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Abstract

Consider a prime number p. Let vp be the p-adic valuation. Let up be the sign
reduction modulo p defined as up(x) = x if 0 ≤ x ≤ p/2 and up(x) = p − x if
p/2 < x < p. We say that a triangular numeric pattern x(a, b) with 0 ≤ a ≤ b ≤ n
has triangular symmetry if it is preserved by the dyhedral group D6. We show the
following facts about binomial coefficients:

1. vp(
(
a
b

)
) build a pattern with triangular symmetry for 0 ≤ b ≤ a ≤ pm − 1.

2. up(
(
a
b

)
mod p) build a pattern with triangular symmetry for 0 ≤ b ≤ a ≤ pm − 1.

3. n = 4 is the only composite number such that un(
(
a
b

)
mod n) has triangular

symmetry for 0 ≤ b ≤ a ≤ nm − 1. The fact that u4(
(
a
b

)
mod 4) has triangular

symmetry was previously observed by A. Granville.

4. up applied to the last non-zero digit of
(
a
b

)
represented in the number system

with base p builds a pattern with triangular symmetry for 0 ≤ b ≤ a ≤ pm − 1.

Finally, a combined pattern unifies all proven features.
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1 Introduction

Let p be a prime. The first goal of this article is to show that for all m ∈ N, the first pm

rows of the triangle of p-adic values vp(
(
a
b

)
) build a pattern with triangular symmetry. This

fact implies that every Pascal Triangle modulo pk is the union of an ascendant chain of
symmetric triangular blocks of edge pm, where m ∈ N and every block is starting block of
the next one. This is done in Section 3.

If k ∈ Z and pc | k but pc+1 6 | k, then vp(k) = c. The function vp is called p-adic
valuation. One takes by convention vp(0) = ∞. Three general properties of the general
notion of valuation will be used here. A valuation is a homomorphism, i. e. vp(ab) = vp(a)+
vp(b), satisfying triangle’s inequality for ultra-metrics, i.e. vp(a + b) ≥ min(vp(a), vp(b)).
Moreover, if vp(a) 6= vp(b), then vp(a+ b) = min(vp(a), vp(b)).

Kummer’s Theorem says that vp(
(
a+b
a

)
) is the number of carries that occur during the

digital addition of a and b written in basis p. Consequently:
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Corollary 1. If 0 ≤ v ≤ u ≤ pm − 1, then 0 ≤ vp(
(
u
v

)
) ≤ m− 1.

It follows also that the value vp(
(
a+b
b

)
) can be computed faster then the binomial co-

efficient itself. As the family of numbers
(
a
b

)
is called Pascal triangle and we compute the

values vp(
(
a
b

)
) mentioned in Kummer’s Theorem, it makes sense to call the corresponding

set of numbers the Pascal-Kummer triangle.

In Section 4 another symmetry is proven. This symmetry occurs when the binomial
coefficients are projected onto a finite set in connection with a prime number. We define
up such that up(x) = x mod p if 0 ≤ x mod p ≤ p/2 and u(x) = p − (x mod p) if p/2 <
x mod p < p. We call the function up sign-reduction modulo p and we observe that it is a
kind of absolute value. From a philosophical point of view absolute values and valuations
are related.

In [9] the author described the square dihedral symmetry of the sequences a(i, j) mod p
for a(i, j) = (a(i, j − 1) + ma(i − 1, j − 1) + a(i − 1, j)) mod p with initial conditions
a(i, 0) = a(0, j) = 1 and m 6= 0. This symmetry is also based on sign-reduction. The reader
will observe that Lemmas 5.3 and 5.4 in [9] are related with Lemma 4 in the present article.
The triangular dihedral symmetry for the case m = 0 (i. e.

(
i+j
i

)
mod p) was not noticed

by the author when working for [9] because it did not match in the square grid used there.
In Section 4 this gap is filled. The triangular symmetry was empirically observed by other
authors, at least for the fundamental block given by the first p rows - see [3], where some
images and comments are displayed.

In Section 5 is shown that the number n = 4 is the only composite number such that
the triangle un(

(
u
v

)
mod n) consists of an ascendant chain of symmetric triangles of edge

nm, where m ∈ N. This pattern has been also studied by A. Granville in [5] and [6].

