(x + n)/Γ(x) is the shifted-factorial for any nonnegative integer n and complex
number x. In 2016, Long and Ramakrishna [15, Theorem 2] showed that (1.1) can be
generalized to the modulus p6 case. Later Guo and Schlosser [8, Theorem 2.3] established a
partial q-analogue of the generalization of (1.1). Quite recently, together with the creative
microscoping method developed by Guo and Zudilin [9] and the Chinese remainder theorem
for coprime polynomials, Wei [25] further extended this partial q-analogue as follows: let n
be a positive integer, then for n ≡ 1 (mod 3), modulo [n]Φn(q)

4,
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and for n ≡ 2 (mod 3), modulo [n]Φn(q)
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Here (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) is the q-shifted factorial; [n] = [n]q = 1 + q +
· · ·+ qn−1 denotes the q-integer and Φn(q) stands for the n-th cyclotomic polynomial in q:

Φn(q) =
∏

1⩽k⩽n
gcd(k,n)=1

(q − ζkn),

where ζn is an n-th primitive root of unity. During the past few years, congruences and
q-analogues have attracted broad attentions of many authors [6, 10, 11, 12, 13, 16, 17, 18,
19, 23, 24, 26]. Especially, in 2015, Swisher [20] proved the following congruence involving
double sums: for any odd prime p,
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≡ 0 (mod p), (1.4)

which was originally conjectured by Long [14]. Later, Gu and Guo [3] gave a q-analogue of
(1.4): for any positive odd integer n, modulo Φn(q),
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Shortly afterwards, Guo and Lian [7], Wang and Yu [22] as well as Fang and Guo [1] carried
on this topic and presented several similar results.

Motivated by the above work, in this paper, we shall provide two new q-supercongruences
on double basic hypergeometric sums, which are analogous to (1.5).

Theorem 1. Let n > 1 be an odd integer. Then, modulo Φn(q
2)2,
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Setting n = p be a positive odd prime and then taking q → 1 in (1.6), we obtain
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Theorem 2. Let n be a positive integer such that n ≡ t (mod 3) with t ∈ {1, 2}. Then,
modulo Φn(q)
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When n = p is a positive prime with p ≡ t (mod 3) and q → 1 in (1.7), we arrive at
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Conjecture 1. The q-congruence (1.7) holds modulo Φn(q)
3 when t = 1 and holds modulo

Φn(q)
4 when t = 2.

2 Proof of Theorem 1

We first require the following assistant results. Note that the first one was in fact given in
the proof of Guo [4, Eq. (5.5)] and the second one due to Guo [5, Eq. (1.11)].

Lemma 1. Let n > 1 be an odd integer. Then
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Proof. Recall Watson’s 8ϕ7 transformation formula [2, Appendix (III.18)]:
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where the basic hypergeometric series r+1ϕr is defined as
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The expression on the left-hand side of (2.1) is equal to
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The proof of (2.1) is completed because of (q6−2n; q4)(n+1)/2 in the numerator.
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Lemma 2. Let n > 1 be an odd integer. Then
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Proof of Theorem 1. By (2.1), we get
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since the remaining terms are multiples of (1 − qn)4. Similarly, there holds
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Inserting (2.2) and (2.4) into (2.3), we conclude
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3 Proof of Theorem 2

We first give the following lemma (or see the proof of [25, Proposition 4.1]).

Lemma 3. Let n be an odd integer. Then, for n ≡ t (mod 3) with t = {1, 2},
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Proof. By means of Jackson’s 8ϕ7 transformation [2, Appendix (II.22)]:
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where t ∈ {1, 2}, which leads us to (3.1) immediately.

Proof of Theorem 2. We first consider n ≡ 1 (mod 3) case. By (3.1), we arrive at
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Analogous to (2.4), we deduce
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Substituting (1.2) and (3.3) into (3.2), we obtain
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which is equivalent to the t = 1 case of (1.7).
Using the similar argument as above, for n ≡ 2 (mod 3), we replace n by 2n in (3.2)

and (3.3) respectively and then substitute the responding results into (1.3). This finishes
the proof of the case t = 2 of (1.7).
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