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Abstract

We prove that the unordered configuration spaces of S? x S* have shifted stability
property with particular range, shift and length.
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1 Introduction
For any topological space M one considers the k-points ordered configuration space
F (M) := {(z1,...,7%) € M*|2x; # x; fori # j}.

The symmetric group Sy acts freely on Fy(M) permuting the coordinates. The quotient of
F.(M) by this action is the k-points unordered configuration space denoted by

Ck(M) = Fk(M)/Sk

The cohomology of the unordered configuration spaces for various manifolds M was inves-
tigated by several authors. V. I Arnold in [1] studied the case M = R?. D. McDuff in [9]
and G. Segal in [11] generalized Arnold’s results to open manifolds. The case when M is a
connected oriented manifold of finite type (all Betti numbers are finite) was studied by T.
Church in [4]. Church’s results were further extended by O. Randal-Williams [10] and B.
Knudsen [7].

In the paper [2] we introduced and studied various stability properties for the rational
cohomology of unordered configuration spaces of connected manifolds of finite type.

In this paper I will focus my attention on the manifold S? x S*. All homology and coho-
mology groups will be considered with coefficients in Q. The Betti numbers, the Poincaré
polynomial and the total Betti number of a manifold M of dimension n are defined as usual:

n

Bi(M) = dimgH (M),  Pp(t) = Bi(M)',  B(M) =" (M) = Pu(1),
i=0

=0

The top Betti number B.(M) is the last non-zero Betti number of M and the index 7 is
called the cohomological dimension and is denoted by cd(M) = 7(M) = 7.
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Definition 1. /2] The g-truncated Poincaré polynomial is the sum of the last ¢ terms in
the Poincaré polynomial, more precisely

PY(t) = Br—qn (M)ET =T 4 B (M)t

Definition 2. [2/ A connected manifold M satisfies the shifted stability condition for its
unordered configuration spaces {Cy(M)}i>1, with range r, shift o and length g (r,0,q > 1)
if and only if the g-truncated Poincaré polynomial is stable after a shift: for any k& > r we
have

P[CI]

Cryr (M) (t) = tO'P[Q]

cran ()

In the paper [2] we proved that unordered configuration spaces of CP? and CP' x CP!
satisfy the shifted stability property for particular range, shift and length.
The main result of this paper is

Theorem 1. The product of spheres, S? x S* has the shifted stability property with range
8, shift 4 and length 7:

7 7

Péi+1(gzxg4)(t, s) = t4Péi(Ssz4)(t’ s) fork>8.

More precisely, we have:

Peyss2x51) (£, 8) =Py s2xst)(t, 8) + 128 + 147 4 g(£29F5 4 2047 o gthml g gthtdy
§S2(12RH12 g gkt

Peyexsi(t,s) =1+ 12 + 2t + 260 + 2% + 10 4 2412 414 4 2416 4 420 4 424 4 4254

+ 172 4 s(2tM 4 2613 4 480 4 31T 4 410 4 247+ 323 22T 4 2431 4
F030) 2122 4 a2t 26 28 430 4 gBY),

Corollary 1. Ifk > 8, then the length [I] (depending on k) for shifted stability of Cy(S?xS*)

can be increased. More precisely, we have (k) = 2k — 9 for k > 8.

Remark 1. The Betti numbers of the spaces C3(S* x S*) and C3(CP?) were computed by
Féliz-Thomas [6].

Remark 2. FEven though the Betti numbers of S2 x S* and CP? are the same, it is well
known that their cohomology Tings are not isomorphic. This fact causes the difference of
the shifts and lengths in the shifted stability property satisfied by the cohomologies of the
configuration spaces of the two manifolds.

General conventions
e For any graded Q-vector space U* = @;czU* 1 will use the following notations
UZq — @Uz’ reven — @U%, ﬁ* _ @UZ,
i>q i€z i#£0

and similarly US4 and U°%.
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e The symmetric algebra Sym(U™*) of a graded vector space U* is the tensor product
of a polynomial algebra and an exterior algebra:

Sym(U™) = @ SymF(U*) = Poly(U°*™) ® Ext(U%?),
k>0

where Sym* is generated by the monomials of length .

e The n-th suspension of a graded vector space U is the graded vector space U[n] with
Uln]; = Ui—n, and the element of U[n] corresponding to a € U is denoted s™a; for example

Q, ifxe{n,n+2,n+4,n+6}
0, otherwise.