In the Section 6 the result of Section 4 is generalized in the following way: not only
the pattern given by up(

(
a
b

)
) has triangular symmetry, but so does also the finer pattern

given by up(
(
a
b

)
/pvp(up((a

b)))). This means that we apply up to the last non-zero digit of
(
a
b

)
written in base p, and we obtain non-trivial patterns also in big triangular areas where

(
a
b

)
is divisible with powers of p

The pattern given by up(
(
a
b

)
mod p) is complementary with the pattern given by vp(

(
a
b

)
):

one is active exactly in those areas, where the other one is identical zero. Let wp(x) =
x/pvp(x). The last non-zero digit pattern up(wp(

(
a
b

)
) mod p) is more general then up(

(
a
b

)
mod

p) but we recall that some value of a first non-zero digit occurring before two last zeros
has another significance as the same digit arising at the end of the number. So we com-
bine the valuation pattern vp(

(
a
b

)
) with the last non-zero digit up(wp(

(
a
b

)
) mod p). This

representation gives us a better understanding of what is happening in the Pascal Triangle.

Some natural connections with automatic sequences, [1], [2], arise at different places.

2 Prerequisites

Definition 1. A triangular lattice Θ is a set of points P (u, v) of the plane, u, v ∈ N,
0 ≤ v ≤ u, such that all triangles in the set {P (u, v)P (u + 1, v)P (u + 1, v + 1) | 0 ≤ v ≤
u} ∪ {P (u, v)P (u + 1, v + 1)P (u, v + 1) | 0 ≤ v ≤ u} are disjoint and congruent equilateral
triangles. Up to similarity there is only one triangular lattice, that will be called Θ.
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Definition 2. Let S be a set. A triangle over S is an application T : Θ → S. For some
n ∈ N, let Θ(n) be the subset consisting of the first n rows of Θ, indexed from 0 to n− 1.
Let T (n) be the restriction of T to the set Θ(n). The function T (n) will be also called a
triangle. The value T (P (u, v)) will be shortly written down as T (u, v).

Pascal’s Triangle and Pascal’s Triangle modulo n are examples of triangles, with T (u, v) =(
u
v

)
and T (u, v) =

(
u
v

)
mod n respectively. Both triangles are uniquely determined by

the initial conditions T (u, 0) = T (u, u) = 1 and by the recurrence T (u + 1, v + 1) =
T (u, v) + T (u, v + 1) for all u, v ∈ N with 0 ≤ v ≤ u. The same recurrence works over Z in
the first case and over the finite cyclic group Z/nZ in the second case.

There is also another way to define Pascal’s Triangles, considering a square lattice N×N
and a recurrent 2-dimensional sequence given by the initial conditions a(i, 0) = a(0, j) = 1
and a(i, j) = a(i, j−1) +a(i−1, j). In this case a(i, j) =

(
i+j
i

)
or respectively

(
i+j
i

)
mod n,

see [9] and [11]. To change the coordinates from the square lattice coordinates to the
triangular lattice coordinates, observe that:

a(i, j) = T (i+ j, i),
T (u, v) = a(v, u− v),

for all 0 ≤ i, j and 0 ≤ v ≤ u.
The square lattice representation of the binomial coefficients has some advantages. As

proven in [9], if m ∈ Fp, the sequence a(i, j) satisfies the conditions a(i, 0) = a(0, j) = 1
and a(i, j) = a(i, j−1) +ma(i−1, j−1) +a(i−1, j), and if for m ∈ N we define the matrix
Am = {a(i, j) | 0 ≤ i, j < pm}, then:

Am = A1 ⊗ (A1 ⊗ · · · ⊗A1) = A⊗n
1 .

Here ⊗ means the (Kronnecker-) tensor product of matrices. If S is some multiplicative
monoid, A ∈ Mn,m(S) and B ∈ Ms,t(S), then the matrix A ⊗ B belongs to Mns,mt(S)
and is the matrix with block-wise representation (a(i, j)B)0≤i<n,0≤j<m. The ⊗-monomial
A⊗n is defined as A ⊗ A⊗(n−1). A1 is called fundamental block. If m = 0 the recurrent
2-dimensional sequence a(i, j) is exactly the

(
i+j
i

)
as remarked above. The tensor product

representation of the 2-dimensional sequence follows also directly from the classical theorem
of Lucas concerning the value of

(
a
b

)
mod p as a function of their digits in base p.

At this point should be mentioned that Pascal’s Triangle modulo pk is not a limit of
tensor powers of matrices if k ≥ 2. However, Pascal’s Triangles modulo pk are p-automatic,
and consequently can be produced by context-free matrix substitutions and are projections
of sequences produced by 2-dimensional morphisms. See [1] and [2].

