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Abstract

Weak relative Rickart objects generalize relative Rickart objects in abelian cate-
gories. We study how such a property is preserved or reflected by fully faithful func-
tors and adjoint pairs of functors. Various consequences are obtained for (co)reflective
subcategories, adjoint triples of functors and endomorphism rings of modules. In par-
ticular, for a right R-module M with endomorphism ring S, we prove that if M is a
weak self-Rickart right R-module, then S is a weak self-Rickart right S-module, while
the converse holds provided M is a flat left S-module or M is a k-local-retractable
right R-module.
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1 Introduction

Weak Rickart objects and their duals in abelian categories were investigated by Crivei and
Keskin Tütüncü [8]. These objects are placed in between some important classes of objects
as follows. On one hand, they generalize (dual) Rickart objects in abelian categories studied
by Crivei, Kör and Olteanu [12, 13] and regular objects in abelian categories studied by
Dăscălescu, Năstăsescu, Tudorache and Dăuş [15]. On the other hand, they satisfy some
non-singularity conditions, namely: if N is a weak M -Rickart object, then N is M -K-
nonsingular, while if N is a dual weak M -Rickart object, then M is N -T -nonsingular [8].
An important feature of (dual) weak Rickart objects is their good behaviour with respect
to products and coproducts [8, Theorem 2.7], unlike the (dual) relative Rickart properties.
All these categorical notions have module-theoretic roots in (dual) Rickart modules studied
by Lee, Rizvi and Roman [25, 26], regular modules in the sense of Zelmanowitz [40], (dual)
Baer modules studied by Rizvi and Roman [32, 33] and Keskin Tütüncü and Tribak [23]
respectively, or (dual) weak Rickart modules investigated by Keskin Tütüncü, Orhan Ertaş
and Tribak [22, 37]. One of the advantages to approach them in abelian categories is that
the dual results will automatically hold by the duality principle. Thus we unify the study of
dual notions which have been studied separately in the literature. This is our main reason for
using categorical tools, our primary interest still being to obtain module-theoretic results.
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For further motivation on considering (dual) weak Rickart objects in abelian categories and,
in particular, (dual) weak Rickart modules, the reader is referred to [8, 22, 37].

This paper continues the investigation of (dual) weak Rickart objects by analyzing their
behaviour under functors between abelian categories as well as their endomorphism rings,
the latter in case of (graded) module categories. We present various ways of construct-
ing new weak relative Rickart objects from old by using suitable functors between abelian
categories. We will implicitly use the duality principle, which allows us to prove just prop-
erties on weak relative Rickart objects. Also, it is enough to consider covariant (additive)
functors, the situation of contravariant functors being dual.

In Section 2 we prove that left exact fully faithful functors preserve and reflect the weak
relative Rickart property under some mild condition. For applications we consider finitely
accessible and exactly definable abelian categories, abelian coreflective and reflective full
subcategories of abelian categories, and we obtain results on preservation and reflection of
the (dual) weak relative Rickart property in Grothendieck categories, and in particular to
finitely accessible Grothendieck categories, module categories, categories σ[M ] or comodule
categories. For instance, if A is a Grothendieck category and R is the endomorphism ring
of a generator U of A, then the functor HomA(U,−) : A → Mod(R) from A to the category
Mod(R) of right R-modules preserves and reflects the weak relative Rickart property. We
also derive consequences to adjoint triples of functors, and we illustrate them for (graded)
module categories.

In Section 3 we consider covariant functors L : A → B and R : B → A such that
(L,R) is an adjoint pair with counit ε : LR → 1B. If M,N ∈ Stat(R) = {B ∈ B |
εB is an isomorphism} and L is exact, then we prove that N is weak M -Rickart in B if
and only if R(N) is weak R(M)-Rickart in A. We also discuss the case of an adjoint pair
of contravariant functors. These results allow us to deduce consequences on preservation
and reflection of (dual) weak Rickart properties related to endomorphism rings of modules,
modules in categories σ[M ], graded modules and comodules. For instance, for a right R-
module M with endomorphism ring S, if M is a weak self-Rickart right R-module, then
S is a weak self-Rickart right S-module, and the converse holds provided M is a flat left
S-module or M is a k-local-retractable right R-module.

2 Transfer via fully faithful functors

Let f : M → N be a morphism in an abelian category A. Then ker(f) : Ker(f) → M and
coker(f) : N → Coker(f) will denote the kernel and the cokernel of f respectively. The
morphism f is called a section (retraction) if it has a left (right) inverse.

We recall from [8] the notions of (dual) weak relative Rickart objects.

Definition 1. Let M and N be objects of an abelian category A. Then N is called:

(1) weak M -Rickart if for every nonzero morphism f : M → N , ker(f) : Ker(f) → M
factors through a section s : Q → M which is not an isomorphism, i.e., ker(f) =
si for some section s : Q → M which is not an isomorphism and (mono)morphism
i : Ker(f) → Q. Equivalently, the kernel object Ker(f) of every nonzero morphism
f : M → N is included in some proper direct summand of M .
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(2) dual weak M -Rickart if for every nonzero morphism f : M → N , coker(f) : N →
Coker(f) factors through a retraction r : N → Q which is not an isomorphism, i.e.,
coker(f) = dr for some retraction r : N → Q which is not an isomorphism and
(epi)morphism d : Q → Coker(f). Equivalently, the image object Im(f) of every
nonzero morphism f : M → N contains some nonzero direct summand of N .

(3) weak self-Rickart if N is weak N -Rickart.

(4) dual weak self-Rickart if N is dual weak N -Rickart.

Functors between abelian categories need not preserve or reflect the above properties.

