
Bull. Math. Soc. Sci. Math. Roumanie
Tome 65 (113), No. 4, 2022, 405–419

A variation of Boolean distance
by

Guillaume Ducoffe

Dedicated to Professor Tomescu on the occasion of his 80th birthday

Abstract

Let P be a family of paths in a connected graph G so that there exists a uv-path in
P for every choice of vertices u and v. The P-interval JP(u, v) is the union of vertex
sets of all uv-paths in P. We address the problem of maximizing |JP(u, v)| over all
vertices u and v, for various families P of paths.

• First, the Boolean distance between two vertices u and v, in a connected graph
G, equals the total number of vertices on uv-paths. The Boolean diameter of a
connected graph is its maximum Boolean distance. We observe that the Boolean
diameter of any graph G can be computed in linear time, due to an elegant char-
acterization of Boolean distances by [Harary, Melter, Peled & Tomescu; Discr.
Math. 1982].

• Then, we restrict our study to induced paths. Unless P=NP, we cannot com-
pute in polynomial time the maximum number of vertices on all induced paths
between two vertices. However, on the positive side, we can solve this problem
in polynomial time on graphs of bounded clique-width, and even in linear time
on bounded-treewidth graphs and distance-hereditary graphs.

• Finally, we introduce the interval semidistance for graphs, that only accounts
for vertices on shortest paths. Equivalently, the interval semidistance between
two vertices u and v, in a connected graph G, equals the number of vertices
that are metrically between u and v. The interval diameter (maximum interval
semidistance) can be computed in O(n3) time for n-vertex connected graphs.
We prove that in contrast to Boolean diameter there is an Ω(n2−o(1)) time lower
bound for this problem under the Strong Exponential-Time Hypothesis, even for
graphs with only n1+o(1) edges. However, on the positive side, we present linear-
time algorithms for computing the interval diameter within various graph classes
with tree-likeness properties, such as: trees, cacti, block graphs and distance-
hereditary graphs.

Key Words: Boolean distance, intervals of graphs, transit functions, NP-
hardness, SETH-hardness.
2010 Mathematics Subject Classification: Primary: 05C85, 05C12.

1 Introduction

We refer to [3] and [19] for standard textbooks in Graph Theory and Complexity Theory,
respectively. Unless stated otherwise, all graphs considered are unweighted, undirected,

406 A variation of Boolean distance

simple (i.e., without loops or multiple edges) and connected. Given a graph G = (V,E),
let n = |V | be its order (number of vertices) and m = |E| be its size (number of edges).
A path is a sequence of pairwise different vertices such that every two consecutive vertices
are adjacent. It is called a uv-path if it starts and ends with vertices u and v, respectively.
Real-life communication networks can be conveniently modelled as a graph [6]. Therefore,
studying the properties of various families of paths in a graph is of utmost importance.
Let P be a family of paths so that there exists a uv-path in P for every possible choice of
vertices u and v. For concreteness, we may see P as the set of all available roads for routing
messages in a network. For every vertices u and v, let JG

P (u, v) be the union of vertex
sets of all uv-paths in P. The mapping (u, v) → JG

P (u, v) is sometimes called a transit
function [18]. We denote by σG

P (u, v) = |JG
P (u, v)| the number of vertices on all uv-paths in

P. We sometimes omit the superscript if G is clear from the context. In this paper, we are
interested in computing ΣP(G) = maxu,v∈V σ

G
P (u, v).

Let the length of a path be equal to its number of vertices minus one. Note that, if
the length of any uv-path in P is at most ℓ, then there are at least ⌈σP(u, v)/ (ℓ+ 1)⌉ uv-
paths in P. Therefore, if all paths in P have bounded length, the larger σP(u, v) the more
roads there exist to route messages between u and v. Another motivation for computing
ΣP(G) could be in the context of broadcasting a message in a network. Indeed, if we send
a message from u to v on all the uv-paths in P, then the larger σP(u, v) the more vertices
receive the message at once.

We consider in what follows three different families P of paths.

• As a starter, let Pall be the family of all paths. We denote by σall(u, v) the number
of vertices on all uv-paths. In [12], σall(u, v) was introduced and studied under the
name of Boolean distance between u and v. To our best knowledge, computational
aspects of Boolean distances have not been studied before our work. Let the Boolean
diameter Σall(G) of a graph G equal its maximum Boolean distance. Our first result
is that the Boolean diameter can be computed in linear time (Theorem 2). The proof
of this result readily follows from the nice relationship between Boolean distances in
a graph and its block-cut tree [12].

• Then, let Pind be the family of all induced paths, where we recall that a path is
induced if no two non-consecutive vertices are adjacent. We denote by σind(u, v)
the number of vertices on all induced uv-paths. The existence of a uv-path is well-
known to be equivalent to that of an induced uv-path. However, the same is not
true for the vertices on uv-paths. For instance, let the bull graph be made of a
triangle with vertices x, y, z and of two additional pendant vertices u, v with respective
unique neighbours x, y. Then, we have z ∈ Jall(u, v) \ Jind(u, v). We refer to [17] for
previous works on the properties of the intervals Jind(u, v), within the realm of induced
path convexity [8]. Unsurprisingly, the restriction of our maximization problem to
induced paths makes it intractable (Theorem 3). Standard applications of Courcelle’s
optimization theorem [4] allows us to derive a polynomial-time algorithm for the
important special case of graphs of bounded clique-width.