Definition 3. A triangle T (n) : Θ(n)→ S is called symmetric if for all 0 ≤ v ≤ u ≤ n− 1,
T (u, v) = T (u, u− v) and T (u, v) = T (n− 1− u+ v, n− u− 1).

To understand this definition, consider the applications S,R : Θ(n) → Θ(n), given by
S(u, v) = (u, u− v) and R(u, v) = (n− 1− v, u− v) for all u, v ∈ N with 0 ≤ v ≤ u ≤ n− 1.
It is only pure computation to prove that R3 = S2 = id and that S−1RS = R−1. In fact, S
is a reflection of Θ(n) across a median, R is a rotation with 120◦ of Θ(n) around its center,
and the group generated by S and R is the whole dihedral group D6, the symmetry group
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of the equilateral triangle. This group has six elements. Under the action of D6, Θ(n)
splits in orbits of length 6, 3 or 1. If n 6= 3k + 1 there is no central element, so no orbit of
length 1 does occur. Instead of T (u, v) = T (n − 1 − u + v, n − u − 1), one can check that
T (u, v) = T (n− v − 1, u− v). This is just the other rotation. To sum up, the generic orbit
of an element (u, v) in triangular coordinates under the action of the group D6 is:

(u, v) (n−u−1+v, n−u−1) (n−v−1, u−v) (u, u−v) (n−u−1+v, v) (n−v−1, n−u−1)

Using the correspondence between triangular and square lattice coordinates, one can
adapt this definition for triangles presented in square lattice coordinates.

Definition 4. Let A ∈ Mn,n(S) be a square matrix. The set T1(A) = {a(i, j) | 0 ≤
i, j < n ∧ 0 ≤ i + j ≤ n − 1} is called the first triangle of A. The complemetary set
T2(A) = {a(i, j) | 0 ≤ i, j < n ∧ i+ j > n− 1} is the second triangle of A. T1(A) is called
symmetric if it satisfies the identities a(i, j) = a(j, i) and a(i, j) = a(j, n− 1− i− j) for all
i, j ≥ 0 with i+ j ≤ n− 1.

Instead of a(i, j) = a(j, n−1− i− j) one can check that a(i, j) = a(n− i− j−1, i). This
is again the other rotation. To sum up, the generic orbit of an element (i, j) in cartesian
coordinates under the action of the group D6 is:

(i, j) (n− 1− i− j, i) (j, n− 1− i− j) (j, i) (i, n− 1− i− j) (n− 1− i− j, j)

3 p-Adic valuation

Let p be a prime and vp : Z→ N ∪ {∞} the p-adic valuation.

Lemma 1. For 1 ≤ i ≤ pm and 0 ≤ k ≤ pm − i the following holds:

vp

[(pm − i
k

)]
= vp

[(i− 1 + k

i− 1

)]
.

Proof: By definition,(
pm − i
k

)
=

(pm − i− (k − 1)) · · · (pm − i)
k!

∧
(
i− 1 + k

i− 1

)
=
i · · · (i+ (k − 1))

k!
.

By the group homomorphism property of valuations, it must be shown that:

vp((p
m − i) · · · (pm − i− (k − 1))) = vp(i · · · (i+ (k − 1))).

It would be sufficient to show that for all i ≤ x ≤ i+ (k − 1), vp(p
m − x) = vp(x).

Indeed, x ≤ i + (pm − i) − 1 = pm − 1 < pm, so vp(x) < vp(p
m) = m. Hence,

vp(p
m − x) = min(vp(p

m), vp(x)) = vp(x).

Theorem 1. The patterns {vp(
(
u
v

)
) | 0 ≤ v ≤ u < pm} have triangular symmetry for all

m ≥ 0.
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A possible name for the pattern {vp(
(
u
v

)
) | 0 ≤ v ≤ u} could be the Pascal - Kummer

Triangle. The set with 0 ≤ v ≤ u ≤ pm contains the values {0, . . . ,m − 1} according to
Corollary 1. An example is displayed in Figure 1.

Proof: By Lemma 1, the pattern is preserved by a rotation with 120◦ around its center.
By the identity

(
u
v

)
=
(
u
u−v
)
, it is preserved by a reflection across its median. According to

the definition 3 and its consequences, the pattern has triangular symmetry.

The next Lemma has been proposed by I. Tomescu as a problem in Gazeta Matematică
in [12].

Figure 1: The first 64 rows of the Pascal-Kummer Triangle v2(
(
u
v

)
).
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Lemma 2. Let p be a prime and n = nkp
k + · · · + n0, with nk, . . . , n0 ∈ {0, . . . , p − 1}.