Example 1. Consider the ring R = Z ⊕ Zp for some prime p. Then the forgetful co-
variant functor F : Mod(R) → Ab from the category of right R-modules to the category
of abelian groups is exact and faithful. Since the endomorphism rings EndR(RR) ∼= R
and EndZ(R,+) ∼=

( Z 0
Zp Zp

)
are not isomorphic, it follows that F is not full. The right

R-module R is weak self-Rickart, being hereditary [8, Theorem 4.10], but the abelian group
F (R) = Z⊕ Zp is not weak self-Rickart [22, Example 4.8].

Example 2. For an abelian group G, let t(G) and d(G) be the largest torsion subgroup
of G and the largest divisible (i.e., injective) subgroup of G respectively. Let T be the
abelian category of torsion abelian groups. The covariant functor F : Ab → T given by
F (G) = t(d(G)) is left exact and full, but not faithful [11, Example 4.1]. Consider the
abelian group G = Z⊕ Zp for some prime p. Then F (G) = 0 is weak self-Rickart, while G
is not [22, Example 4.8].

Let us now consider fully faithful covariant (additive) functors. Denote by Im(F ) the
essential image of a functor F : A → B. As usual, we say that F preserves the (dual) weak
relative Rickart property if F (N) is (dual) weak F (M)-Rickart in B whenever N is (dual)
weak M -Rickart in A. Also, we say that F reflects the (dual) weak relative Rickart property
if N is (dual) weak M -Rickart in A whenever F (N) is (dual) weak F (M)-Rickart in B.

Theorem 1. Let F : A → B be a fully faithful covariant functor between abelian categories.

(1) (i) If F is left exact, then F preserves the weak relative Rickart property.

(ii) If F is left exact and Im(F ) is closed under direct summands, then F reflects the
weak relative Rickart property.

(2) (i) If F is right exact, then F preserves the dual weak relative Rickart property.

(ii) If F is right exact and Im(F ) is closed under direct summands, then F reflects
the dual weak relative Rickart property.

Proof. (1) (i) Let N be a weak M -Rickart object of A, and let g : F (M) → F (N) be a
nonzero morphism in B. We may write g = F (f) for some nonzero morphism f : M → N in
A, because F is full. Since N is weakM -Rickart, ker(f) factors through a section s : Q → M
which is not an isomorphism. Since F is left exact, Ker(g) = Ker(F (f)) = F (ker(f)) factors
through the section F (s) : F (Q) → F (M), which is not an isomorphism. Hence F (N) is
weak F (M)-Rickart.

(ii) LetM andN be objects ofA such that F (N) is weak F (M)-Rickart, and let f : M →
N be a nonzero morphism in A. Consider the nonzero morphism F (f) : F (M) → F (N) in
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B. By hypothesis, F (ker(f)) = ker(F (f)) factors through a section s′ : Q′ → F (M) which
is not an isomorphism. But then Q′ ∼= F (Q) for some object Q in A. Since F is fully
faithful, we may write s′ = F (s) for some section s : Q → M which is not an isomorphism.
Then ker(f) factors through the section s : Q → M which is not an isomorphism. Hence
N is weak M -Rickart.

Corollary 1. Equivalences between abelian categories preserve and reflect the (dual) weak
relative Rickart properties.

For a first application, let us recall some terminology on functor categories associated
to module categories, following [2, 20] (also, see [9]). Let Mod(R) and Mod(Rop) be the
categories of right R-modules and left R-modules respectively, and let (mod(R),Ab) be
the category of covariant functors from the category mod(R) of finitely presented right
R-modules to Ab, and by ((mod(R))op,Ab) the category of contravariant functors from
mod(R) to Ab.

Corollary 2. (1) The functor H : Mod(R) → ((mod(R))op,Ab), H(M) = HomR(−,M)
for any right R-module M , preserves and reflects the weak relative Rickart property.

(2) The functor T : Mod(Rop) → (mod(R),Ab) given by T (M) = − ⊗R M on left R-
modules M preserves and reflects the dual weak relative Rickart property.

Proof. One may consider flat and absolutely pure objects in the Grothendieck categories
(mod(R),Ab) and ((mod(R))op,Ab) [34]. Note that H is a fully faithful left exact func-
tor, which induces an equivalence between Mod(R) and the full subcategory of flat ob-
jects of ((mod(R))op,Ab), while T is a fully faithful right exact functor, which yields
an equivalence between Mod(Rop) and the full subcategory of absolutely pure objects of
(mod(R),Ab). Also, the classes of flat objects of ((mod(R))op,Ab) and absolutely pure
objects of (mod(R),Ab) are closed under direct summands. Finally, use Theorem 1.

We illustrate Corollary 2 with one situation picked from several charaterizations of rings
in terms of (dual) weak Rickart modules established in [8]. Recall that a ring is called right
semiartinian if every nonzero right R-module contains a simple submodule, and right V -ring
if every simple right R-module is injective. Then Corollary 2 together with [8, Corollary 4.4]
or [37, Theorem 2.20] yields the following consequence.

Corollary 3. Let R be a left semiartinian left V -ring. Then −⊗RM is a dual weak Rickart
object in (mod(R),Ab) for every left R-module M .

More generally than module categories, we may consider finitely accessible and exactly
definable categories, and certain associated categories.

Let C be an additive category and let fp(C) be its full subcategory of finitely pre-
sented objects. Then C is called finitely accessible if C has direct limits, fp(C) is skeletally
small, and every object of C may be written as a direct limit of objects from fp(C) [29].
Finitely accessible additive categories offer a suitable framework for defining purity [29].
Note that a finitely accessible abelian category is even Grothendieck [29, Theorem 3.15].
Module and comodule categories are finitely accessible Grothendieck categories. Denote by
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(fp(C)op,Ab) the category of all contravariant (additive) functors from fp(C) to Ab. Note
that this functor category is equivalent to the module category over the functor ring of C
(e.g., see [17]). For every finitely accessible additive category C, there is a fully faithful
functor H : C → (fp(C)op,Ab) (naturally isomorphic to the inclusion functor) that in-
duces an equivalence between C and the full subcategory of flat objects of (fp(C)op,Ab) [6,
Theorem 1.4, Lemma 3.1].