• Finally, let Psp be the family of all shortest paths. The union Jsp(u, v) of vertex sets
of all shortest uv-paths is sometimes called a metric interval or a geodesic interval.
Metric intervals play an important role in the characterization of graph classes stud-
ied in Metric Graph Theory [1], some fellow-traveller properties on graphs [16], and

G. Ducoffe 407

geodesic graph convexity [13]. The interval semidistance between u and v, denoted
in what follows by σsp(u, v), equals |Jsp(u, v)|. Note that in general, σsp() fails in
satisfying the triangle inequality, and therefore it is not a distance function. For in-
stance, let K2,p denote the complete bipartite graph with its partite sets of respective
cardinalities 2 and p. Let u and v be the two vertices in the smallest partite set,
and let x be an arbitrary vertex from the largest partite set. Then, σsp(u, v) = p+ 2
whereas we have σsp(u, x) = σsp(v, x) = 2. Let the interval diameter Σsp(G) of G be
equal to its maximum interval semidistance. While we prove that the interval diame-
ter can be computed in cubic time (Theorem 4), we present a (conditional) quadratic
lower bound for this problem (Theorem 6). However, on the positive side, we obtain
linear-time algorithms for this problem on various graph classes.

All graph classes considered are first presented in Sec. 2. Our results for Pall, Pind and Psp

are presented in Sec. 3, 4 and 5, respectively. We conclude this paper in Sec. 6.

2 Preliminaries

We start recalling a few standard notations. Let G = (V,E) be a connected graph. For an
arbitrary vertex v, let its (open) neighbourhood NG(v) contain every adjacent vertex to v.
Let its closed neighbourhood be defined as NG[v] = NG(v) ∪ {v}. The distance dG(u, v)
between two vertices u and v equals the length of a shortest uv-path. We sometimes omit
the subscript if G is clear from the context. A vertex v is pendant if |N(v)| = 1. Two
vertices u, v are twins if N(u) \ v = N(v) \ u. In particular, we say that u and v are
true twins if they are twins and adjacent, and they are false twins if they are twins and
nonadjacent.

A cut-vertex is a vertex whose removal leaves the graph disconnected. A graph is 2-
connected if it has no cut-vertex. Let a block in a graph be a maximal 2-connected subgraph.
We may define a bipartite graph whose partite sets are the cut-vertices and the blocks of G
respectively, so that there is an edge between every cut-vertex and every block that contains
it. This graph is a tree, sometimes called the block-cut tree of G [11]. A cactus is a graph
whose blocks are either edges or cycles. A block graph is a graph whose blocks are cliques.
A Gallai tree is a graph whose blocks are either odd cycles or cliques.

A chordal graph is a graph with no induced cycle of length greater than three. Special
cases of chordal graphs are the block graphs and the split graphs, where a split graph is
a graph that can be vertex-partitioned in a clique and a stable set. A k-tree is a chordal
graph with clique number at most k + 1. We say that a graph has treewidth at most k if it
is a (not necessarily induced) subgraph of a k-tree.

A graph is distance-hereditary if every induced path is also a shortest path. Clique-width
is a parameter generalizing distance-hereditary graphs, whose formal definition (unused in
this paper) can be found in [5]. In particular, every graph of bounded treewidth also has
bounded clique-width [5] and every distance-hereditary graph has clique-width at most
three [9].

408 A variation of Boolean distance

3 Boolean distances

We revisit the beautiful characterization of Boolean distances in [12], deriving from the
former a simple linear-time algorithm for Boolean diameter computation.

We need to introduce a few additional notations. First, being given two nodes x and
y in any tree T , the unique xy-path of T is denoted by PT (x, y). Now, let G = (V,E)
be an arbitrary graph. For every vertex v, let us define b(v) such that: b(v) = v if v is a
cut-vertex; otherwise, b(v) is the unique block of G containing vertex v. We may see b as a
mapping of V to the nodes of the block-cut tree of G. In general, b is neither injective nor
surjective. For instance, if G is 2-connected, then b(v) = G for every vertex v, and so, b is
not injective. If G is a path with at least four nodes, then there are blocks composed of two
cut-vertices, to which no node can be mapped by b. In this situation, b is not surjective.

Theorem 1 ([12]). Let T be the block-cut tree of a graph G = (V,E) and let u and v be
arbitrary distinct vertices of G. Then, Jall(u, v) is the union of vertex sets of all blocks on
PT (b(u), b(v)).

By Theorem 1, computing the Boolean diameter of an arbitrary graph can be reduced
to computing the diameter of a weighted tree. We prove it next.

Theorem 2. The Boolean diameter of every G = (V,E) can be computed in linear time.

Proof. We assume without loss of generality that n > 1. We first describe our algorithm,
before analyzing its running time and proving its correctness.

• We compute the block-cut tree T of G.

• For each node x of T , let w(x) = −1 if x = v is a cut-vertex of G; otherwise, x = B
is a block of G, and we set w(x) = |B|.

• We compute D(T,w) = maxx,y∈V (T)

∑
{w(z) | z ∈ PT (x, y)}.

The block-cut tree of G can be computed in linear time [14], and so can be the weight
function w simply by scanning T once. Then, we are left computing the diameter of a
weighted tree, that can also be done in linear time by using a folklore dynamic programming
approach.