H.(S* xSL,Q)[n] = {

2 Félix-Thomas model

Y. Félix and J. C. Thomas [6] (see also [5]) studied the cohomology of Cy(M) for closed
oriented manifolds of even dimension. Furthermore, Knudsen [7] extended the result of
Félix-Thomas for general even dimensional manifolds. In this section, we recall the defi-
nition of the differential bigraded algebra (2*(x)(V*, W*),0) introduced by Félix-Thomas
[6].

Fix a positive number 2m. Consider two graded vector spaces V*, W*

2m 4m—1
vi=EPv, w= p wi.
i=0 j=2m—1

By definition, the elements in V* have length 1 and weight 0 and the elements in W* have
length 2 and weight 1. For each graded piece V? and W7 choose bases

Vi =Q<Uz’71,’0i72,...>, Wj :(@(wj71,wj72,...>
q

(the degree of an element is marked by the first lower index; x] stands for the product
i Az A ... Ax; of g-factors). T will work only with graded vector spaces for which V° =
Q(vo) = Q. The definition of the bigraded algebra Q*(k) is

O () (VW) = P (k) (VE, W),
E>1

Q(R)(VE, W) = P (k) (VW) = SymF(V: 0 W),
i>0
where the total degree ¢ is given by the grading of V* and W*. The length degree k is the
multiplicative extension of length on V* and W*.
Let M be a closed orientable manifold of dimension 2m. The DG-algebra introduced
by Y. Félix-J. C. Thomas in [6] is given by two graded vector spaces V* = H,(M;Q) and
W* = H,(M;Q)[2m — 1], and a bidegree (0,1) map 9, dual to the cup product:

Olv- =0, Olw~: W*~ H,(M;Q) — Sym?*(V*) ~ Sym?(H.(M;Q)).
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Then we have identification:
H*(Cp(M)) = H*(Q(k)(V", W), 9).
The subspace of Q*(k) containing the elements of weight w is denoted “2*(k) and we have
L5)
DRV W) =P (k), k) = SymF(V7),
w=0

D: 90 (k) — “TI (k).

3 Proof of theorem 1

In this section, we will compute the cohomology of configuration spaces on the product of
a 2-sphere with 4-sphere.
The graded vector spaces of the Félix-Thomas DG-algebra for M = S? x S* are:

] 1 i/ ‘:0a2,476
V* — H*(M, Q) — EB?:OVZ’ Vl _ {Q<'U > (3

0, i is odd
and
W= H (M, Q)] = &L, wi = | Qe 7=579 1
=5 0, j =6,8,10.

In the above construction, the corresponding two vector spaces are:
V* = Q(vg, va,v4,v6), W* = Q(ws,wr, wg, wi1).
The differential is given by:
O(vg;) = 0, where 0 <14 < 3,

2
O(ws, wr, wy, w11) = (2vgve + 20204, 2026, 204V, VG ).

We define an increasing filtration of subcomplexes {F'Q* (k)(V*, W*)}io,. 6

(k) =V° @ Q (k — 1)(V*, W),
O (k) =F°Q* (k),
O (k) =@V @ Q (k= (VW] + [W® @ Q* (k- 2)(V*, W),
O (k) =F2Q* (k),
F4Q*(k) =[@®]_ V' @ Q*(k — 1)(V*,W*)] + [®)_s W7 @ Q*(k — 2)(V*, W*)],
O (k) =F'Q*(k),
Q* (k) =[@_oV' @ Q*(k — 1)(V*, W*)] + [ L W7 @ Q" (k — 2)(V*, W™)].
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The differential 9 respects the filtration. Also, the filtration {F i}i:()’m’g and the weight
decomposition {wQ*(k’)}w:O’m’ng are compatible:

5]
FiQ (k) = FIn°Q (k) & FIn ' (k) & ... F' n L31Qr(k) = @ Fi e (k),
w=0

hence the spectral sequence £;°* (k) associated with the filtration { F*Q*(k)};—o,... ¢ is weight-
splitted at any page:
L5
£ (k) = Pwer(k),
w=0
with differential N N o
L WENI (k) — wTlgimmIt L (),

For general properties of spectral sequences obtained from filtered differential graded mod-
ules see chapter 2 of [8]. The £;*(k) is a first quadrant spectral sequence and converges
(because the filtration is bounded).