Corollary 4. Let C be a finitely accessible Grothendieck category. Then the above functor
H : C → (fp(C)op,Ab) preserves and reflects the weak relative Rickart property.

Proof. The image of the fully faithful left exact functor H is equivalent to the full subcat-
egory of flat objects of (fp(C)op,Ab), which is closed under direct summands. Then use
Theorem 1.

Corollary 5. Let C be a finitely accessible Grothendieck category. Assume that every
morphism in C is the composition of a pure epimorphism followed by a monomorphism
(e.g., C is regular in the sense that every short exact sequence is pure). Then every finitely
presented object of C is weak self-Rickart.

Proof. The equivalence induced by the functor H : C → (fp(C)op,Ab) between C and
the full subcategory of flat objects of (fp(C)op,Ab) restricts to an equivalence between
the full subcategories of finitely presented objects of C and finitely generated projective
objects of (fp(C)op,Ab) (e.g., see [17, p. 178]). Also, the functor category (fp(C)op,Ab) is
semihereditary [17, Proposition 3.1]. Now if X ∈ fp(C), then H(X) is a finitely generated
projective object of (fp(C)op,Ab), and so H(X) is a weak self-Rickart object of (fp(C)op,Ab)
[8, Theorem 4.10]. Finally, X is weak self-Rickart by Corollary 4.

Note that the module category Mod(R) is regular if and only if the ring R is von
Neumann regular. It is known that every finitely generated projective right module over a
von Neumann regular ring is weak self-Rickart [22, Corollary 2.3]. Now we may generalize
this result as follows, as a consequence of Corollary 5.

Corollary 6. Let R be a von Neumann regular ring. Then every finitely presented right
R-module is weak self-Rickart.

An additive category C is called exactly definable if it is equivalent to the category
of exact contravariant additive functors from a skeletally small abelian category to the
category Ab [24]. Exactly definable additive categories allow a natural theory of purity [24].
Module and comodule categories are not only finitely accessible, but also exactly definable,
Grothendieck categories. Though, there are examples of exactly definable categories that
are not finitely accessible (e.g., the category of divisible abelian groups). For every exactly
definable additive category C, there is a fully faithful functor T : C → D(C) (naturally
isomorphic to the inclusion functor) that induces an equivalence between C and the full
subcategory of absolutely pure objects of some locally coherent Grothendieck category D(C)
[24, Theorem 2.8].

Corollary 7. Let C be an exactly definable abelian category. Then the above functor T :
C → D(C) preserves and reflects the weak relative Rickart property.
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Proof. The image of the fully faithful left exact functor T is equivalent to the full subcate-
gory of absolutely pure objects of D(C), which is closed under direct summands. Then use
Theorem 1.

Recall that a finitely accessible or exactly definable additive category is called pure
semisimple if every pure exact sequence splits. An object M of an abelian category is
called self-Baer if for every family (fi)i∈I of endomorphisms of M ,

∩
i∈I Ker(fi) is a direct

summand of M [12].

Corollary 8. Let C be a pure semisimple exactly definable Grothendieck category. Then
every finitely presented weak self-Rickart object of C is self-Baer.

Proof. A Grothendieck category is exactly definable if and only if it is finitely accessible
[30, Theorem 3.6]. Since C is finitely accessible, the above functor T : C → D(C) preserves
finitely presented objects [6, (3.3), Lemma 3]. Since C is pure semisimple, its associated
Grothendieck functor category D(C) is locally noetherian (e.g., see [8, Proposition 4.7]),
hence it has a family of noetherian generators. Then every finitely generated object of D(C)
is noetherian. Now if X is a finitely presented weak self-Rickart object of C, then T (X) is a
finitely presented noetherian weak self-Rickart object of D(C) by the above considerations
and Corollary 7. Then T (X) is self-Baer by [8, Theorem 6.4], hence X is self-Baer by [13,
Corollary 3.4], bearing in mind that T preserves products [6, (3.3), Lemma 2].

We immediately have the following illustration in module categories. Recall that a ring
R is called right pure semisimple if the category Mod(R) is pure semisimple.

Corollary 9. Let R be a right pure semisimple ring. Then every finitely presented weak
self-Rickart right R-module is self-Baer.

Now let C be a full subcategory of an abelian category A. Then C is called reflective
(coreflective) if the inclusion functor i : C → A has a left (right) adjoint, in which case i is
fully faithful.

Corollary 10. Let A be an abelian category. If C is an abelian reflective (coreflective) full
subcategory of A, then the inclusion functor i : C → A preserves and reflects the (dual)
weak relative Rickart property.

Proof. Since Im(i) is closed under direct summands, one may use Theorem 1.

Let (T ,F) be a torsion pair in an abelian category A. It is well known that, for every
object A of A we have a short exact sequence 0 → t(A) → A → f(A) → 0, where t is
the idempotent radical associated to (T ,F). Hence there are two functors t : A → T and
f : A → F , and moreover, t is a right adjoint to the inclusion i and f is a left adjoint to the
inclusion j. Hence T is a coreflective subcategory of A, while F is a reflective subcategory
of A (e.g., see [35, Chapter X, Section 1]). Note that T is an abelian category, but F need
not be an abelian category (e.g., the category of torsionfree abelian groups is not abelian).
Now Corollary 10 yields the following consequence.
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Corollary 11. Let (T ,F) be a torsion pair in an abelian category A. Then the inclusion
functor i : T → A preserves and reflects the dual weak relative Rickart property.