It remains to prove that Σall(G) = D(T,w). For convenience, in what follows we write
δT,w(x, y) =

∑
{w(z) | z ∈ PT (x, y)} for nodes x and y of T . Let us consider arbitrary

distinct vertices u and v of G. Let x = b(u), y = b(v) be as defined earlier in this section.
We call zu, zv the nodes representing the first and last blocks on PT (x, y) (ordering nodes
on the path from x to y). We claim that σall(u, v) = δT,w(zu, zv). In order to prove the
claim, let PT (zu, zv) = (zu = B0, c1, B1, . . . , cℓ, Bℓ = zv) where each ci is a cut-vertex and

each Bj is a block. We have δT,w(zu, zv) =
∑ℓ

i=0 |Bi| − ℓ = |B0| +
∑ℓ

i=1 (|Bi| − 1) =

|B0|+
∑ℓ

i=1 |Bi \ {ci}| =
∣∣∣∪ℓ

i=0Bi

∣∣∣. The claim now follows from Theorem 1. In particular,

this implies Σall(G) ≤ D(T,w).
Let us prove that conversely, Σall(G) ≥ D(T,w). We first assume that G is 2-connected.

In this situation, T is reduced to a single node with label G. Therefore, D(T,w) = n. Since
n > 1, there exist at least two distinct vertices u and v. By Theorem 1, Jall(u, v) = V .
Therefore, Σall(G) = n = D(T,w). From now on, we assume that G has at least two blocks.

G. Ducoffe 409

Let x and y be arbitrary nodes of T such that δT,w(x, y) = D(T,w). We first observe that
x, y are blocks of G. Indeed, if x (resp., y) were a cut-vertex, then path PT (x, y) could
be extended with a neighbour of x (resp., y) and this neighbour has a positive cost, thus
contradicting the maximality of D(T,w). Furthermore, we claim that there always exists
a pair of distinct blocks x and y such that δT,w(x, y) = D(T,w). Indeed, for any given
block x, there exists another distinct block y because we assume that G is not 2-connected.
Since the path in T between x and y alternates between cut-vertices, of weight equal to −1,
and blocks of weight at least 1, δT,w(x, y) ≥ w(x) = δT,w(x, x). Thus, we may assume in
what follows that x and y are different. Let the path PT (x, y) start with edge xcx and end
with edge cyy, where cx and cy are cut-vertices in blocks x and y, respectively. We pick a
vertex u in block x such that u ̸= cx. Note that either u is a cut-vertex and so b(u) = u,
or b(u) = x. Similarly, we pick a vertex v in block y such that v ̸= cy. According to our
choices for u and v, the first and last blocks on PT (b(u), b(v)) must be x and y. As a result,
D(T,w) = δT,w(x, y) = σall(u, v) ≤ Σall(G).

4 The case of induced paths

Our main result in this section is that unless P=NP, we cannot compute in polynomial time
the maximum number of vertices on all induced paths between any two vertices (Theorem 3).
We start with the following simple reduction.

Lemma 1. There is a polynomial-time reduction from the problem of computing σG
ind(u, v)

for a prescribed pair of vertices (u, v) in some graph G to the problem of computing Σind(G
′)

for some graph G′.

Proof. Let Pu, Pv be paths with 2n nodes each and respective end-vertices u′, x and v′, y.
We construct the graph G′ from G,Pu, Pv by adding the two edges ux, vy. In doing so, we
get Σind(G

′) = σG′

ind(u
′, v′) = 4n+ σG

ind(u, v).

Theorem 3. The problem of computing Σind(G) for a given graph G cannot be solved in
polynomial time, unless P=NP.

Proof. The three-in-a-path problem, that consists in deciding whether there exists an in-
duced path with three prescribed vertices, is NP-complete (e.g., see [10]). It implies that
unless P=NP, being given three vertices u, v and w we cannot decide in polynomial time

whether vertex w lies on some induced uv-path. Let σG
ind(u, v), σ

G\w
ind (u, v) denote the num-

ber of vertices on all induced uv-paths in G and G \ w, respectively. Then, vertex w lies

on some induced uv-path if and only if we have σG
ind(u, v) > σ

G\w
ind (u, v). As a result, unless

P=NP we cannot compute in polynomial time the number of vertices on all induced paths
between two prescribed vertices. We are done applying Lemma 1.

Recall that the MS1 logic is a fragment of second-order logic where the second-order
quantification is limited to quantification over sets. The formulas that are written in MS1

410 A variation of Boolean distance

logic for graphs use lower-case variables u, v, . . . to represent vertices and upper-case vari-
ables X,Y, . . . to represent vertex-subsets. The atomic formulas available are set contain-
ment denoted x ∈ X and the adjacency relation - denoted adj(u, v). By Courcelle’s
Theorem [4], if the vertex-subsets in a given family can be expressed in MS1 logic, then a
maximum-cardinality subset in this family can be computed in polynomial time (resp., in
linear-time) on graphs of bounded clique-width (resp., on bounded-treewidth graphs). It
implies the following result.

Proposition 1. If G = (V,E) has bounded clique-width (resp., bounded treewidth), then
we can compute Σind(G) in polynomial time (resp., in O(n) time).

