On the co-strong perfectness of the normal product of graphs
 by
 Eugen Mandrescu
 Dedicated to Professor Ioan Tomescu on the occasion of his $80^{\text {th }}$ birthday

Abstract

A graph G is strongly perfect if every induced subgraph H has an independent set meeting all the maximal cliques of H [4]. If both G and its complement are strongly perfect, then G is a co-strongly perfect graph. Co-strongly perfect graphs were first studied in [22].

In this paper we present a number of necessary/sufficient conditions concerning the co-strong perfectness of the normal product of graphs.

Key Words: Perfect graph, strongly perfect graph, normal product of graphs.
2010 Mathematics Subject Classification: Primary 05C17; Secondary 05C76.

1 Introduction

Throughout this paper $G=(V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V=V(G)$ and edge set $E=E(G)$. By \bar{G} is denoted the complement of G. If $e=x y \in E$, we also write $x \sim y$, and $x \nsim y$ whenever x, y are not adjacent in G.

If $A \subseteq V$, then $G[A]$ is the subgraph of G induced by $A \subseteq V$; shortly, by $H \subseteq G$ we mean that H is an induced subgraph of G, including G itself. By $G-W$ we denote the graph $(V, E-W)$, whenever $W \subseteq E$. By (A, B) we mean the set $\{a b: a \in A, b \in B, a b \in E\}$, where $A, B \subset V, A \cap B=\emptyset$, and we write $A \backsim B$ whenever $a b \in E$ holds for every $a \in A$ and $b \in B$.
P_{n}, C_{n} and K_{n} denote a chordless path on $n \geq 3$ vertices, the chordless cycle on $n \geq 3$ vertices, and the complete graph on $n \geq 1$ vertices, respectively.

Recall that a P_{4}-free graph is called a cograph, while a chordal graph is one having no induced C_{k} for $k \geq 4$.

A stable (or independent) set in G is a set of mutually non-adjacent vertices, and the stability number $\alpha(G)$ of G is the maximum cardinality of a stable set, while $\omega(G)=\alpha(\bar{G})$.

Let $\mathcal{S}(G)$ denote the family of all maximal (with respect to set inclusion) stable sets of G, and

$$
\mathcal{S}_{\alpha}(G)=\{S: S \in \mathcal{S}(G),|S|=\alpha(G)\}
$$

A clique in G is a subset A of $V(G)$ that induces a complete subgraph in G. Let $\mathcal{C}(G)$ denote the family of all maximal (with respect to set inclusion) cliques of G. Clearly,

$$
\mathcal{C}(G)=\mathcal{S}(\bar{G}), \quad \mathcal{C}_{\omega}(G)=\mathcal{S}_{\alpha}(\bar{G}),
$$

$$
\mathcal{S}_{\alpha}(G) \subseteq \mathcal{S}(G), \quad \mathcal{C}_{\omega}(G) \subseteq \mathcal{C}(G)
$$

hold for every graph G.
The chromatic number and the clique covering number of G are denoted by $\chi(G)$ and $\theta(G)$, respectively. The minimum number of cliques that cover all the edges of G is called the line-clique cover number of G and is denoted by $\theta_{1}(G)$. It is easy to see that $\theta(G) \leq \theta_{1}(G)$.

A graph G is called perfect if $\chi(H)=\omega(H)$ holds for each induced subgraph H of G [2]. Some basic structural properties of perfect graphs are presented in [14]. The Perfect Graph Theorem states that an undirected graph is perfect if and only if its complement graph is also perfect [10].

If the equality $\alpha(H)=\theta_{1}(H)$ is true for every induced subgraph H of G, then G is called a θ_{1}-perfect graph [5].

A graph G is said to be trivially perfect if $\alpha(H)=|\mathcal{C}(H)|$ is valid for each subgraph H of G [7].

Theorem 1. If G is a graph, then the following statements are equivalent:
(i) G is θ_{1}-perfect;
(ii) G is trivially perfect;
(iii) G is $\left(P_{4}\right.$ and $\left.C_{4}\right)$-free;
(iv) $u v \in E(G)$ if and only if $N[u] \subseteq N[v]$ or $N[v] \subseteq N[u]$.

Proof. The equivalence (i) \Leftrightarrow (iii) was stated in [5], while the equivalence (ii) \Leftrightarrow (iii) was proved in [7]. In [1] was shown that (iii) \Leftrightarrow (iv).