The number of binomial coefficients
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
that are multiples of p is:

n+ 1− (n0 + 1) · · · (nk + 1).

Proof: Let a = akp
k+· · ·+a0, with ak, . . . , a0 ∈ {0, . . . , p−1}. By Kummer’s Theorem,

p 6 |
(
n
a

)
if and only if for all i, ni ≥ ai. So for all i, ai can be chosen in ni + 1 ways.

The following Lemma provides supplementary information about this pattern and will
be also applied in a later section. It has been given as a problem at a mathematical contest
in Luxemburg, 1980. For both Lemmas 2 and 3 and other nice puzzles, see [8].

Lemma 3. vp(
(
u
v

)
) = 0 for all v ∈ {0, . . . , u} iff u = zpm−1, m ≥ 0 and z ∈ {1, . . . , p−1}.

Proof: By Lemma 2, if u = zpm − 1, with m ≥ 0 and z ∈ {1, . . . , p − 1}, then the
number of binomial coefficients in row u that are not divisible by p is zpm− (z− 1 + 1)(p−
1 + 1) · · · (p− 1 + 1) = 0. For the converse, if a number u contains a digit ni < p− 1 in its
inner or at the end, one can produce a carry over in addition by choosing a number v with
a bigger digit vi > ni for this position. So only the first digit might be different from p− 1.

By Lemma 3 we know exactly which are the constant lines in the Pascal-Kummer
Triangle.

The Pascal-Kummer Triangle is not automatic 2-dimensional sequence, because the val-
ues of vp(

(
u
v

)
) are not bounded. To overcome this difficulty, one has to adapt the notion

of valuation for rings remainder classes, like Z/pkZ. The resulting notion is not standard,
because valuation theory has been developped for fields, and the rings Z/pkZ are not do-
mains. We recall that all ideals in Z/pkZ have the form piZ/pkZ and that they build a
descending finite chain of ideals:

Z/pkZ = p0Z/pkZ > pZ/pkZ > · · · > pk−1Z/pkZ > pkZ/pkZ = 0.

Definition 5. For a prime p and for k ≥ 1 we define vp : Z/pkZ→ {0, 1, . . . , k} as:

vp(x) =

{
s x ∈ psZ/pkZ ∧ x /∈ ps+1Z/pkZ ∧ s < k,

k x = 0.

Corollary 2. The patterns {vp(
(
u
v

)
mod pk) | 0 ≤ v ≤ u < pm} have triangular symmetry

for all m ≥ 0. Moreover, the two-dimensional sequence {vp(
(
u
v

)
mod pk) | 0 ≤ v ≤ u} is

p-automatic.

Proof: The triangular symmetry of the patterns follows directly from Theorem 1. The
2-dimensional sequence is p-automatic because the 2-dimensional sequence (

(
u
v

)
mod pk)

is p-automatic, and that the p-automatic sequences are closed under projections. See the
monograph [1] for both properties. However, using Kummer’s Theorem, one can very
easily construct an automaton generating the same sequence in square coordinates - i.e.
a(i, j) =

(
i+j
j

)
mod pk. The input alphabet is Σ = {0, . . . , p− 1} × {0, . . . , p− 1}. The set

of states is Z = {z0, z1, . . . , zk−1} ∪ {w1, . . . , wk−1} ∪ {f}. For t < k, zt means that t many
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carries have been counted so far, but in the moment there is no carry to add. Similarly,
wt means that t many carries have been counted so far and the digit addition done in the
last step produced a carry. In state f a number of k carries have been already counted.
In this case it is no more important whether in the last step a carry has been produced or
not. The pairs of input digits corresponding to the pair (i, j) come in, starting with the
less significant digit pair (i0, j0). The output function ω assigns to each state the number
of carries: ω(zt) = ω(wt) = t, ω(f) = k.

Corollary 3. The patterns {
(
u
v

)
mod 2 | 0 ≤ v ≤ u < 2m} have triangular symmetry for all

m ≥ 0.

Proof: Indeed, for v2 : Z/2Z → {0, 1} hold v2(1) = 0 and v2(0) = 1. So up to a
permutation of values, v2(

(
u
v

)
mod 2) produces the same pattern as

(
u
v

)
mod 2.

4 Sign-reduction modulo p

In the next definition the elements of the ring Z/nZ are identified with their canonical
representatives from the set {0, 1, . . . , n− 1}. The order used in the definition is the order
of natural numbers.