Proof. Let us first assume to be given aMS1 formula φ(u, v, x) expressing the property for a
vertex x to belong to Jind(u, v). Then, theMS1 formula ψ(X) = ∃u∃v (x ∈ X ⇐⇒ φ(u, v, x))
expresses the property for a vertex-subset X to be an interval Jind(u, v) for some vertices
u and v. In particular, using Courcelle’s theorem [4], we can compute such an interval of
maximum cardinality. As a result, it now suffices to prove that Jind(u, v) can be expressed
in MS1 logic. We do so by exhibiting the following MS1 formula (for u ̸= v):

φ(u, v, x) = ∃P (u, v, x ∈ P

∧∀Q ⊂ P ((∃r ∈ Q ∧ ∃r′ ∈ P \Q) =⇒ (∃s ∈ Q ∃t ∈ P \Q adj(s, t)))

∧∀r, s, t, w ∈ P (adj(w, r) ∧ adj(w, s) ∧ adj(w, t) =⇒ r = s ∨ s = t ∨ t = r)

∧∀s, t ∈ P (adj(u, s) ∧ adj(u, t) =⇒ s = t)

∧∀s, t ∈ P (adj(v, s) ∧ adj(v, t) =⇒ s = t)).

The second line ensures that P is a connected subset. The third line ensures that the
maximum degree of a vertex in P is at most two. Hence, P is either a cycle or a path. The
last two lines ensure that both u and v have at most one neighbour in P . Overall, P must
be an induced uv-path containing x.

In Sec. 5, we present a linear-time algorithm for computing Σsp(G) for every distance-
hereditary graph G (see Theorem 8). Since every induced path in a distance-hereditary
graph G is also a shortest-path, we obtain the following result.

Proposition 2. If G = (V,E) is distance-hereditary, then we can compute Σind(G) in
linear time.

5 Interval semidistance

The main section of this paper is devoted to the computational aspects of the interval
semidistance. In Sec. 5.1, we present a simple cubic-time algorithm for computing the
interval diameter of any graph. We complete this positive result with a conditional quadratic
time lower bound in Sec. 5.2. We end up the section presenting linear-time algorithms for
special graph classes, in Sec. 5.3.

G. Ducoffe 411

5.1 A polynomial-time algorithm

Theorem 4. For every G = (V,E), we can compute Σsp(G) in O(n3) time.

Proof. We compute all distances dG(u, v), for every vertices u and v, in total O(nm) time.
Then for every u, v, w ∈ V , we test in O(1) time whether dG(u, v) = dG(u,w) + dG(w, v).
Doing so, for every vertices u and v we can compute Jsp(u, v) (and so, σsp(u, v)) in O(n)
time. We are done as there are only O(n2) pairs (u, v) of vertices to be considered.

We left open whether there is an O(nm)-time algorithm for computing the interval
diameter. This would be conditionally optimal due to the hardness result presented in the
next Sec. 5.2.

5.2 SETH-hardness

Recall that k-SAT is the problem of deciding whether a given CNF formula, with at most
k literals per clause, is satisfiable. The Strong Exponential-Time Hypothesis (SETH) posits
that for every ϵ > 0, there exists some k such that we cannot solve k-SAT in (2− ϵ)nnO(1)

time, where n is the number of variables [15]. The Orthogonal Vectors problem (OV) takes
as inputs two families A and B of n sets over a common universe C, and it asks whether
there exist sets a ∈ A, b ∈ B such that a ∩ b = ∅.

Theorem 5 ([21]). Under SETH, for every ϵ > 0, there exists a constant c > 0 such that
we cannot solve OV in O(n2−ϵ) time, even if |C| ≤ c log n.

Theorem 6. Under SETH, for every ϵ > 0, we cannot compute Σsp(G) in O(n2−ϵ) time,
even if G is a split graph with at most cn log n edges for some constant c depending on ϵ.

Proof. Let (A,B,C) be an instance of the OV problem. For convenience, let d = |C|. We
may assume that there is no empty subset in A (resp., in B) nor any subset equal to C.
Then, let A1, A2, . . . , Ad−1 partition A so that every set of Ai has cardinality equal to i.
In the same way, let B1, B2, . . . , Bd−1 partition B so that every set of Bj has cardinality
equal to j. For every 1 ≤ i, j ≤ d−1 such that both Ai and Bj are nonempty, we construct
a split graph Gi,j as follows:

• The vertex-set is Ai ∪Bj ∪ C ∪ {xA, yB};

• The subset C ∪ {xA, yB} is a clique, and the subset Ai ∪Bj is an independent set;

• For every a ∈ Ai and for every x ∈ C, we add an edge ax if and only if x ∈ a.
Similarly, for every b ∈ Bj and for every y ∈ C, we add an edge by if and only if y ∈ b.

• Finally, there is an edge between xA and every a ∈ Ai. In the same way, there is an
edge between yB and every b ∈ Bj .

We observe that this above graph Gi,j can be computed in O(nd+ d2) time.
We claim that Σsp(Gi,j) = i+ j + 4 if and only if there exist a ∈ Ai, b ∈ Bj such that

a ∩ b = ∅. Indeed, let u and v be arbitrary vertices of Gi,j . If u and v are adjacent, then
σsp(u, v) = 2. Otherwise, if d(u, v) = 2, then Jsp(u, v) = {u, v} ∪ (N(u) ∩N(v)). Since

412 A variation of Boolean distance

C ∪ {xA, yB} is a clique, at least one of u or v, say it is u, belongs to Ai ∪ Bj . Therefore,
σsp(u, v) ≤ 3 + max{i, j} because the degree of u is at most max{i, j} + 1. From now on,
we assume that d(u, v) ≥ 3. We may assume by symmetry that u ∈ Ai, v ∈ Bj . In this
situation, u∩ v = ∅, d(u, v) = 3, Jsp(u, v) = N [u]∪N [v], and therefore σsp(u, v) = 4+ i+ j,
thus proving our claim.