Proof of Theorem 1. The subcomplex generated by v2 and wi; is acyclic (the map
avg — awq; gives a homotopy id ~ 0). The new spectral sequence *E;"* (k) is defined as:

. B <w11,v§>.

The sequence of spectral sequences starts with *E;™ (1) = *E%(1) = V* and

Ey(2)
w=~0 w=1
y y
6 V2Vg V4 Vg
5 w9
4 VoUy Uf
3 wWs Wy
2 v%
2 4 2 4
E2(2) Eoo(2)
w=0
6
4 °
2 °
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The results for the spectral sequences *E;""(k), k = 3,4,...,8, the “weight unstable part,”
are given in the following tables where I used the notation

ANy = PCk(S2xS4)(t» S) — PCk,l(Sz’xS‘l)(ta 8).

Table 1
k non-zero terms *E=1* (k) = *EZ1* (k)
3 0E1274 = <U§>70Ef78 = (v}), 1E12’9 = (v = vowg — vews), 1Ef’9 = (vewr),
LEYT = (vawr), BT = (vgw)
\ OE20 = (o), OB} = (uf), EP = (u39), ' B2 = (vpugur),
1Ef’15 = (vavgwy), 1E4 = (27, 1Ef 1% — (wvgwe)
. OEDS = (03), OBy = (o), P BT = (v3), L BT = (vivgw),
LEPY = (3w;), LEPY = (v3ugwe), 2E1"® = (vswrwy)

) 0210 _ (1) 0420 _ 08y 1E2I5 _ (8.0 1E21T _ (80,0

1Ef’19 = (viwr), 1Ef’23 = (vivgwy), 2Ef’22 = (vavgwrwy), 2Ef"22 = (v4vgwWrwg)
; VBRI = (), OB = (o), BE = (uy), B = (o),

1E4 z = (vjwr), 1E4 2 = (vivewo), 2E2 24 = (v3vgwrwy), 2E4 26 = (vivewrwy)
. OB = (15), 0B = (o), Y = (), BE = (udusur),

LEP?T = (wbwr), YEP?Y = (vBugwy), 2E2%0 = (vdvgwrwe), 2B} = (vvgwrwe)

Table 2

k Ay
3 £6 4 112 4 s(211 4 ¢13 4 415)
4 £8 116 4 s(#13 4 2015 4 417 1 419)
5 $10 420 4 g(415 4 417 4 419 4 423 4 (2422
6 £12 1 24 4 s($17 4 19 4423 1 g27) 4 s2(£24 4 26)
7 $14 128 1 g(#19 4 f21 4427 4 431) 4 g2(426 4 £30)
8 £16 1132 4 g(121 4 423 431 1 g35) 4 g2(428 4 434)

We have the following picture of the first page of the k-th term *E;"™ (k):
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q

4k — 2

4k —4

2k +2

2k

2k —2
.

qlk
4k -1

4k -3 vfffgveswg,

V2,
vgvff*l
Uy
v§_1v4
vl

vfflvg

112115747)61117

4k — 5 |vi2ws vauf T tugws vavk wy

2k + 7
2k +5
2k 43
2k +1

2k —1 v§72w5

L (k — 1)

39
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4k — 2 ’0575116105109 021}576@6107’(:09 v§75v6w7w9
4k — 4 v§7506w5w7 vff*4w5w9 vgvff*%gwg,ugg 1)21)575’11]7109 v§74w7w9
4k — 6 | v twswr vavl T Svgwswr  vavf Pwswe

4k — 8 ’021)575’10511)7

2k + 10 U§_5U6w7w9
2k + 8 v§_5vgw5wg

2k + 6 1/2“75116;1)511)7 vh = wrwg

2k +4 v§74w5w9

2k + 2 U§74w5w7

L (k—1)
2 4 P

q w=3
4k — 3 v§_7v6w5w7wg
4k —5 vk Swswrwg

. k-7

2k + 11 : vy VWsWrWy
2k +9
2k 4+ 7 v§_6’w5’w7’w9

30*(k —1)