Example 3. Consider the torsion pair (T ,F) in the category Ab, where T is the class of
torsion abelian groups and F is the class of torsionfree abelian groups. Let Z(p∞) be the
Prüfer abelian group for some prime p. By Corollary 11 and [37, Example 2.6], the torsion
abelian group Z(p∞) is dual weak self-Rickart in T , because it is dual weak self-Rickart
in Ab. By Corollary 11 and [37, Example 2.14], the torsion abelian group Zp3 is not dual
weak self-Rickart in T , because it is not dual weak self-Rickart in Ab.

Let C be a Serre subcategory of a locally small abelian category A. Following [28,
Chapter 4], one may consider the quotient abelian category A/C, and the exact quotient
functor T : A → A/C. Then C is called localizing (colocalizing) if T has a right (left) adjoint
S : A/C → A. The so-called section functor S is fully faithful. If C is a localizing (colocal-
izing) subcategory of A, then S induces an equivalence between the quotient category A/C
and a reflective (coreflective) subcategory of A.

Now we have the following consequence of Corollaries 1 and 10.

Corollary 12. Let A be a locally small abelian category. If C is a localizing (colocalizing)
Serre subcategory of A, then the section functor S : A/C → A preserves and reflects the
(dual) weak relative Rickart property.

For Grothendieck categories we obtain the following result.

Corollary 13. Let A be a Grothendieck category and let R be the endomorphism ring of a
generator U of A. Then the functor S = HomA(U,−) : A → Mod(R) preserves and reflects
the weak relative Rickart property.

Proof. By the Gabriel-Popescu Theorem [35, Chapter X, Theorem 4.1], the functor S is fully
faithful and induces an equivalence between A and the full subcategory of Mod(R) consisting
of τ -torsionfree τ -injective right R-modules for some hereditary torsion theory τ on Mod(R)
(see [35, Definition p. 198, Chapter X, Theorem 4.1]). The latter is a reflective abelian full
subcategory of Mod(R) [35, Chapter IX, Proposition 1.11]. Finally, use Corollaries 1 and
10.

For a rightR-moduleM , let σ[MR] be the full subcategory of Mod(R) ofM -subgenerated
modules, or equivalently, the smallest Grothendieck category containing M [38].

Corollary 14. Let M be a right R-module. Then the inclusion functor i : σ[MR] →
Mod(R) preserves and reflects the dual weak relative Rickart property.

Proof. Use Corollary 10 for the coreflective abelian full subcategory σ[MR] of Mod(R) (see
[38, 45.11]).

Following [14, Section 2.2], let CM be the (Grothendieck) category of left C-comodules,
where C is a coalgebra over a field k. The category CM may be identified with the full
subcategory of the category Mod(C∗) of right C∗-modules consisting of rational right C∗-
modules, where C∗ = Homk(C, k).
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Corollary 15. Let C be a coalgebra over a field. Then the inclusion functor i : CM →
Mod(C∗) preserves and reflects the dual weak relative Rickart property.

Proof. The category CM is equivalent to the category σ[CC∗ ] (e.g., [14, Corollary 2.5.2]).
Then use Corollary 14.

It is well known that for two algebras A and B and an A-B-bimodule M one can consider

the upper triangular matrix algebra

(
A M
0 B

)
. Following [21], one may dually construct

the upper triangular co-matrix coalgebra as follows. Let C and D be coalgebras over a
field k, and let M be a C-D-bicomodule. Using Sweedler’s convention with the summation
symbol omitted, let c 7→ c1 ⊗ c2 and d 7→ d1 ⊗ d2 be the comultiplications of C and D
respectively, and let m 7→ m[−1] ⊗ m[0] and m 7→ m(0) ⊗ m(1) be the left C-coaction and
the right D-coaction on M respectively. The upper triangular co-matrix coalgebra is given

by T =

(
C M
0 D

)
= C ⊕M ⊕D, where the comultiplication ∆ and counit ε are defined by

∆

(
c m
0 d

)
=

(
c1 0
0 0

)
⊗
(
c2 0
0 0

)
+

(
m[−1] 0
0 0

)
⊗

(
0 m[0]

0 0

)
+

(
0 m(0)

0 0

)
⊗
(
0 0
0 m(1)

)
+

(
0 0
0 d1

)
⊗

(
0 0
0 d2

)
,

ε

(
c m
0 d

)
= εC(c) + εD(d).

Note that its dual algebra is (isomorphic to) the upper triangular matrix algebra T ∗ =(
C∗ M∗

0 D∗

)
. Now Corollary 15 yields the following consequence.

Corollary 16. With the above notation, the inclusion functor i : TM → Mod(T ∗) preserves
and reflects the dual weak relative Rickart property.

Next let (L,F ) and (F,R) be adjoint pairs of covariant functors F : A → B and
L,R : B → A. Then the triple (L,F,R) is called adjoint. Note that F is an exact functor,
while L is fully faithful if and only if so is R [16, Lemma 1.3]. In particular, Frobenius
functors [4] and recollements of abelian categories [31] induce adjoint triples.

Now we have the following consequence of Theorem 1.

Corollary 17. Let (L,F,R) be an adjoint triple of covariant functors F : A → B and
L,R : B → A between abelian categories.

(i) If F is fully faithful, then F preserves and reflects the (dual) weak relative Rickart
property.

(ii) If L (or R) is fully faithful, then:

(1) R preserves and reflects the weak relative Rickart property.

(2) L preserves and reflects the dual weak relative Rickart property.
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Proof. (i) As F is fully faithful, A is equivalent to Im(F ). Let i : Im(F ) → B be the
inclusion functor. Since F has a left and right adjoint, so does i, hence Im(F ) is a reflective
and coreflective subcategory of B. Now the conclusion follows by Corollaries 1 and 10.

(ii) This follows similarly as for (i).