Overall, in order to test whether there are a ∈ A, b ∈ B such that a ∩ b = ∅, it suffices
to compute Σsp(Gi,j) for every 1 ≤ i, j ≤ d− 1. Suppose by contradiction that the interval
diameter can be computed in O(n2−ϵ) time, for some ϵ > 0. Then, we can solve OV in
O(nd3 + d4 + d2n2−ϵ) time which, in the special case d ≤ c log n for some c > 0, is in
O(n2−ϵ′) time for some 0 < ϵ′ < ϵ. Assuming SETH, the latter contradicts Theorem 5.

5.3 Linear-time algorithms on some special graph classes

Trees. A graph is geodetic if there exists a unique shortest path between every two ver-
tices. We start making the following useful observation:

Lemma 2. For every two vertices u and v in a geodetic graph G, σsp(u, v) = dG(u, v) + 1.

Proof. It suffices to observe that Jsp(u, v) is reduced to the vertex set of a unique shortest
path of length dG(u, v), and so, with dG(u, v) + 1 vertices.

By Lemma 2, the interval diameter can be computed in linear time on any class of
geodetic graphs for which there exists a linear-time diameter computation algorithm.

Corollary 1. The interval diameter can be computed in linear time on trees, block graphs
and Gallai trees.

Cacti. In general, a cactus is not a geodetic graph. However, we can design a simple
dynamic programming approach on its block-cut tree for computing the interval diameter.
We start with the following reduction rule:

Lemma 3. If c is a cut-vertex in a graph G = (V,E), and vertices u and v are in separate
connected components of G \ c, then σsp(u, v) = σsp(u, c) + σsp(c, v)− 1.

Proof. The result follows from the property that every uv-path must go by c. In particular,
every shortest uv-path is the union of a shortest uc-path with a shortest cv-path.

Let us consider the following weighted version of our problem. A graph G = (V,E)
is given together with a vertex-weight function β. For every v ∈ V , we further assume
β(v) ≥ 0. Let us define, for every vertices u and v:

σsp(u, v, β) =

{
β(u) + σsp(u, v) + β(v) if u ̸= v

β(u) + 1 if u = v.

G. Ducoffe 413

Similarly, let us define:

d(u, v, β) =

{
β(u) + d(u, v) + β(v) if u ̸= v

β(u) if u = v.

The weighted interval diameter of G equals Σsp(G, β) = maxu,v∈V σsp(u, v, β). Its weighted
diameter equals diam(G, β) = maxu,v∈V d(u, v, β). We will use the following result:

Lemma 4 ([20]). The weighted diameter of a cycle can be computed in linear time for every
nonnegative vertex-weight function β.

The proof of Lemma 4 can be found in Section 2 of Reference [20]. The authors’
definition of weighted diameter is slightly different than ours because they only consider
maxu ̸=v d(u, v, β) whereas we also allow u, v to be equal. However, the difference is not that
important because we can separately compute maxu∈V d(u, u, β) = maxu∈V β(u) in linear
time. At first glance, Lemma 4 seems more general than the results from [20]. The reason is
that Section 2 of Reference [20] is devoted to the computation of the (unweighted) diameter
of unicycle graphs, i.e., graphs G with a unique cycle C. More precisely, it is well-known
that if we remove from a unicycle graph G all edges from its cycle C, then we obtain a
forest whose each tree is rooted at some vertex of C. For every vertex v of cycle C, the
authors of Reference [20] defined its weight β(v) as the maximum distance between v and
a node of the tree rooted at v. Then, they compute in O(|C|) time the weighted diameter
of C with respect to β. Therefore, the results from [20] are only presented for specific
vertex-weight functions β. However, these results hold for any function β with nonnegative
integer weights: indeed, we can simulate any such function β by attaching to each vertex
v of a cycle C a path of length β(v). Furthermore, a closer look at the correctness proof
of [20, Algorithm 1] (see also Observation 1 and Lemmas 3 to 6 in Reference [20]) shows
that all arguments remain valid for general nonnegative vertex-weight functions β.

Corollary 2. The weighted interval diameter of a cycle can be computed in linear time for
every nonnegative vertex-weight function β.

Proof. Let Cn be a cycle with n vertices, and let β be a vertex-weight function. We first
describe our algorithm before proving its correctness.

• We compute D0 = diam(Cn, β), the weighted diameter. By Lemma 4, it can be done
in linear time.

• If n is odd, then we output D0 + 1.

• Else, let the vertices of Cn be enumerated in clockwise order, that results in the
ordering (v0, v1, . . . , vn−1). Let D1 = max{β(vi) + β(vi+n/2) | 0 ≤ i < n/2}. We
output max{D0 + 1, D1 + n}.