Clearly, $\left(P_{4}\right.$ and $\left.C_{4}\right)$-free graphs coincide with P_{4}-free chordal graphs.
In what follows, we call t-perfect every graph that satisfies Theorem 1.
Each t-perfect graph is also perfect (e.g., see [7]), while the converse is not necessarily true (for instance, P_{5} is perfect, but not t-perfect).

A set $T \subseteq V(G)$ is called a stable (complete) transversal of G if

$$
|T \cap A|=1 \text { for every } A \in \mathcal{C}(G),(A \in \mathcal{S}(G), \text { respectively })
$$

In [15] it was shown that if T is a stable (complete) transversal of G, then $T \in \mathcal{S}(G)$, ($T \in \mathcal{C}(G)$, respectively).

It is worth mentioning the following alternative definition of graph perfectness: a graph G is perfect if for every induced subgraph H of G, the family $\mathcal{S}_{\alpha}(H)$ has a complete transversal (or, equivalently, for every subgraph H of G, the family $\mathcal{C}_{\omega}(H)$ has a stable transversal).

Figure 1: The graph Y and its complement \bar{Y}.

A graph G is called c-strongly (s-strongly) perfect if every $H \subseteq G$ has a stable (complete, respectively) transversal. Let us mention that c-strongly perfect graphs are also known under the name of strongly perfect graphs and they were defined by Berge and Duchet in [4]. In [6] and [25] are characterized claw-free graphs that are c-strongly perfect.

Clearly, a graph is c-strongly perfect if and only if its complement is s-strongly perfect, and every c-strongly perfect or s-strongly perfect graph is also perfect (see [4]).

For instance, the graph Y in Figure 1 is not c-strongly perfect, since Y itself has no stable transversal. Hence, its complement \bar{Y} is not s-strongly perfect.

A graph G is very c-strongly (very s-strongly) perfect if for each $H \subseteq G$, every vertex of H belongs to a stable (complete, respectively) transversal of H. It is easy to check that P_{5} is not very s-strongly perfect, while C_{4} is both very s-strongly perfect and very c-strongly perfect.

Unlike the case of perfect graphs, the c-strong perfectness of a graph does not imply the s-strong perfectness of the same graph, and vice-versa. For instance, $K_{n}, n \geq 1$, is both c-strongly perfect and s-strongly perfect, while $C_{2 n}, n \geq 3$, is only c-strongly perfect. In fact, all bipartite graphs are c-strongly perfect.

An interesting case is that of so-called Meyniel graphs (a Meyniel graph is one whose each odd cycle of length at least five has at least two chords). Meyniel [11] showed that these graphs are perfect.

Later, Ravindra [20] proved that every Meyniel graph is c-strongly perfect, while Hoang [8] showed that G is a Meyniel graph if and only if it is very c-strongly perfect.

A graph that is both (very) c-strongly perfect and (very) s-strongly perfect is called (very) (c, s)-strongly perfect or co-strongly perfect (very co-strongly perfect, respectively).

Proposition 1. [4] Every chordal graph is co-strongly perfect and each cograph is c-strongly perfect.

Since the complement of a cograph is P_{4}-free, it follows that any cograph is co-strongly perfect.

In fact, in [4] it is proved a stronger result, namely, in a cograph G every maximal stable set meets all the maximal cliques (and this is true also for \bar{G}, because \bar{G} is again a cograph).

Now, since each vertex belongs to both a maximal stable set and also to a maximal clique, it follows that each cograph is very co-strongly perfect.

Corollary 1. The t-perfect graphs and the complete bipartite graphs are very co-strongly perfect.

There are perfect graphs that are neither s-strongly perfect nor c-strongly perfect; e.g., the graph G from Figure 2, because it has C_{6} and $\overline{C_{6}}$ as induced subgraphs.

Figure 2: G contains C_{6} and $\overline{C_{6}}$ as induced subgraphs.

If G is not s-strongly (c-strongly) perfect, but $G-v$ is s-strongly (c-strongly, respectively) perfect for each $v \in V(G)$, then G is called minimally s-strongly (minimally c-strongly, respectively) imperfect.

For instance, $C_{2 n}, n \geq 3$, are perfect and minimally s-strongly imperfect, while every $\overline{C_{2 n}}, n \geq 3$, is perfect and minimally s-strongly imperfect.

The imperfect graphs that are minimally strongly imperfect were completely characterized, as follows.

Theorem 2. [14] A graph G is minimally s-strongly (minimally c-strongly) imperfect and simultaneously imperfect if and only if G or \bar{G} is isomorphic to $C_{2 k+1}$ for some $k \geq 2$.