Now let φ : R → S be a ring homomorphism. Then we may consider the extension
of scalars functor φ∗ : Mod(R) → Mod(S) given by φ∗(M) = M ⊗R S, the restriction
of scalars functor φ∗ : Mod(S) → Mod(R) given by φ∗(N) = N , and the functor φ! :
Mod(R) → Mod(S) given by φ!(M) = HomR(S,M). Then the triple (φ∗, φ∗, φ

!) is adjoint
[35, Chapter IX, p. 105].

Corollary 18. Let φ : R → S be a ring epimorphism. Then φ∗ : Mod(S) → Mod(R)
preserves and reflects the (dual) weak relative Rickart property.

Proof. Note that φ∗ : Mod(S) → Mod(R) is fully faithful [35, Chapter XI, Proposition 1.2],
and use Corollary 17.

Let CBA be a bimodule and let R =

(
A 0
B C

)
be the associated formal triangular

matrix ring [18, Chapter 4, Section A]. Let M be a right A-module, N a right C-module
and f : N ⊗C B → M a right A-module homomorphism. Then the elements of the

abelian group P = M ⊕N will be written in the form
(

0
m

n

)
, and one may define a scalar

multiplication by (
0

m
n

)(
a 0
b c

)
=

(
0

ma+f(n⊗b)
nc

)
.

Then one has a right R-module P =
(

0
M

N

)
and, moreover, every right R-module has this

form.
Now consider the following covariant functors:

J1 : Mod(A) → Mod(R), J1(M) =
(

0
M

0

)
,

J23 : Mod(C) → Mod(R), J23(N) =
(

0
N⊗CB

N

)
,

J3 : Mod(C) → Mod(R), J3(N) = J23(N)/
(

0
N⊗CB

0

)
,

P12 : Mod(R) → Mod(A), P12(M) = M ( A 0
B 0 ) ,

P1 : Mod(R) → Mod(A), P1(M) = P12(M)/M ( 0 0
B 0 ) ,

P3 : Mod(R) → Mod(C), P3(M) = M ( 0 0
0 C ) .

Corollary 19. With the above notation:

(i) The functor J1 preserves and reflects the (dual) weak relative Rickart property.

(ii) (1) J3 preserves and reflects the weak relative Rickart property.

(2) J23 preserves and reflects the dual weak relative Rickart property.
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Proof. Note that (P1, J1, P12) and (J23, P3, J3) are adjoint triples [18, Chapter 4, Section
A, Exercises 19, 20, 22].

(i) The functor J1 is fully faithful [18, Chapter 4, Section A, Exercise 21], and we may
use Corollary 17.

(ii) The functors J23 and J3 are fully faithful [18, Chapter 4, Section A, Exercise 22],
and we may use Corollary 17.

We recall some terminology on graded modules following [27]. Let G be a group with
identity element e, and let R be a G-graded ring. For a G-graded ring R =

⊕
σ∈G Rσ,

let gr(R) be the (Grothendieck) category of G-graded unital right R-modules. For σ ∈ G,
consider the functor (−)σ : gr(R) → Mod(Re), which associates to every graded right R-
module M =

⊕
τ∈G Mτ the right Re-module Mσ. The induced functor Ind : Mod(Re) →

gr(R) associates to every right Re-module N the graded right R-module Ind(N) = M =
N ⊗Re

R, where the gradation of M =
⊕

σ∈G Mσ is given by Mσ = Nσ ⊗Re
R for every

σ ∈ G. The coinduced functor Coind : Mod(Re) → gr(R) associates to every right Re-
module N the graded right R-module Coind(N) = M∗ =

⊕
σ∈G M ′

σ, where M ′
σ consists of

all f ∈ HomRe
(R,N) such that f(Rσ′) = 0 for every σ′ 6= σ−1.

Corollary 20. Let R be a G-graded ring. Then:

(1) The functor Coind : Mod(Re) → gr(R) preserves and reflects the weak relative Rickart
property.

(2) The functor Ind : Mod(Re) → gr(R) preserves and reflects the dual weak relative
Rickart property.

Proof. By [27, Theorem 2.5.5], the triple (Ind, (−)e,Coind) is adjoint, and the functors Ind
and Coind are fully faithful. Then use Corollary 17.

3 Transfer for static and adstatic objects

We have seen in Theorem 1 that fully faithful functors behave well with respect to (dual)
weak relative Rickart properties. Next we would like to weaken that hypothesis by re-
stricting it to certain objects in the case of an adjoint pair of functors with some extra
conditions.

Let F : A → B be a covariant functor between abelian categories, and let C be a full
subcategory of A. Even when C is not abelian, we will use the following terminology, viewing
the objects of C as objects of the abelian category A. We say that the restriction F ′ of
F to C preserves the (dual) weak relative Rickart property if for every objects M,N of C,
F (N) is (dual) weak F (M)-Rickart in B whenever N is (dual) weak M -Rickart in A. Also,
we say that the restriction F ′ of F to C reflects the (dual) weak relative Rickart property if
for every objects of M,N of C, N is (dual) weak M -Rickart in A whenever F (N) is (dual)
weak F (M)-Rickart in B.

Let L : A → B and R : B → A be covariant functors between abelian categories such
that (L,R) is an adjoint pair with counit ε : LR → 1B and unit η : 1A → RL. Denote

Stat(R) = {B ∈ B | εB is an isomorphism},
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Adst(R) = {A ∈ A | ηA is an isomorphism}.
The objects of these two classes are called R-static and R-adstatic respectively [5].

Theorem 2. Let (L,R) be an adjoint pair of covariant functors L : A → B and R : B → A
between abelian categories.

(1) The restriction R′ of R to Stat(R) preserves the weak relative Rickart property, and if
L is exact, then R′ reflects the weak relative Rickart property.

(2) The restriction L′ of L to Adst(R) preserves the dual weak relative Rickart property,
and if R is exact, then L′ reflects the dual weak relative Rickart property.