- p
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On the column p = 0, we get “ H*(Cj—_1). On the column p = 4, we get four cohomology

classes vff, vff*2w7, vf%v@wg and v475v6w7w9:

BT (k) = (o Pwr) = OB T (k) = (o),
2E61,4k72(k) _ (vi_5v6w7w9> N 1E3,4k*1(k) 5_31;6w9>,

2E§’4k74(k) = <v§74w7w9> — 1E§’4k73(k) = <Ui€737}6w77 vfowg,) — 0E§’4k72(k) = (vff*lv(i).

=
=

v

On the column p = 2, we have a four components cochain complex e(q), where ¢ takes
values in the interval [k — 2,2k — 1]:

SEy? (k) 2Ey*(k) LES2 1 (k) OBy (k).

In the generic case, ¢ € [k + 6,2k — 4], all the four components are non-zero and e(q) is
acyclic:

2,2¢—1 2,2 2,2¢+1 2,2q+2
SEy™T (k) 2By (k) LEy T (k) OBy ™" (k)
I I I I
v§k7q72v27k74w5w7w9 v%quf&uszflwsw’? U§k7q73vsz+1w5 U§k7q72vgfk+2
® S ©® SV
ng_q_lvz_k_6vgw5w7wg vgk_q_QvZ_k_3v6w5w7 vgk_q_QvZ_k_lvgwg) vgk_q_lvz_kvﬁ
S% ©®
vgk_q_%f{_k_zwswg vgk_q_%z_kuw
S, S,
v§k7q71027k74v6w5w9 v§k7q71v27k7206w7
S, D
ng—q—lvz—k—?)w?wg ’ng_q_lllz_k_l’LUg)
©® ©®
vgk_qu_k_5v6w7w9 vgk_qvg_k_?’%wg.
The matrices of the differential are:
0 0 O 0 0 0 0 O
-2 0 2 0 -2 0 0 O
ool {2000 00 _(200000
12 0 10 2 0 0 -2 0 “\0 2 2 0 2 0
2 0 0o 0 2 0 0 O
0 2 o 0 0 2 2 0

For the last values of ¢ the cochain complex e(q) is still acyclic.
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q=2k—-3

R2 ) 2B (k)
I I

LK)
I

’()2’0{:_711}5’11)7109 v§_4w5w7 v§_2w5 ’Uz’Uff_l
SY D D D
v%v579v6w5w7w9 U2U§7606w5W7 v2v574v6w5 v%vfﬁvg
D D
vgvff_5w5w9 vgvff_guw
2 k—?a 2 kf

V3V, VeWsW9

S

2,,k—6
VU, WrWy

S

V3V, VeWr

D

2, k—4
VU, Wy

D

v§v§78v6w7w9 vg’vff*(’v@wg.

The matrices of the differential are:

0 0 0 0 00 0O
-2 0 -2 0 -2 0 0 O
o= 0 0 b— 2 0 0 0 0 O c— 20 0 0 0O
12 0 10 2 0 0 -2 0 S \0 2 2 0 2 0
2 0 0 0 2 0 0 O
0 2 0 00 2 2 0
=2k—2
2,4k—5 @ 2,4k—4 b 2,4k—3 ¢ 2,4k—2
SEyT(R) 2Ey(k) LEGTTT (k) T BT (k)
I I I I
vy~ Cwswrw g 8 vy Pvgwswr /0 2 0 0 0\ Ui vews a0y 06
e [sil' e [2uoan) e nyay
U2U§_806w5w7w9 g (2) U§_4w5w9 00 2 2 0 U2U§_4’U6w7
> >
205~ Svgwswe vavh "Swg
D D
vy~ wrwg v3vE Bvgwe

)

v3vl~ Tvgwrwg
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q=2k—-1
a 2,4k—2 b
*Ey (k)

SESM (k)

I 0 I I
k-7 k-5 2 0 k—4
vy VeWswW7W9 <2) v, “UgWsWy ( ) Vol  VgWy

vgvf_ﬁvﬁunwg

For the first values of ¢ we obtain non-zero cohomology classes. The value ¢ = k — 2
gives the cohomology class v5. The differential of v4 is zero. The degrees of all non-zero
elements other then v% in column p > 0 are bigger than 2k. So v} is a permanent cocycle
and never a coboundary. The next two values of ¢ give the exact sequences:

g=k—-1

c

LEGH T (k) "E5* (k)