A list of open problems concerning c-strongly perfect graphs is presented in [21].
Clearly, if G is perfect of some kind, then every induced subgraph of G enjoys the same perfect property.

The normal product [23] (also known as the strong product [3]) of the graphs $G_{i}=$ $\left(V_{i}, E_{i}\right), i=1,2$, is the graph $G=G_{1} \boxtimes G_{2}$ having the vertex set

$$
V(G)=V_{1} \times V_{2}
$$

and the edge set obtained according to the rule: $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if and only if

$$
\begin{aligned}
& \text { (i) } x_{1} \sim y_{1} \text { and } x_{2}=y_{2} \text {, or } \\
& \text { (ii) } x_{1}=y_{1} \text { and } x_{2} \sim y_{2} \text {, or } \\
& \text { (iii) } x_{1} \sim y_{1} \text { and } x_{2} \sim y_{2} \text {. }
\end{aligned}
$$

For a very detailed treatment of various graph operations (including the normal product, as well), see the book of Imrich and Klavzar, [9].

It is easy to see that:
(i) the normal product is commutative, that is $G_{1} \boxtimes G_{2}$ and $G_{2} \boxtimes G_{1}$ are isomorphic;
(ii) the normal product is associative, i.e., the graphs $\left(G_{1} \boxtimes G_{2}\right) \boxtimes G_{3}$ and $G_{1} \boxtimes\left(G_{2} \boxtimes G_{3}\right)$ are isomorphic;
(iii) $G_{1} \boxtimes G_{2}$ is connected if and only if both G_{1} and G_{2} are connected.

Taking into account the above observation (iii) and the fact that a graph is:
(a) (very) c-strongly perfect
(b) (very) s-strongly perfect),
(c) t-perfect
if and only if each of its connected components have the same property, we assume in what follows, that all the graphs are connected.

In this paper we discuss co-strong perfectness of normal product of graphs. Strong perfectness of other products of graphs is analysed in [12].

2 Results

The maximal cliques and the transversals of $G_{1} \boxtimes G_{2}$ have a special form, specified in the following.

Proposition 2. (i) [1] $Q \in \mathcal{C}\left(G_{1} \boxtimes G_{2}\right)$ if and only if there exist some $Q_{1} \in \mathcal{C}\left(G_{1}\right)$ and $Q_{2} \in \mathcal{C}\left(G_{2}\right)$, such that $Q=Q_{1} \times Q_{2}$.
(ii) [17] If T_{1}, T_{2} are stable transversals in G_{1}, G_{2}, respectively, then $T_{1} \times T_{2}$ is a stable transversal of $G_{1} \boxtimes G_{2}$.

The perfectness of normal product of graphs is treated by Ravindra in [19], but it is not completely solved yet.

Recall the following known results.
Proposition 3. [19] If G_{1} and G_{2} are t-perfect, then $G_{1} \boxtimes G_{2}$ is perfect.
Later, Alexe and Olaru strengthened this result as follows.
Proposition 4. [1] If G_{1} and G_{2} are t-perfect, then $G_{1} \boxtimes G_{2}$ is c-strongly perfect.
Let us notice that the converse of Theorem 4 is not generally true; e.g., $K_{1} \boxtimes C_{6}$ is c-strongly perfect (since it is isomorphic to C_{6}), but C_{6} is not t-perfect.

The X-join graph (see [23]) of the family of graphs $\left\{G_{x}: x \in V(X)\right\}$, indexed by the vertex set $V(X)$ of the graph X, is the graph $G=X\left[G_{x}\right]$ having the vertex set

$$
V(G)=\bigcup\left\{\{x\} \times V\left(G_{x}\right): x \in V(X)\right\}
$$

and the edge set obtained according to the rule:

$$
(x, a) \sim(y, b) \Leftrightarrow \text { either (i) } x \sim y \text { or (ii) } x=y \text { and } a \sim b
$$

If $G_{x}=Y$ for every $x \in V(X)$, then we write $X[Y]$ and it is known as the lexicographic product of X and Y.

It is easy to see that $G \boxtimes K_{n}$ and $G\left[K_{n}\right]$ are isomorphic.
In [16] (and also, independently, in [24]) it is proved the following result.
Proposition 5. The graph $X\left[G_{x}\right]$ is (very) c-strongly perfect ((very) s-strongly perfect, co-strongly perfect) if and only if X and every G_{x} are (very) c-strongly perfect ((very) s-strongly perfect, co-strongly perfect, respectively).