Definition 6. Let n be a natural number. The sign-reduction un : Z/nZ→ Z/nZ modulo
n is defined as:

un(x) =

{
x 0 ≤ x ≤ n/2,
n− x n/2 < x ≤ n− 1.

Lemma 4. Let p be a prime. For 1 ≤ i ≤ p and 0 ≤ k ≤ p − i the following congruence
holds: (

p− i
k

)
≡ (−1)k

(
i− 1 + k

i− 1

)
mod p.

Proof: For i = 1 this result is known. Indeed, the (p + 1)-th row of Pascal’s Triangle
consists of

(
p
k

)
and they are multiples of p for k = 1, . . . , p−1. The p-th and (p+ 1)-th rows

start in the field Fp as follows:

1 x y z . . .
1 0 0 0 . . .

We apply the recurrence T (u+1, v+1) = T (u, v)+T (u, v+1) and get successively x = −1,
y = 1, z = −1 and so on. So

(
p−1
k

)
≡ (−1)k ≡ (−1)k

(
1−1+k
1−1

)
mod p.

Now we continue by induction. Suppose that we have already shown that the row p− i
consists of elements respectively congruent with (−1)k

(
i−1+k
i−1

)
mod p for 0 ≤ k ≤ p− i, and

suppose that in the row p− i− 1 we have already shown that
(
p−i−1
k

)
≡ (−1)k

(
i+k
i

)
mod p.

The next binomial coefficient is
(
p−i−1
k+1

)
and has the following position in Pascal’s Triangle:(

p−i−1
k

) (
p−i−1
k+1

)(
p−i
k+1

)
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Consequently:

(
p− i− 1

k + 1

)
=

(
p− i
k + 1

)
−
(
p− i− 1

k

)
≡ (−1)k+1

(
i− 1 + k + 1

i− 1

)
− (−1)k

(
i+ k

i

)
=

= (−1)k+1
[(i+ k

i− 1

)
+

(
i+ k

i

)]
= (−1)k+1

(
i+ k + 1

i

)
=

= (−1)k+1

(
(i+ 1)− 1 + (k + 1)

(i+ 1)− 1

)
mod p.

Figure 2: u11(
(
u
v

)
mod 11) with 0 ≤ v ≤ u ≤ 10 and u13(

(
u
v

)
mod 13) with 0 ≤ v ≤ u ≤ 12.

As 11 = 3 · 3 + 2, there is no central element. As 13 = 3 · 4 + 1, there is a central element.

Lemma 5. The pattern {up(
(
u
v

)
mod p) | 0 ≤ v ≤ u < p} has triangular symmetry.

Proof: Sign-reduction over the identity in Lemma 4 yields:

up

((p− i
k

)
mod p

)
= up

((i− 1 + k

i− 1

)
mod p

)
.

This means that the pattern is preserved by a rotation with 120◦ around its center. By the
identity

(
u
v

)
=
(
u
u−v
)
, the pattern is preserved by a reflection across its median. According

to the definition 3 and its consequences, the pattern has triangular symmetry.

See Figure 2 for two examples.
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Lemma 6. In up(
(
u
v

)
mod p) the configuration:

a a
a

is possible only if p ≤ 3 or a = 0. The central configurations in T for p ≥ 5 are described
below. Here always 0 6= a 6= b 6= 0:

a a
a b a

a a
if p = 4k + 1,

b a b
a a

b
if p = 4k + 3.

Proof: Verify the eight possible relations (ε1p + (−1)1+ε1a) + (ε2p + (−1)1+ε2a) =
(ε3p+ (−1)1+ε3a) for ε1, ε2, ε3 ∈ {0, 1}. The cases ε1ε2ε3 = 100 and 011 lead to 3a = 0, so
a = 0 or p = 3. The cases 000 and 101 lead to a = 0. The other cases lead to ±p = ∓a
or 2p = a possible only if p ∈ {2, 3} and a = 0. The central configurations depend on the
triangular symmetry, on the existence of a central element and on this condition.

Now we need the tensor product structure of Pascal’s Triangle modp as it has been
recalled in the Section 2. Let F×

p = Fp \ {0} be the multiplicative group of the field Fp. We
observe that the application:

up : F×
p → {1, 2, . . . , (p− 1)/2} := Hp,

has #u−1
p (a) = 2, for all a ∈ Hp, that u−1

p (1) = {1,−1} and that for all a, b ∈ Hp and for all
x ∈ u−1

p (a), y ∈ u−1
p (b), up(xy) does not depend of the choice of the representatives x and y.