I I
1
v§_2w5 ( ) v§_1v4
q=Fk

c

1E§,2k+1(k) 0E§,2k+2(k)

I 2.0 I
v§73v4w5 <0 2> véfQUZ
& D

v§_2w7 v§_1U6

The value ¢ = k + 1 gives the cohomology class 1157 5.

qg=k+1 b .
2,2k+2 2,2k+3 2,2k+4
2Eg T (k) LEGTT (k) OBy (k)
I I I
0
v§74w5w7 9 ’1)126741}271]5 (2 0 0 0> véf?’vi’
9 o) 0 2 2 2 o)
0
v§73v6w5 v§72v41)6
SV
v§_3v4w7
SV

U§_2’LU9
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The value ¢ = k + 2 gives the cohomology class v§7306w7 :

q=k+2

2E57 (k) LR ) OER(k)
I I I

k—5,3 k—4, 4
UQ 'U4'LU5 (Y U4

2
2 0 0 0O

@ (0 2 2 0 2) @

v§74v4v6w5 Ugfgvivﬁ

D

k—4,2
vy viwWr

D

v§73v6w7

)

115737)41119

o
s}

k—5
Uy V4 W5 W7

v§74w5w9

1

[N}
1

[N}

S O N
N OO

The cohain complex corresponding to the value ¢ = k + 3 is acyclic:

q=k+3
b c
2Ep (k) LERT(R) OB (k)
I I I
v§_6vzw5w7 0 0 0 O v§_6v2w5 (2 00 0 0 O) v§_5v2
-2 0 -2 0
0 22 0 2 0
& 2 0 0 0 S o
vh Sugwswr 0 2 0 -2 vh =502 vgws vh 4 3vg
fan) 0 0 2 O fan)
0 0 0 2
v§75v4w5w9 vgf%i’uw
@ ®
v§_4w7w9

v§74v4v6w7

S

k—4, 2
vy v Wy

@

v§_3v6w9

The cohain complex corresponding to the value ¢ = k + 4 is acyclic:
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q=k+4
3 122,2k+7 a 2 122,2k+8
Ey (k) Ey (k)
I I
v§76w5w7w9 v§77viw5w7

v§76v4vgw5w7

S

vg_ﬁvfwswg

v§75vgw5w9

S

0575v4w7w9

The value ¢ = k+5 gives the cohomology class v

is zero, so it is cocycle. Also:

k—7,2

3(@’5_7v4w5w7w9) = —2v5 " "vijvewsws

The element v§_5v6w7wg is not a coboundary.

q=k+5
2,2k+9 a
312,
Ey= (k)
I I
v§_7v4w5w7w9 05_8v2w5w7

)
v§_7v§ VW5 Wy
S
U§77’UEU)5’LU9
)

v§76v405w5w9

S

v§_6v2w7w9

D

v§_5v6w7w9

k—5

k—7,5
vy viws

S

v§7602v6w5

S

k—6,4
vy U Wy

D

v§75va6w7

D

k—5,3
vy UiwWy

S

v§_4v4vgw9

2E§,2k+10 (k_jb—>1E02,2k+ll (k)

I
k-8, 6
Uy U W5
v§_7viv6w5
k-7.5
vy vjwy

D

v§7602v6w7

S

k—6,4
Vy U We

D

v§_5v2v6w9

1Eg,2k+9 (k)

k—6
vy Uy

0E§,2k+10(k)

I
6

)

k—5,.4

Vg

k-7
Vg Uy

+ 2v§_ﬁv4v6w5w9 + 2v§_6viw7wg.