It is known that if G_{1} is a $K_{1, m}$-join of complete graphs and G_{2} is a $K_{1, n}$-join of complete graphs, then $G_{1} \boxtimes G_{2}$ is co-strongly perfect [13]. Moreover, the following strengthening is valid.

Proposition 6. [1] If G_{1} is a $K_{1, m}$-join of complete graphs and G_{2} is t-perfect, then $G_{1} \boxtimes G_{2}$ is co-strongly perfect.

As a consequence, we get the following result.
Corollary 2. If G_{1} is a complete graph and G_{2} is t-perfect, then $G_{1} \boxtimes G_{2}$ is co-strongly perfect.
Proof. If $\left|V\left(G_{1}\right)\right|=1$, then $G_{1} \boxtimes G_{2}$ is clearly co-strongly perfect, since it is isomorphic to G_{2}. If $\left|V\left(G_{1}\right)\right|>1$, then G_{1} can be written as a $K_{1,1 \text {-join of cliques, and according to }}$ Proposition 6 , it follows immediately that $G_{1} \boxtimes G_{2}$ is co-strongly perfect.

Figure 3: $P_{3} \boxtimes P_{4}$ contains a chordless cycle on 6 vertices : $\left\{v_{i}: 1 \leq i \leq 6\right\}$.

Figure 4: $P_{3} \boxtimes C_{4}$ has \bar{Y} as an induced subgraph.

Let us note that $P_{3} \boxtimes P_{4}$ is not s-strongly perfect, because it contains C_{6} as an induced subgraph (see Figure 3).

The graph $P_{3} \boxtimes C_{4}$ is not s-strongly perfect, since it contains \bar{Y} as an induced subgraph (see Figure 4).

Proposition 7. If none of the graphs G_{1} and G_{2} is complete, then $G_{1} \boxtimes G_{2}$ is co-strongly perfect if and only if $G_{1} \boxtimes G_{2}$ is s-strongly perfect.

Proof. If $G_{1} \boxtimes G_{2}$ is co-strongly perfect, then clearly, $G_{1} \boxtimes G_{2}$ is s-strongly perfect.
Conversely, suppose that $G_{1} \boxtimes G_{2}$ is s-strongly perfect.
As it was mentioned above, neither $P_{3} \boxtimes P_{4}$ nor $P_{3} \boxtimes C_{4}$ are s-strongly perfect. On the other hand, if $G_{1} \boxtimes G_{2}$ is s-strongly perfect, then both G_{1} and G_{2} are s-strongly perfect, because they are isomorphic to some subgraphs of $G_{1} \boxtimes G_{2}$.

If one factor contains P_{4} or C_{4} as an induced subgraph, then the other factor must be P_{3}-free, i.e., a complete graph, in contradiction with the hypothesis on G_{1} and G_{2}. Therefore, both factors are $\left(P_{4}\right.$ and $\left.C_{4}\right)$ - free, i.e., they are t-perfect. Further, according to Proposition 4 , it follows that $G_{1} \boxtimes G_{2}$ is also c-strongly perfect.

Proposition 8. Let $G=G_{1} \boxtimes G_{2}$. Then the following assertions are true:
(i) if G is co-strongly perfect, then either
(a) one of G_{1}, G_{2} is a complete graph and the other is co-strongly perfect, or
(b) both G_{1} and G_{2} are t-perfect and non-complete;
(ii) if one of G_{1}, G_{2} is a complete graph and the other is co-strongly perfect, then G is co-strongly perfect.

Proof. (i) If G is co-strongly perfect, then both G_{1} and G_{2} are co-strongly perfect, as being isomorphic to some induced subgraphs of G.

Assume that none of G_{1}, G_{2} is complete, i.e., each has at least one P_{3} as an induced subgraph. Since $P_{3} \boxtimes P_{4}$ is not co-strongly perfect (it contains C_{6} as an induced subgraph), and $P_{3} \boxtimes C_{4}$ is not co-strongly perfect (it contains \bar{Y} as an induced subgraph), it follows that both G_{1} and G_{2} must be t-perfect.
(ii) If one of G_{1}, G_{2} is a complete graph, say G_{1}, and the other is co-strongly perfect, then G is co-strongly perfect, according to Proposition 5 , since $G_{1} \boxtimes G_{2}, G_{2} \boxtimes G_{1}$ and $G_{2}\left[G_{1}\right]$ are pairwise isomorphic.