Proof. (1) Denote by ε : LR → 1B the counit and by η : 1A → RL the unit of the
adjunction. Then εL(A)L(ηA) = 1L(A) and R(εB)ηR(B) = 1R(B) for every objects A of A
and B of B.

Let M,N ∈ Stat(R) be such that N is weak M -Rickart in B. Let f : R(M) → R(N) be
a nonzero morphism in A with kernel k : K → R(M). By naturality the following diagram
is commutative in A:

R(M)

ηR(M)

��

f
// R(N)

ηR(N)

��

RLR(M)
RL(f)

// RLR(N)

Since M,N ∈ Stat(R), R(εM ) and R(εN ) are isomorphisms, hence so are ηR(M) and ηR(N).

Consider the morphism g = εNL(f)ε−1
M : M → N in B. If g = 0, then L(f) = 0, and

so ηR(N)f = RL(f)ηR(M) = 0, whence f = 0, a contradiction. Hence g : M → N is a
nonzero morphism. But N is weak M -Rickart, hence we may write ker(g) = si for some
monomorphism i : Ker(g) → Q and section s : Q → M which is not an isomorphism. We
have:

f = η−1
R(N)RL(f)ηR(M) = R(εN )RL(f)R(ε−1

M ) = R(εNL(f)ε−1
M ) = R(g).

Hence ker(f) = R(ker(g)) = R(s)R(i), where R(s) is a section and R(i) is a monomorphism.
If R(s) is an isomorphism, then so is sεQ = εMLR(s), whence it follows that s is an
isomorphism, a contradiction. Hence ker(f) factors through the section R(s) : R(Q) →
R(M) which is not an isomorphism. This shows that R(N) is weak R(M)-Rickart.

Now let M and N be objects of B such that R(N) is weak R(M)-Rickart in A. Let
f : M → N be a nonzero morphism in B with kernel k : K → M . Consider the morphism
R(f) : R(M) → R(N) in A. By naturality the following diagram is commutative in B:

LR(M)

εM

��

LR(f)
// R(N)

εN

��

M
f

// N

in which εM and εN are isomorphisms. If R(f) = 0, then fεM = εNLR(f) = 0, whence
f = 0, a contradiction. Hence R(f) : R(M) → R(N) is a nonzero morphism. But R(N)
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is weak R(M)-Rickart, hence we may write ker(R(f)) = si for some monomorphism i :
Ker(R(f)) → Q and section s : Q → R(M) which is not an isomorphism. Since L is exact,
it follows that

ker(f) = ker(LR(f)) = L(kerR(f)) = L(s)L(i),

where L(i) is a monomorphism and L(s) is a section. If L(s) is an isomorphism, then so
is RL(s). Consider a morphism r : R(M) → Q such that rs = 1Q. Since RL(r) is an
isomorphism, so is ηQr = RL(r)ηR(M). It follows that r is an isomorphism, hence so is s, a
contradiction. Hence ker(f) factors through the section εML(s) : L(Q) → M which is not
an isomorphism. Therefore, N is weak M -Rickart.

Corollary 21. Let (L,R) be an adjoint pair of covariant functors L : A → B and R : B →
A between abelian categories.

(1) If R is fully faithful, then R preserves the weak relative Rickart property, and if L is
exact, then R reflects the weak relative Rickart property.

(2) If L is fully faithful, then L preserves the dual weak relative Rickart property, and if R
is exact, then L reflects the dual weak relative Rickart property.

Example 4. Consider the abelian group Q/Z and denote S = EndZ(Q/Z). Consider the
functors T = − ⊗S Q/Z : Mod(S) → Mod(Z) and H = HomZ(Q/Z,−) : Mod(Z) →
Mod(S). Then (T,H) is an adjoint pair, Stat(H) consists of the divisible torsion abelian
groups (see [1, Corollary 4.3] and [39, 3.6]), and Adst(H) consists of images of divisible
torsion abelian groups via H. Since Q/Z is a divisible abelian group, H is exact. By
Theorem 2, if M,N ∈ Adst(H), then N is dual weak M -Rickart if and only if T (N) is dual
weak T (M)-Rickart.

We also give the contravariant version of Theorem 2, because it will be useful later on.
Let L : A → B and R : B → A be contravariant functors between abelian categories such
that (L,R) is a right adjoint pair [38, 45.2] with counit ε : 1B → LR and unit η : 1A → RL.
Note that in this case both L and R are left exact. Denote

Refl(R) = {B ∈ B | εB is an isomorphism},

Refl(L) = {A ∈ A | ηA is an isomorphism}.

The objects of these two classes are called R-reflexive and L-reflexive respectively [3].
Similarly, if (L,R) a left adjoint pair of contravariant functors L : A → B and R : B → A
between abelian categories [38, 45.2], then both L and R are right exact, and we have some
similar classes of reflexive objects.

Theorem 3. Let (L,R) be a pair of contravariant functors L : A → B and R : B → A
between abelian categories.

(1) If (L,R) is left adjoint, then the restriction R′ of R to Refl(R) preserves the weak
relative Rickart property, and if L is exact, then R′ reflects the weak relative Rickart
property.
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(2) If (L,R) is right adjoint, then the restriction L′ of L to Refl(L) preserves the dual
weak relative Rickart property, and if R is exact, then L′ reflects the dual weak relative
Rickart property.

Next we consider endomorphism rings of (graded) modules and comodules, and analyze
how the (dual) weak relative Rickart properties transfer to them. First, we consider the
module categories Mod(R) and σ[MR] for some right R-module M . For a right R-module
P , we denote by PAdd(P ) the class of right R-modules which are pure epimorphic images
of direct sums of copies of P [7].

Corollary 22. Let P be a finitely presented right R-module with endomorphism ring S.

(1) Let M,N ∈ PAdd(P ). If N is a weak M -Rickart right R-module, then HomR(P,N)
is a weak HomR(P,M)-Rickart right S-module. The converse holds if P is a flat left
S-module.