Consequently one can define a new multiplication × over Hp by a× b = up(u
−1
p (a)u−1

p (b)).
This operation induces a structure of group (Hp,×, 1) such that up : F×

p → Hp is a homo-
morphism of groups with kernel {1,−1} =< −1 >. This yields:

Hp
∼= F×

p / < −1 > .

If we complete now this multiplication in a natural way with a× 0 = 0× a = 0, we get:

Lemma 7. If Am is the square matrix {up(
(
i+j
i

)
mod p) | 0 ≤ i, j < pm} ∈ Mpm,pm(Hp ∪

{0}), then:
Am = A1 ⊗ (A1 ⊗ · · · ⊗A1) = A⊗n

1 ,

where the tensor product is defined according to the multiplication × on Hp ∪ {0} and the
tensor product monomial is inductively defined by A⊗n = A⊗A⊗(n−1).

Lemma 8. Let (J,×) be some associative monoid containing an element 0 with the property
that for all x ∈ J , x× 0 = 0× x = 0. Let A ∈Mm,m(J) and B ∈Mn,n(J) be two matrices,
such that T1(A), T1(B) have both triangular symmetry and T2(A), T2(B) consist both only
of zeros. (Compare with Definition 4). Then for the matrix A ⊗ B ∈ Mmn,mn(J) holds:
T1(A⊗B) has triangular symmetry and T2(A⊗B) consists only of zeros.
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Figure 3: The first 121 rows of u11(
(
u
v

)
mod 11) build together T1(A1 ⊗ A1). T1(A1) mul-

tiplied with different group elements from H11 yields new triangular blocks with permuted
colors.

Theorem 2. The patterns {up(
(
u
v

)
mod p) | 0 ≤ v ≤ u < pm} have triangular symmetry

for all m ≥ 0.

Proof: By induction on m ≥ 0. The case m = 0 is trivial. For the case m = 1
we apply Lemma 5. Now we turn to square coordinates and we observe that T1(A1) has
triangular symmetry and that T2(A1) consists only of zeros. Indeed, for 0 < i, j < p with
2p > i + j ≥ p, p |

(
i+j
i

)
. This means by Lemma 7 and by Lemma 8 that all Am = A⊗n

1

are such that T1(Am) has triangular symmetry and T2(Am) consists only of zeros. But the
patterns in question are exactly T1(Am).
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For an example, see Figure 3.

We observe that the tensor product structure confirms Lemma 3. Another consequence
of the tensor product structure is that the 2-dimensional sequence up(

(
u
v

)
mod p) is p-

automatic. This follows again by the fact that the p-automatic sequence
(
u
v

)
mod p is

projected onto the finite set Hp∪{0}. In fact we know more: the sequence is a 2-dimensional
morphic sequence, with start-letter 1 and with substitutions a; a×A1 for all a ∈ Hp∪{0},
where × is the appropriate multiplication.

Remark 1. Theorem 2 is a particular case of Theorem 4 which is proven by a different
method in Section 6.

5 A property of the number 4

In this section we show that the number n = 4 is the only composite number with the
property that the triangles {un(

(
u
v

)
mod n) | 0 ≤ v ≤ u ≤ nm} have triangular symmetry

for all m ≥ 0.

Lemma 9 can be found e.g. in the preprint [7]. For other similar statements see
Granville’s article [4].

Lemma 9. For all m,n ∈ N and prime p,
(
np
mp

)
≡
(
m
n

)
mod p2.

Proof: (from [7]) In (1 +X)np = [(1 +X)p]n the coefficient of Xmp is:(
np

mp

)
=

∑
0 ≤ ki ≤ p

k1 + · · ·+ kn = mp

∏
i

(
p

ki

)
.

Modulo p2 contribute only those terms with at least n − 1 many ki equal 0 or p. The
sum of ki being multiple of p, all of them must be 0 or p. So m of n many ki must be p,
and the number of possible choices is

(
n
m

)
.

Theorem 3. The unique composite n ∈ N such that the patterns

{un(

(
u

v

)
mod n) | 0 ≤ v ≤ u ≤ nm}

have triangular symmetry for all m ∈ N is n = 4. In this case all patterns:

{u4(

(
u

v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m}

have triangular symmetry, and they optically coincide with the patterns:

{v2(

(
u

v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m}.
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Proof: The proof is structured in a sequence of Claims.

Claim 1. If all patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤ u < nm} have triangular symmetry,

then n must be a prime-power.