Remark 1. (i) For every $n \geq 4$ the graph $P_{3} \boxtimes P_{n}$ is not s-strongly perfect, as it has C_{6} as an induced subgraph.
(ii) For every $n \geq 4$ the graph $P_{3} \boxtimes C_{n}$ is not s-strongly perfect, as it has $C_{2 k}$ or $C_{2 k-1}$, for $k \geq 3$, as an induced subgraph.
(iii) For every $n \geq 5$ the graph $C_{4} \boxtimes C_{n}$ is not s-strongly perfect, as it has $C_{2 k}$ or $C_{2 k-1}$, for $k \geq 3$, as an induced subgraph.

Corollary 3. (i) $P_{m} \boxtimes P_{n}$ is co-strongly perfect if and only if either (a) $m \in\{1,2\}$ and $n \geq 1$, or (b) $m=n=3$.
(ii) $P_{m} \boxtimes C_{n}$ is co-strongly perfect if and only if either (a) $m \in\{1,2\}$ and $n \in\{3,4\}$, or (b) $m \geq 3$ and $n=3$.
(iii) $C_{m} \boxtimes C_{n}$ is co-strongly perfect if and only if $m=3$ and $n \in\{3,4\}$.

Proof. By Proposition 1, we obtain that P_{n} is co-strongly perfect for all $n \geq 1$.
It is easy to see that C_{n} is co-strongly perfect only for $n \in\{3,4\}$.
(i) Assume that $P_{m} \boxtimes P_{n}$ is co-strongly perfect. According to Proposition 8 (i) and Remark $1(i)$, we infer that either $m \in\{1,2\}$ and $n \geq 1$, or $m=n=3$.

Conversely, $P_{1} \boxtimes P_{n}$ and $P_{2} \boxtimes P_{n}$ are chordal graphs for every $n \geq 1$, and hence are costrongly perfect, by Proposition 1. Proposition 6 ensures that $P_{3}\left[K_{1}\right] \boxtimes P_{3}=K_{1,2}\left[K_{1}\right] \boxtimes P_{3}$ is co-strongly perfect, since P_{3} is t-perfect. Consequently, $P_{3} \boxtimes P_{3}$ is co-strongly perfect, as an induced subgraph of $K_{1,2}\left[K_{1}\right] \boxtimes P_{3}$.
(ii) Suppose that $P_{m} \boxtimes C_{n}$ is co-strongly perfect. In accordance with Proposition 8(i) and Remark 1(ii), we get that either $m \in\{1,2\}$ and $n \in\{3,4\}$, or $m \geq 3$ and $n=3$.

The converse follows from Proposition 8(ii).
(iii) Let us note that $C_{4} \boxtimes C_{4}$ is not co-strongly perfect, as having $P_{3} \boxtimes C_{4}$ as an induced subgraph.

If $C_{m} \boxtimes C_{n}$ is co-strongly perfect, then Proposition 8(i) and Remark 1(iii) imply $m=3$ and $n \in\{3,4\}$.

The converse follows from Proposition 8(ii).

As a consequence of Proposition 8, we obtain the following.
Corollary 4. $G^{n}=G \boxtimes G \boxtimes G \boxtimes \cdots \boxtimes G, n \geq 2$, is co-strongly perfect if and only if G is a complete graph.

Proposition 9. The graph $G_{1} \boxtimes G_{2}$ is very c-strongly perfect (very s-strongly perfect) if and only if one of G_{1}, G_{2} is a complete graph and the other is very c-strongly perfect (very s-strongly perfect, respectively).

Proof. Let us notice that $P_{3} \boxtimes P_{3}$ is neither very c-strongly perfect (it contains $\overline{P_{5}}$ as a subgraph) nor very s-strongly perfect (it contains P_{5} as a subgraph, see Figure 5). Hence, if $G_{1} \boxtimes G_{2}$ is very c-strongly perfect (very s-strongly perfect, very co-strongly perfect), then both G_{1} and G_{2} enjoy the same property, and at least one of G_{1}, G_{2} must a complete graph.

Figure 5: $P_{3} \boxtimes P_{3}$ contains P_{5} and $\overline{P_{5}}$ as induced subgraphs.
The converse follows from Proposition 5, by taking into account that $G \boxtimes K_{n}$ and $G\left[K_{n}\right]$ are isomorphic.