(2) Let M,N be flat right S-modules. If N is a dual weak M -Rickart right S-module, then
N ⊗S P is a dual weak N ⊗S P -Rickart right R-module. The converse holds if P is a
projective right R-module.

Proof. Consider the functors T = − ⊗S P : Mod(S) → Mod(R) and H = HomR(P,−) :
Mod(R) → Mod(S). Then (T,H) is an adjoint pair of covariant functors, PAdd(P ) is
included in Stat(H) and the class of flat right S-modules is included in Adst(H) [19,
Lemma 2.4]. If P is a flat left S-module, then T is exact. Also, if P is a projective
right R-module, then H is exact. Now use Theorem 2.

Corollary 23. Let M be a right R-module with endomorphism ring S.

(1) If M is a weak self-Rickart right R-module, then S is a weak self-Rickart right S-module.
The converse holds if M is a flat left S-module.

(2) If M is a dual weak self-Rickart right R-module, then S is a dual weak self-Rickart left
S-module. The converse holds if M is a projective right R-module.

(3) If M is a dual weak self-Rickart right R-module, then S is a weak self-Rickart left
S-module. The converse holds if M is an injective left S-module.

Proof. (1) Consider the adjoint pair (T,H) of covariant functors

T = −⊗S M : Mod(S) → Mod(R), H = HomR(M,−) : Mod(R) → Mod(S).

Since TH(M) ∼= M , we have M ∈ Stat(H). If M is a flat left S-module, then T is exact.
Then use Theorem 2 (1).

(2) Consider again the above adjoint pair (T,H). Since HT (S) ∼= S, we have S ∈
Adst(H). If M is a projective right R-module, then H is exact. Then use Theorem 2 (2).

(3) Consider the right adjoint pair (H1,H2) of contravariant functors

H1 = HomR(−,M) : Mod(R) → Mod(Sop), H2 = HomS(−,M) : Mod(Sop) → Mod(R).

Since H2H1(M) ∼= M , we have M ∈ Refl(H1). If M is an injective left S-module, then H2

is exact. Then use Theorem 3 (2).
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The notion of k-local-retractability is useful when deducing the weak self-Rickart prop-
erty of a module provided its endomorphism ring has the same property. A right R-
module M is called k-local-retractable if for every endomorphism f : M → M with kernel
k : K → M and for every x ∈ K, we have x ∈ Im(hk) for some homomorphism h : M → K
[25, Definition 3.6]. Dually, a right R-module M is called c-local-coretractable if for every
endomorphism f : M → M with cokernel c : M → C and for every z ∈ C, we have
z ∈ Im(ch) for some homomorphism h : C → M [10, Definition 4.5].

Now we also have the following result in case of module categories. The first part is
known [22, Proposition 3.10], but we give a more categorical proof for it, which is easily
dualizable.

Corollary 24. Let M be a right R-module with endomorphism ring S.

(1) If M is k-local-retractable and S is a weak self-Rickart right S-module, then M is a
weak self-Rickart right R-module.

(2) If M is c-local-coretractable and S is a dual weak self-Rickart left S-module, then M is
a dual weak self-Rickart right R-module.

Proof. (1) Consider the adjoint pair (T,H) from the proof of Corollary 23. Assume that
M is k-local-retractable and S is a weak self-Rickart right S-module. Let f : M → M be
a nonzero R-homomorphism with kernel k : K → M . Then H(f) : H(M) → H(M) is a
nonzero S-homomorphism. Since H(M) = S is a weak self-Rickart right S-module, H(k) =
ker(H(f)) = s′i′ for some monomorphism i′ : H(K) → Q′ and section s′ : Q′ → H(M)
which is not an S-isomorphism. Then there exists a homomorphism r′ : H(M) → Q′ such
that r′s′ = 1Q′ , and s = εMT (s′) : T (Q′) → M is a section. Since M ∈ Stat(H) and
H(εM )ηH(M) = 1H(M), ηH(M) is an S-isomorphism. By naturality we may construct the
following commutative diagram:

H(M)

ηH(M)

��

r′ // Q′ s′ //

ηQ′

��

H(M)

ηH(M)

��

HTH(M)
HT (r′)

// HT (Q′)
HT (s′)

// HTH(M)

Then ηQ′r′ = HT (r′)ηH(M) is a retraction and HT (s′)ηQ′ = ηH(M)s
′ is a monomor-

phism, which imply that ηQ′ : Q′ → HT (Q′) is an S-isomorphism. If s : T (Q′) → M
is an R-isomorphism, then H(s)ηQ′ = H(εM )HT (s′)ηQ′ = H(εM )ηH(M)s

′ = s′, is an S-
isomorphism, a contradiction. Hence the section s : T (Q′) → M is not an R-isomorphism.

Let i = T (r′)ε−1
M k : K → T (Q′). We claim that k = si. To this end, let x ∈ K. Since M

is k-local-retractable, we have x ∈ Im(hk) for some R-homomorphism h : M → K. Hence
x = hk(y) for some y ∈ K. By naturality the following diagram is commutative:

TH(M)

εM

��

TH(kh)
// TH(M)

εM

��

M
kh

// M
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It follows that:

si(x) = εMT (s′)T (r′)ε−1
M k(x) = εMT (s′)T (r′)ε−1

M khk(y)

= εMT (s′)T (r′)ε−1
M khεMε−1

M k(y) = εMT (s′)T (r′)ε−1
M εMTH(kh)ε−1

M k(y)

= εMT (s′)T (r′)TH(kh)ε−1
M k(y) = εMT (s′)T (r′)TH(k)TH(h)ε−1

M k(y)

= εMT (s′)T (r′)T (s′)T (i′)TH(h)ε−1
M k(y) = εMT (s′)T (i′)TH(h)ε−1

M k(y)

= εMTH(k)TH(h)ε−1
M k(y) = εMTH(kh)ε−1

M k(y)

= khεMε−1
M k(y) = khk(y) = k(x).