Let n = pn1
1 pn2

2 · · · pns
s be the prime factor decomposition of n. By the Chinese Remain-

der Theorem the following rings are isomorphic:

Z/nZ ∼= Z/pn1
1 Z× Z/pn2

2 Z× · · · × Z/pns
s Z,

by x mod n; (x mod pk11 , . . . , x mod pkss ) and by this isomorphism 1 ∈ Z/nZ corresponds
to (1, 1, . . . , 1). Suppose that the given sets have triangular symmetry. This implies that

all
(
nm−1
k

)
= ±1 mod n for m ∈ N and 0 ≤ k ≤ nm. In particular, vpi(

(
nm−1
k

)
) = 0 for all

0 ≤ k ≤ nm and all pi. If we focus on p1, which is supposed to be the smallest prime in the
prime factor decomposition of n, and apply Lemma 3, it follows that there is a sequence
(xm) taking values in {1, . . . , p1 − 1} and an increasing sequence (km) of natural numbers
such that for all m ∈ N, xmp

km
1 = pmn1

1 pmn2
2 · · · pmns

s . The sequence (xm) has a constant
sub-sequence; let x be its constant value. It turns out that x has not a unique prime factor
decomposition, unless p2 = · · · = ps = 1.

Claim 2. If n = pk such that all patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤ u < nm} have

triangular symmetry and k ≥ 2, then p cannot be an odd prime.

Suppose that n = pk, k ≥ 2 and p is an odd prime. By Lemma 9,(
pk

pk−1

)
≡
(
p

1

)
= p mod p2,

so
(
pk

pk−1

)
≡ ap2+p mod pk. If the row pk−1 consists only of ±1 mod pk, then ap2+p mod pk

must belong to the set {±2, 0}, which is the set of possible sums of two elements of row
pk − 1. This is impossible, because p mod p2 must be then ±2, which implies p = 2.

Figure 4: The first 16 rows of u4(
(
u
v

)
mod 4) or of v2(

(
u
v

)
mod 4).
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Claim 3. If n = 2k such that all patterns {un(
(
u
v

)
mod n) | 0 ≤ v ≤ u < nm} have

triangular symmetry, then k ≤ 2.
Suppose n = 2k and k ≥ 3. It follows:(

2k − 1

2

)
=

(2k − 1)(2k − 2)

2
= 22k−1 − 2k − 2k−1 + 1 ≡ −2k−1 + 1 mod 2k.

For k ≥ 3, −2k−1 + 1 mod 2k cannot be ±1 mod 2k.
Claim 4. All patterns {u4(

(
u
v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m} have triangular symmetry,

and are the same as those given by {v2(
(
u
v

)
mod 4) | 0 ≤ v ≤ u ≤ 2m}.

If we compare the functions v2 : Z/4Z → {0, 1, 2} with u4 : Z/4Z → {0, 1, 2} we see
that:

v2(x) =


2 x = 0,

0 x = 1 ∨ x = 3,

1 x = 2,

u4(x) =


0 x = 0,

1 x = 1 ∨ x = 3,

2 x = 2.

So up to a permutation of values, v2 and u4 produce the same pattern. This pattern has
triangular symmetry by the Theorem 1.

First 16 lines of this pattern can be seen in Figure 4. The function u4 has been also
considered by Zaphod Beeblebrox in the nice papers [4] and [5] by A. Granville. According
to their spirit, we show now a complete description of the pattern.

Corollary 4. The 2-dimensional sequence u4(
(
i+j
i

)
mod 4) consists of the minors:

A1 =

(
1 1
1 2

)
, A2 =

(
1 1
1 0

)
, A3 =

(
2 2
2 0

)
, A4 =

(
0 0
0 0

)
.

Moreover, the whole 2-dimensional sequence can be generated starting with A1 and succes-
sively applying the following substitution rules:

A1 ;

(
A1 A2

A2 A3

)
, A2 ;

(
A1 A2

A2 A3

)
, A3 ;

(
A3 A3

A3 A4

)
, A4 ;

(
A4 A4

A4 A4

)
.

Proof: The author displayed a substitution with eight minors generating the pattern
(
(
u
v

)
mod 4) in [10]. If we apply the function u4 on these eight minors element-wise, two of

them yield the minors called here A3 and A4 (which starting with A3 would generate alone
a pattern isomorphic with

(
u
v

)
mod 2), other two of them reduce to A1 and four of them

reduce to A2. The big surprise comes when one applies u4 also on the rules of substitution.
Without any contradiction, they fall together onto the rules given here, exactly like the
minors: one, one, two and four at a time.