Corollary 5. The graph $G_{1} \boxtimes G_{2} \boxtimes G_{3} \boxtimes \cdots \boxtimes G_{n}, n \geq 2$, is very co-strongly perfect if and only if $n-1$ of $G_{1}, G_{2}, \ldots, G_{n}$ are complete graphs and one is very co-strongly perfect. $G^{n}=G \boxtimes G \boxtimes G \boxtimes \cdots \boxtimes G, n \geq 2$, is very co-strongly perfect if and only if G is a complete graph.

Propositions 8 and 4 motivate the following.
Conjecture 1. If both G_{1} and G_{2} are non-complete and t-perfect graphs, then $G_{1} \boxtimes G_{2}$ is s-strongly perfect.

Acknowledgement I would like to take this opportunity to thank again Prof. Tomescu for the patient guidance, stimulation and suggestions he has provided throughout my time as his PhD fellow.

References

[1] G. Alexe, E. Olaru, The strongly perfectness of normal product of t-perfect graphs, Graphs and Combinatorics, 13, 209-215 (1997).
[2] C. Berge, Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle, 10, 114-115 (1961).
[3] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam (1973).
[4] C. Berge, P. Duchet, Strongly perfect graphs, Annals of Discrete Mathematics, 21, 57-61 (1984).
[5] S. A. Choudum, K. R. Partharasathy, G. Ravindra, Line-clique cover number of a graph, Proc. Indian Nay. Sci. Acad. Part A, 41 (3), 289-293 (1975).
[6] M. Chudnovsky, C. Dibek, Strongly perfect claw-free graphs - A short proof, Journal of Graph Theory, 97, 359-381 (2021).
[7] M. C. Golumbic, Trivially perfect graphs, Discrete Mathematics, 24, 105-107 (1978).
[8] C. T. Hoang, On a conjecture of Meyniel, Journal of Combinatorial Theory, B 42, 302-312 (1987).
[9] W. Imrich, S. Klavzar, Product Graphs, Structure and Recognition, John Wiley, New York (2000).
[10] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics, 2, 253-267 (1972).
[11] H. Meyniel, The graphs whose odd cycles have at least two chords, In Topics on Perfect Graphs, C. Berge and V. Chvatal, editors, Annals of Discrete Mathematics, 21, 115-120 (1984).
[12] E. Mandrescu, Strongly perfect products of graphs, Czechoslovak Mathematical Journal, 41 (116), 368-372 (1991).
[13] E. Mandrescu, Operations with perfect graphs, Ph. D. Thesis (in Romanian), University of Bucharest, 1993.
[14] E. Olaru, The structure of imperfect critically strongly-imperfect graphs, Discrete Mathematics, 156, 299-302 (1996).
[15] E. Olaru, E. Mandrescu, On stable transversals and strong perfectness of graphjoin, Annals of the "Dunarea de Jos" University of Galati, fasc. II, 21-24 (1986).
[16] E. Olaru, E. Mandrescu, On stable transversals in graphs - an algebraic approach, Annals of the "Dunarea de Jos" University of Galati, fasc. II, 25-30 (1986).
[17] E. Olaru, E. Mandrescu, C. Ion, V. Anastasoaei, Perfect transversals in some graph products, Acta Universitatis Apulensis, 10, 63-71 (2005).
[18] E. Olaru, H. Sachs, Contributions to a characterization of the structure of perfect graphs, Annals of Discrete Mathematics, 21, 121-144 (1984).
[19] G. Ravindra, Perfectness of normal products of graphs, Discrete Mathematics, 24, 291-298 (1978).
[20] G. Ravindra, Meyniel graphs are strongly perfect, Journal of Combinatorial Theory, Ser. B, 33, 187-190 (1982).
[21] G. Ravindra, Research problems, Discrete Mathematics, 80, 105-109 (1990).
[22] G. Ravindra, D. Basavayya, Co-strongly perfect bipartite graphs, Jour. Math. Phy. Sci., 26, 321-327 (1992).
[23] G. Sabidussi, Graph derivatives, Math. Z., 76, 385-401 (1961).
[24] A. Szelecka, A. Wloch, A note on strong and co-strong perfectness of the X-join of graphs, Discussiones Mathematicae - Graph Theory, 16, 151-155 (1996).
[25] H. Y. Wang, Which claw-free graphs are strongly perfect?, Discrete Mathematics, 306, 2602-2629 (2006).

Received: 27.06.2022
Accepted: 16.08.2022
Department of Computer Science, Holon Institute of Technology, 52 Golomb Street, POB 305,

Holon 5810201, Israel E-mail: eugen_m@hit.ac.il