UV, Vg

vewrwyg. The differential of v§_5v6w7wg

OEg,Qk—‘rlQ(k_)

|
7

P

k_
Uy

6

1}2 Ve
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The matrices of the differential for ¢ = k + 4 are:

0 0 0 0 O
2 0 -2 0 0
2 0 0 0 O 2 0 0 0 0O
a= b= c= .
0 2 0 0 -2 0 2 2 0 20
0 0 2 0 O
0O 0 0 2 2
The matrices of the differential for ¢ = k 4+ 5 are:
0O 0O OO 0 O
-2 0 -2 0 0 O
_ b— 2 0 0 0 0 O (2 0 0 0 0 O
“= “lo 2 00 20| ““\o22020/)
0 0 2 0 0 O
0O 0 0 2 2 0
The final picture of the spectral sequence for p > 0 is:
B2 (k) = BZL(F)
w=0 w=1 w=2
A A A
4k — 1 °
4k — 2 °
4k — 4 °
4k — 5 °
2k + 10 .
2k+5 °
2k + 3 °
2k — 2 °
2 4 2 4 2 4

O

Remark 3. In section 6 of [2], Berceanu-Yameen introduced several notions of shifted
stabilities. In particular (see Definition 3 of [2]), the manifold M satisfies the spectral
shifted stability condition with range v and shift o (r,oc > 1) if and only if, for any k > r,
any p>1 and any w > 0, we have

WERITo (k4 1) = YEPR(k) and this is non-zero.
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In the paper [2] (see Proposition 10) Berceanu-Yameen proved that :
Spectral shifted stability = Shifted stability.

The Theorem 1 shows that the converse of this fact is not true (for more details see the
final picture in the proof of Theorem 1).

Proof of Corollary 1. Let k > 8. From formulas in Theorem 1, we have
A, = [12F 4+ (12045 g 2RHTY y g22h012) 4 gk g Akl gk dy | 2k 2]
where Ay = Pg, (s2xs1)(t,8) — P, (s2xs4)(t, 5). This formula gives that

54k+3(0k(82 X 84)) =1.
Moreover, for 2k + 12 < i < 4k + 3, we have
2, if i =3 (mod4)
Bi(Cr(S* x S*)) =<1, ifi=0(mod4) or i = 2(mod4)
0, ifi=1(mod4)
We know that the shift is 4. Therefore the length is an increasing function in & :
(k)= (4k+3)— (2k+12) =2k -9, for k> 8.

|
Acknowledgement I would like to thank my PhD supervisor Barbu Berceanu for all the
Sfruitful discussions that helped me in the completion of this paper. I thank the referees

for their careful reading and constructive feedback. The author gratefully acknowledge the
support from the ASSMS, GC University Lahore.

References

[1] V. I. ARNOLD, On some topological invariants of algebraic functions, Trans. Moscow
Math. Soc., 21, 30-52 (1970).

[2] B. BERCEANU, M. YAMEEN, Strong and shifted stability for the cohomology of con-
figuration spaces, Bull. Math. Soc. Sci. Math. Roumanie, 64 (112) (2), 159-191
(2021).

[3] C. F. BODIGHEIMER, F. COHEN, L. TAYLOR, On the homology of configuration
spaces, Topology, 28, 111-123 (1989).

[4] T. CHURCH, Homological stability for configuration spaces of manifolds, Invent.
Math., 188, 465-504 (2012).

[5] Y. FiLix, D. TANRE, The cohomology algebra of unordered configuration spaces, J.
London Math. Soc., 72, 525-544 (2005).



48 On the shifted stability of cohomology of configuration spaces

[6] Y. FELix, J. C. THOMAS, Rational Betti numbers of configuration spaces, Topol.
Appl., 102, 139-149 (2000).

[7] B. KNUDSEN, Betti numbers and stability for configuration spaces via factorization
homology, Algebr. Geom. Topol., 17, 3137-3187 (2017).

[8] J. MCcCLEARY, A User’s Guide to Spectral Sequences, Cambridge University Press
(2001).

[9] D. McDurF, Configuration spaces of positive and negative particles, Topology, 14,
91-107 (1975).

[10] O. RANDAL-WILLIAMS, Homological stability for unordered configuration spaces, Q.
J. Math., 64, 303-326 (2013).

[11] G. SEGAL, The topology of spaces of rational function, Acta Math., 143, 39-72 (1979).

Received: 09.04.2022
Revised: 19.06.2023
Accepted: 21.06.2023

Abdus Salam School of Mathematical Sciences, GC University Lahore, Pakistan
E-mail: yameen99khan@gmail.com