6 The last non-zero digit symmetry

The functions vp and up are complementary in the sense that one of them is active exactly
over the places where the other one is constant. We can glue them together by considering
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their values as natural numbers and building the sum up(x)+vp(x). This function generates
symmetric patterns if applied over

(
u
v

)
with 0 ≤ v ≤ u < pm for all m ∈ N, but has the

disadvantage, that values 0, 1, . . . ,min(m − 1, (p − 1)/2) have not a unique interpretation
anymore. Another idea is to fix the value of m and to consider the function f(u, v) =
m−1−vp(

(
u
v

)
)+up(

(
u
v

)
mod p). Now the two complementary patterns glue well and values

have a unique interpretation. Unhappily, up is not too creative for p ≤ 5 and vp becomes
interesting when m ≥ 4.

But one can get much more if one applies up on the last non-zero digit of
(
u
v

)
written in

base p.

Definition 7. Let wp : Z \ {0} → Z, given by wp(x) = x/pvp(x).

Lemma 10. (Anton - Stickelberger - Hensel) Let p be prime, and m,n ∈ N with n ≥ m.
Let r = n−m. Let n = n0 + n1p+ · · ·+ ndp

d with 0 ≤ ni < p, and similarly for m and r
with digits mi and ri respectively. Finally, let vp(

(
n
m

)
) = k. Then:

wp(

(
n

m

)
) ≡ (−1)k

( n0!

m0!r0!

)( n1!

m1!r1!

)
· · ·
( nd!

md!rd!

)
mod p.

Proof: See [4] for the proof of a stronger identity, modulo pk.

Theorem 4. Let p be a prime. The patterns {up(wp(
(
u
v

)
) mod p) | 0 ≤ v ≤ u < pm} have

triangular symmetry for all m ∈ N.

Proof: Fix some m ∈ N. Like before, it is enough to prove that one rotation conserves
the pattern. We use this time the rotation (u, v) ; (n − 1 − v, u − v). It suffices to show
that:

up
(
wp
((n
s

))
mod p

)
= up

(
wp
((pm − 1− s

n− s

))
mod p

)
.

In order to use Lemma 10, let r = n − s, and ni, ri, si their digits in base p, with
0 ≤ i ≤ m−1. We observe that pm−1 in base p consists of the repeated digit p−1 only, and
that pm−1−s consists of the digits p−1−si. Moreover (pm−1−s)− (n−s) = pm−1−n,
that consists of the digits p − 1 − ni. Also recall that up and the projection modp are
multiplicative homomorphisms. One has to show that:

up
( n0!

r0!s0!
mod p

)
· · ·up

( nm−1!

rm−1!sm−1!
mod p

)
=

= up
( (p− 1− s0)!

r0!(p− 1− n0)!
mod p

)
· · ·up

( (p− 1− sm−1)!

rm−1!(p− 1− nm−1)!
mod p

)
.

Now we focus on some factor up(
(p−1−si)!
ri!(p−1−ni)!

mod p).

up
( (p− 1− si)!
ri!(p− 1− ni)!

mod p
)

= up
( 1 · 2 · · · (p− si − 2)(p− si − 1)

ri! · 1 · 2 · · · (p− ni − 2)(p− ni − 1)
mod p

)
.

Recall that by definition up(x) = up(p − x). We apply this identity on every factor. One
gets:

up
( (p− 1) · (p− 2) · · · (si + 2)(si + 1)

ri! · (p− 1) · (p− 2) · · · (ni + 2)(ni + 1)
mod p

)
.
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Figure 5: u11(w11(
(
u
v

)
) mod 11) + 5v11(

(
u
v

)
) with 0 ≤ v ≤ u ≤ 121.

But according to Wilson’s Theorem, (p − 1)! ≡ −1 mod p, so the last term displayed is
equal with:

up
( (−1)/si!

ri!(−1)/ni!
mod p

)
= up

( ni!

ri!si!
mod p

)
.

Now the equality to show follows by equality factor-wise.

Corollary 5. The patterns {up(wp(
(
u
v

)
) mod p) + vp(

(
u
v

)
)(p+ 1)/2 | 0 ≤ v ≤ u < pm} have

triangular symmetry for all m ∈ N.

Proof: This follows directly from Theorem 1 and Theorem 4.
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An application of the Corollary 5 can be seen in Figure 5. The advantage of this function
is that it does not represent only the sign-reduction of the last non-zero digit, but in the
main time the p-adic valuation. So, for some non-zero digit d with up(d) ∈ {1, . . . , (p−1)/2},
positions (a, b) such that

(
a
b

)
ends in d, d0 and respectively d00 are displayed with different

colors.
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