Hence k = si, which shows that M is a weak self-Rickart right R-module.

Corollary 25. Let M be a right R-module with endomorphism ring S.

(1) If M is a weak self-Rickart module in σ[MR], then S is a weak self-Rickart right S-
module. The converse holds if M is a generator in σ[MR].

(2) If M is a dual weak self-Rickart module in σ[MR], then S is a dual weak self-Rickart
left S-module. The converse holds if M is a quasi-projective right R-module.

Proof. Consider the adjoint pair (T,H) [38, 45.8] of covariant functors

T = −⊗S M : Mod(S) → σ[MR], H = HomR(M,−) : σ[MR] → Mod(S).

(1) Since TH(M) ∼= M , we have M ∈ Stat(H). If M is a generator in σ[MR], then M
is a flat left S-module [38, 15.9], and so T is exact. Then use Theorem 2 (1).

(2) Since HT (S) ∼= S, we have S ∈ Adst(H). If M is a quasi-projective right R-module,
then M is projective in σ[MR], and so H is exact. Then use Theorem 2 (2).

Following [27], for M,N ∈ gr(R) there is the G-graded abelian group HOMR(M,N),
having the following σ-th homogeneous component:

HOMR(M,N)σ = {f ∈ HomR(M,N) | f(Mλ) ⊆ Nλσ for all λ ∈ G}.

For M = N , one obtains the G-graded ringS = ENDR(M) = HOMR(M,M) (where
the multiplication is the map composition) and M is a graded (S,R)-bimodule, that is,
Sτ · Mσ · Rλ ⊆ Mτσλ for every τ, σ, λ ∈ G. For a graded right S-module N , there is the
right R-module N ⊗S M , graded by

(N ⊗S M)τ =

{ ∑
σλ=τ

nσ ⊗mλ | nσ ∈ Nσ,mλ ∈ Mλ

}
.

Corollary 26. Let M be a graded right R-module with S = ENDR(M).

(1) If M is a weak self-Rickart graded right R-module, then S is a weak self-Rickart graded
right S-module. The converse holds if M is a flat graded left S-module.
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(2) If M is a dual weak self-Rickart graded right R-module, then S is a dual weak self-
Rickart graded left S-module. The converse holds if M is a projective graded right
R-module.

(3) If M is a dual weak self-Rickart graded right R-module, then S is a weak self-Rickart
graded left S-module. The converse holds if M is an injective graded left S-module.

Proof. (1) Consider the adjoint pair (T,H) covariant functors

T = −⊗S M : gr(S) → gr(R), H = HOMR(M,−) : gr(R) → gr(S).

Since TH(M) ∼= M , we have M ∈ Stat(H). If M is a flat graded left S-module, then T is
exact. Then use Theorem 2 (1).

(2) Consider again the above adjoint pair (T,H). Since HT (S) ∼= S, we have S ∈
Adst(H). If M is a projective graded right R-module, then H is exact. Then use Theorem
2 (2).

(3) Consider the right adjoint pair (H1,H2) of contravariant functors

H1 = HOMR(−,M) : gr(R) → gr(Sop), H2 = HOMS(−,M) : gr(Sop) → gr(R).

Since H2H1(M) ∼= M , we have M ∈ Refl(H1). If M is an injective graded left S-module,
then H2 is exact. Then use Theorem 3 (2).

A coalgebra C over a field is called left (right) quasi-co-Frobenius if one has an embedding
of left (right) C∗-modules from C to a free left (right) C∗-module [14, Definition 3.3.1].

Corollary 27. Let C be a coalgebra over a field with S = EndC∗(C).

(1) If C is a weak self-Rickart left C-comodule, then S is a weak self-Rickart right S-module.
The converse holds if C is a left quasi-co-Frobenius coalgebra.

(2) If C is a dual weak self-Rickart left C-comodule, then S is a dual weak self-Rickart left
S-module. The converse holds if C is a left and right quasi-co-Frobenius coalgebra.

Proof. Recall that the category CM is equivalent to the category σ[CC∗ ] (e.g., [14, Corol-
lary 2.5.2]). If C is a left quasi-co-Frobenius coalgebra, then C is a generator in CM [14,
Corollary 3.3.10]. If C is a left and right quasi-co-Frobenius coalgebra, then C is a projective
generator in CM [14, Corollary 3.3.11]. Then use Corollary 25.

Let C be a coalgebra over a field. A left C-comodule Q is said to be quasi-finite if for
every finite dimensional left C-comodule M , HomC(M,Q) is also finite dimensional [36,
Definition 1.1]. For a C-D-bicomodule Q such that Q is quasi-finite in MD, the cotensor
functor −□CQ : MC → MD has a left adjoint hD(Q,−) : MD → MC , called the cohom
functor (see [14, p. 87] and [36, Proposition 1.10]).

Corollary 28. Let D be a coalgebra over a field, let Q be a quasi-finite injective right D-
comodule, and let C = hD(Q,Q). If Q is a dual weak self-Rickart right D-comodule, then C
is a dual weak self-Rickart right C-comodule. The converse holds if Q is an injective right
D-comodule.
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Proof. Consider the adjoint pair (L,R) of covariant functors L = hD(Q,−) : MD → MC

and R = −□CQ : MC → MD. Since RL(Q) ∼= Q, we have Q ∈ Adst(R). If Q is an
injective right D-comodule, then R is exact [14, Theorem 2.4.17]. Finally, use Theorem 2
(2).
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[9] S. Crivei, D. Keskin Tütüncü, Baer-Kaplansky classes in Grothendieck categories
and applications, Mediterr. J. Math., 16, Article No. 90 (2019).
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