For every vertices u and v we always have that σsp(u, v, β) ≥ d(u, v, β) + 1. Therefore,
D0 +1 is a lower bound on the weighted interval diameter. In order to prove correctness of
the algorithm, it suffices to characterize the cases when it is larger than D0+1. For that, let
u and v satisfy σsp(u, v, β) > d(u, v, β) + 1. Since there are at least two shortest uv-paths,
n must be even and u, v are diametrically opposed. In particular, there is an i such that

414 A variation of Boolean distance

{u, v} = {vi, vi+n/2}. Furthermore, σsp(u, v) = n. It implies that if the weighted interval
diameter is larger than D0 + 1, then it is at most D1 + n and n must be even. Conversely,
if n is even then D1 + n is a lower bound on the weighted interval diameter.

Theorem 7. The interval diameter can be computed in linear time for cacti.

Proof. Let G = (V,E) be a cactus, and let T denote its block-cut tree. It can be computed
in linear time [14]. We may assume that G is not a cycle by Corollary 2, and therefore
there is at least one cut-vertex. Let c0, c1, . . . , cp be the cut-vertices of G. We root T in c0.
Then, for every 0 ≤ i ≤ p, let Vi denote the union of vertex sets of all blocks in the subtree
rooted at ci.

We often use in what follows that after pre-processing a cycle C in O(|C|) time, we can
compute σsp(u, v) in O(1) time for every vertices u and v. Indeed, σsp(u, v) = |C| if |C| is
even and u, v are diametrically opposed; otherwise, σsp(u, v) = dC(u, v) + 1.

Our algorithm proceeds in two main steps.

Step 1. For every cut-vertex ci, let C
1
i , C

2
i , . . . , C

ki
i denote its children nodes in T . For

every 1 ≤ j ≤ ki, let Vi,j be the union of vertex sets of all the blocks in the subtree rooted

at Cj
i . We aim at computing Di = maxv∈Vi

σsp(ci, v). For that, it is sufficient to compute
Di,j = maxv∈Vi,j

σsp(ci, v) for every 1 ≤ j ≤ ki. We do so by considering all the blocks
in postorder. For a given block B, let the cut-vertex ci be its parent node in T . We have
B = Cj

i for some 1 ≤ i ≤ ki. Then, we assign weights βj(v) to every vertex v of B so that:

βj(v) =

{
Di′ − 1 if v = ci′ is a cut-vertex different than ci

0 otherwise.

By Lemma 3, Di,j = max{σsp(ci, v) + βj(v) | v ∈ B}.
Clearly, according to the above formula we can compute Di,j in O(|Cj

i |) time. As a
result, the first step runs in total linear time.

Step 2. For every cut-vertex ci, we consider each child block C1
i , C

2
i , . . . , C

ki
i sequentially.

For every 1 ≤ j ≤ ki, we assign weights β′
j(v) to the vertices of Cj

i so that:

β′
j(v) =

maxv′∈Vi\Vi,j

σsp(ci, v
′)− 1 if v = ci

Di′ − 1 if v = ci′ is a cut-vertex different than ci

0 otherwise.

Let Σi,j = Σsp(C
j
i , β

′
j). Finally, let Σi = max{Di} ∪ {Σi,j | 1 ≤ j ≤ ki}.

Note that all the values β′
1(ci), β

′
2(ci), . . . , β

′
ki
(ci) can be computed in O(ki) time, simply

by keeping track of the two largest values amongst Di,1, Di,2, . . . , Di,ki . By Corollary 2, the

weighted interval diameter Σi,j can be computed in O(|Cj
i |) time. Hence, the second step

runs in total linear time.

We output Σsp(G) = max0≤i≤p Σi.

Correctness. We first observe that Σi,j ≤ Σsp(G), for every 0 ≤ i ≤ p and 1 ≤ j ≤ ki,
that follows from repeated applications of Lemma 3 to all cut-vertices which are contained

G. Ducoffe 415

in the block Cj
i . Similarly, we have Di ≤ Σsp(G) for every 0 ≤ i ≤ p. Suppose by

contradiction Σsp(G) > max0≤i≤p Σi. Let u and v be satisfying σsp(u, v) = Σsp(G). We
consider the deepest cut-vertex ci such that u, v ∈ Vi. Note that ci /∈ {u, v} because
otherwise, Di = Σi = Σsp(G). Let j be such that u ∈ Vi,j , and let u′ be the unique vertex

of Cj
i \ {ci} such that:{

u′ = u if u is a vertex of Cj
i

u′ = ci′ is a cut-vertex such that u ∈ Vi′ else.

Let v′ be the unique vertex of Cj
i such that:

v′ = ci if v /∈ Vi,j

v′ = v if v is a vertex of Cj
i

v′ = ci′′ is a cut-vertex of Cj
i \ {ci} such that v ∈ Vi′′ else.

Note that we cannot have u′ = v′ because otherwise, u′ = v′ would be a cut-vertex deeper
than ci and such that u, v are in its rooted subtree. By Lemma 3,

σsp(u, v) = σsp(u, u
′)− 1 + σsp(u

′, v)

= σsp(u, u
′)− 1 + σsp(u

′, v′) + σsp(v
′, v)− 1

≤ β′
j(u

′) + σsp(u
′, v′) + β′

j(v
′)

≤ Σi,j .

A contradiction.

Distance-hereditary graphs. We use the following characterization of distance-hereditary
graphs in our algorithm.

Lemma 5 ([2]). A graph is distance-hereditary if and only if it can be reduced to one
vertex graph by a pruning sequence of one-vertex deletions: removing a pendant vertex or a
single vertex from a pair of twin vertices. Moreover, if G is distance-hereditary, then such
a pruning sequence can be computed in linear time.

Based on the existence of a pruning sequence, we introduce the following reduction rules
for distance-hereditary graphs. We need to introduce a more complicated weighted version
of our problem. Namely, let β, γ be vertex-weight functions that only take nonnegative and
positive values, respectively. Let us define, for every distinct vertices u and v:

σsp(u, v, β, γ) = β(u) +
∑

{γ(w) | w ∈ Jsp(u, v) \ {u, v}}+ β(v)

For a graph G with n > 1, let Σsp(G, β, γ) = maxu̸=v σsp(u, v, β, γ).

Lemma 6. Let v be a pendant vertex in a graph G = (V,E), let vertex u be its unique
neighbour, and let β, γ be vertex-weight functions on G. We define a vertex-weight function
β′ on G \ v, such that:

β′(x) =

{
β(x) if x ̸= u

max{β(u), γ(u) + β(v)} if x = u.

416 A variation of Boolean distance

Let also γ′ be the restriction of γ to G \ v. If n > 2, then we have

Σsp(G, β, γ) = max{Σsp(G \ v, β′, γ′), σG
sp(u, v, β, γ)}.

Proof. Let x, y ∈ V be arbitrary distinct vertices. If {x, y} ∩ {u, v} = ∅, then we have

σ
G\v
sp (x, y, β, γ) = σG

sp(x, y, β
′, γ′). From now on, we assume that {x, y} ∩ {u, v} ̸= ∅.

Let us consider the case when x ∈ {u, v}, y /∈ {u, v}. We have

σG\v
sp (u, y, β′, γ′) = β′(u) +

∑
{γ′(w) | w ∈ Jsp(u, y) \ {u, y}}+ β′(y)

= max{β(u), γ(u) + β(v)}+
∑

{γ(w) | w ∈ Jsp(u, y) \ {u, y}}+ β(y)

= max{β(u) +
∑

{γ(w) | w ∈ Jsp(u, y) \ {u, y}}+ β(y),

β(v) + γ(u) +
∑

{γ(w) | w ∈ Jsp(u, y) \ {u, y}}+ β(y)}

= max{σG
sp(u, y, β, γ), σ

G
sp(v, y, β, γ)}.

As a result, we always have Σsp(G, β, γ) ≥ Σsp(G \ v, β′, γ′). In particular, we must have
Σsp(G, β, γ) = Σsp(G \ v, β′, γ′), unless maybe if Σsp(G, β, γ) = σG

sp(u, v, β, γ).

Lemma 7. Let u and v be twins in a graph G = (V,E), and let β, γ be vertex-weight
functions on G. We define vertex-weight functions β′, γ′ on G \ v, such that:

β′(x) =

{
β(x) if x ̸= u

max{β(u), β(v)} if x = u.

and

γ′(x) =

{
γ(x) if x ̸= u

γ(u) + γ(v) if x = u

If n > 2, then we have Σsp(G, β, γ) = max{Σsp(G \ v, β′, γ′), σG
sp(u, v, β, γ)}.

Proof. The proof is quite similar to that of Lemma 6. Let x, y ∈ V be arbitrary. There are
several cases to be considered.

• Case u, v /∈ Jsp(x, y). In this situation, σG
sp(x, y, β, γ) = σ

G\v
sp (x, y, β′, γ′).

• Case u, v ∈ Jsp(x, y) \ {x, y}. In this situation, σ
G\v
sp (x, y, β′, γ′) = (σG

sp(x, y, β, γ) −
γ(u)− γ(v)) + γ′(u) = σG

sp(x, y, β, γ).

• Case x ∈ {u, v}, y /∈ {u, v}. In particular, Jsp(u, y) \ {u} = Jsp(v, y) \ {v}. As a
result,

σG\v
sp (u, y, β′, γ′) = β′(u) +

∑
{γ′(w) | w ∈ Jsp(u, y) \ {u, y}}+ β′(y)

= max{β(u), β(v)}+
∑

{γ(w) | w ∈ Jsp(u, y) \ {u, y}}+ β(y)

= max{β(u) +
∑

{γ(w) | w ∈ Jsp(u, y) \ {u, y}}+ β(y),

β(v) +
∑

{γ(w) | w ∈ Jsp(v, y) \ {v, y}}+ β(y)}

= max{σG
sp(u, y, β, γ), σ

G
sp(v, y, β, γ)}.

G. Ducoffe 417

Therefore, we always have Σsp(G, β, γ) ≥ Σsp(G \ v, β′, γ′). In particular, we must have
Σsp(G, β, γ) = Σsp(G \ v, β′, γ′), unless maybe if Σsp(G, β, γ) = σG

sp(u, v, β, γ).

Theorem 8. The interval diameter can be computed in linear time for distance-hereditary
graphs.

Proof. Let G = (V,E) be a distance-hereditary graph. We may assume that n > 1. Let
V = (v1, v2, . . . , vn) such that, for every 1 ≤ i < n, vertex vi is either pendant or it has a
twin in the subgraph Gi := G[{vi, vi+1, . . . , vn}]. Such a pruning sequence can be computed
in linear time by Lemma 5. For every 1 ≤ i ≤ n, we set β(vi) = γ(vi) = 1. Doing so, we have
Σsp(G) = Σsp(G, β, γ). We set Σ := 0. Then, we consider all vertices vi, for i = 1, . . . , n−2
sequentially, and we proceed as follows:

• If vi is a pendant vertex in Gi, then let vj , for some j > i, be its unique neighbour.
We set Σ := max{Σ, β(vi)+β(vj)}. Note that β(vi)+β(vj) = σGi

sp (vi, vj , β, γ). Then,
we set β(vj) := max{β(vj), γ(vj) + β(vi)}.

• Otherwise, vi has a twin vj , for some j > i, in Gi. We may assume vj to be known
because it can be computed at the same time as the pruning sequence, with no compu-
tational overhead [7]. If vi, vj are true twins, then we set Σ := max{Σ, β(vi)+β(vj)}.
Otherwise, we set Σ := max{Σ, β(vi) + β(vj) +

∑
{γ(w) | w ∈ N(vi) ∩ V (Gi)}}.

Note that in both cases, Σ := max{Σ, σGi
sp (vi, vj , β, γ)}. Finally, we set β(vj) =

max{β(vi), β(vj)}, γ(vj) := γ(vj) + γ(vi).

Each step runs in O(|NG(vi)|) time, and therefore the total running time is linear. At the
end of the for loop, we output Σsp(G) = max{Σ,Σsp(Gn−1, β, γ)}. Correctness follows from
repeated applications of either Lemma 6 or Lemma 7 at each step of the algorithm.

6 Conclusion

In this paper, we initiated the study of the problem of computing the maximum cardinality
of a P-interval, with respect to various path families P. We established the computational
complexity of this problem for general paths, induced paths and shortest-paths. Other path
families, in relation with prior studies on transit functions, might be worth investigating.
Finally, it would be interesting to extend our approach and our techniques in this paper to
some more graph classes. For instance, can the interval diameter be computed in (almost)
linear time on bounded-treewidth graphs?

AcknowledgementThis work was supported by a grant of the Ministry of Research, Inno-
vation and Digitalization, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-
2142, within PNCDI III.

418 A variation of Boolean distance

References

[1] H. J. Bandelt, V. Chepoi, Metric graph theory and geometry: a survey, Contem-
porary Mathematics, 453, 49-86 (2008).

[2] H. J. Bandelt, H. M. Mulder, Distance-hereditary graphs, Journal of Combina-
torial Theory, Series B, 41 (2), 182-208 (1986).

[3] A. Bondy, U. S. R. Murty, Graph Theory, Springer, London (2008).

[4] B. Courcelle, J. A. Makowsky, U. Rotics, Linear time solvable optimization
problems on graphs of bounded clique-width, Theory of Computing Systems, 33 (2),
125-150 (2000).

[5] B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete
Applied Mathematics, 101 (1–3), 77-114 (2000).

[6] J. de Rumeur, Communications dans les réseaux de processeurs, Elsevier, Masson
(1997).

[7] F. F. Dragan, H. M. Guarnera, Eccentricity function in distance-hereditary
graphs, Theoretical Computer Science, 833, 26-40 (2020).

[8] P. Duchet, Convex sets in graphs. II. Minimal path convexity, Journal of Combi-
natorial Theory, Series B, 44, 307-316 (1988).

[9] M. C. Golumbic, U. Rotics, On the clique-width of some perfect graph classes,
International Journal of Foundations of Computer Science, 11 (3), 423-443 (2000).

[10] R. Haas, M. Hoffmann, Chordless paths through three vertices., Theoretical Com-
puter Science, 351 (3), 360-371 (2006).

[11] F. Harary, Graph Theory, Addison-Wesley (1969).

[12] F. Harary, R. A. Melter, U. N. Peled, I. Tomescu, Boolean distance for
graphs, Discrete Mathematics, 39 (2), 123-127 (1982).

[13] F. Harary, J. Nieminen, Convexity in graphs, Journal of Differential Geometry,
16 (2), 185-190 (1981).

[14] J. Hopcroft, R. E. Tarjan, Algorithm 447: efficient algorithms for graph manip-
ulation, Communications of the ACM, 16 (6), 372-378 (1973).

[15] R. Impagliazzo, R. Paturi, On the complexity of k-SAT, Journal of Computer and
System Sciences, 62 (2), 367-375 (2001).

[16] A. O. Mohammed, F. F. Dragan, H. M. Guarnera, Fellow Travelers Phe-
nomenon Present in Real-World Networks, Complex Networks & Their Applications
X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, 1015, 194-
206 (2021).

G. Ducoffe 419

[17] M. A. Morgana, H. M. Mulder, The induced path convexity, betweenness, and
svelte graphs, Discrete Mathematics, 254 (1–3), 349-370 (2002).

[18] H. M. Mulder, Transit functions on graphs (and posets), Convexity in Discrete
Structures, RMS Lecture Notes Series, 5, 117-130 (2008).

[19] C. H. Papadimitriou, Computational Complexity, Addison-Wesley (1994).

[20] H. Wang, Y. Zhao, Algorithms for diameters of unicycle graphs and diameter-
optimally augmenting trees, Theoretical Computer Science, 890, 192-209 (2021).

[21] R. Williams, A new algorithm for optimal 2-constraint satisfaction and its implica-
tions, Theoretical Computer Science, 348 (2–3), 357-365 (2005).

Received: 28.09.2022
Revised: 29.10.2022
Accepted: 01.11.2022

Department of Computer Science, University of Bucharest, Romania
and National Institute for Research and Development in Informatics, Romania

E-mail: guillaume.ducoffe@fmi.unibuc.ro

