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Abstract
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Introduction

The renown Osofsky-Smith Theorem (O-ST) [26], invented in 1991, says that a cyclic
(finitely generated) right R-module such that all of its cyclic (finitely generated) subfactors
are CS modules is a finite direct sum of uniform submodules.

In this survey paper we present various extensions of the O-ST to Grothendieck cate-
gories (the Categorical O-ST ), module categories equipped with a hereditary torsion theory
(the Relative O-ST ), and modular lattices (the Latticial O-ST ); they also illustrate a gen-
eral strategy which consists on putting a module-theoretical concept/result into a latticial
frame (we call it latticization) in order to translate that concept/result to Grothendieck
categories (we call it absolutization) and to module categories equipped with a hereditary
torsion theory (we call it relativization).

In Section 1 we list some definitions and results about lattices from [5] and [28], that
will be used throughout this paper. Section 2 presents the Latticial O-ST. Sections 3 and 4
are devoted to apply the Latticial O-ST to Grothendieck categories and module categories
equipped with a hereditary torsion theory, respectively, in order to deduce at once the
Categorical O-ST and the Relative O-ST, respectively.
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1 Lattice background

In this section we present some known definitions and results on lattices that are needed
to make the paper as self-contained as possible. For all other undefined notation and
terminology on lattices, the reader is referred to [5], [12], [14], [21], and/or [28].

Basic concepts

All partially ordered sets (more briefly, posets), and in particular, all lattices considered
in this paper are assumed to be bounded, i.e., to have a least element denoted by 0 and
a greatest element denoted by 1, and L will always denote such a lattice. If the lattices
L and L′ are isomorphic, we denote this by L ≃ L′. We shall use N to denote the set
{1, 2, . . .} of all positive integers.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

A subfactor of L is any interval b/a of L with a 6 b.
We shall denote by L the class of all (bounded) lattices and by M the class of all

(bounded) modular lattices.

An element c ∈ L is a complement in L if there exists an element a ∈ L such that
a∧c = 0 and a∨c = 1, and in this case we say that c is a complement of a in L. By D(L)
we denote the set of all complements of L. A complement interval of L is any interval d/0
of L with d ∈ D(L). The lattice L is called indecomposable (respectively, complemented)
if L ̸= {0} and D(L) = {0, 1} (respectively, if every element of L has a complement in L).
An element a ∈ L is said to be indecomposable if‘ a/0 is an indecomposable lattice.

For a lattice L and a, b, c ∈ L, the notation a = b
·
∨ c means that a = b ∨ c and

b ∧ c = 0, and we say then that a is a direct join of b and c. More generally, for a non-

empty subset S of L, we use the direct join notation a =
·∨
b∈S b if S is an independent

subset of L and a =
∨

b∈S b. Recall that a non-empty subset S of L is called independent
if 0 /∈ S, and for every x ∈ S, n ∈ N, and subset T = {t1, . . . , tn} of S with x /∈ T , one has
x ∧ (t1 ∨ · · · ∨ tn) = 0. Alternatively, a family (xi)i∈I of elements of a complete lattice L
is independent if xi ̸= 0 and xi ∧ (

∨
j∈I\{i} xj) = 0, ∀ i ∈ I, and then, necessarily xp ̸= xq

for each p ̸= q in I.

An element b ∈ L is a pseudo-complement in L if there exists an element a ∈ L such
that a ∧ b = 0 and b is maximal with this property; in this case we say that b is a
pseudo-complement of a. By P (L) we denote the set of all pseudo-complement elements
of L.

As in [5], L is called pseudo-complemented if every element of L has a pseudo-complement,
and strongly pseudo-complemented if for all a, b ∈ L with a∧ b = 0, there exists a pseudo-
complement p of a in L such that b 6 p. Any upper continuous modular lattice L is
strongly pseudo-complemented.

An element e ∈ L is essential in L if e ∧ x ̸= 0 for every x ̸= 0 in L. One denotes by
E(L) the set of all essential elements of L. The lattice L is called uniform if L ̸= {0} and
x ∧ y ̸= 0 for every non-zero elements x, y ∈ L. An element u of L is called uniform if
the interval u/0 of L is a uniform lattice. As in [5], L is called E-complemented (“E” for
essential) if for each a ∈ L there exists b ∈ L such that a ∧ b = 0 and a ∨ b ∈ E(L).
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An element c ∈ L is said to be closed if c ̸∈ E(a/0) for all a ∈ L with c < a. One
denotes by C(L) the set of all closed elements of L. For an element a ∈ L, we say that
c ∈ L is a closure of a in L if a ∈ E(c/0) and c ∈ C(L). A lattice L is said to be
essentially closed if for each element a ∈ L there exists a closure of a in L. Every strongly
pseudo-complemented lattice (hence every upper continuous) modular lattice is essentially
closed by Theorem [5, Theorem 1.2.24].

An element c ∈ L is called compact in L if whenever c 6
∨

x∈A x for a subset A of L,
there is a finite subset F of A such that c 6

∨
x∈F x, and K(L) will denote the set of all

compact elements of L. The lattice L is said to be compact if 1 is a compact element in
L, and compactly generated if it is complete and every element of L is a join of compact
elements.

A lattice L is called simple if it has exactly two elements, so, L is simple if L = {0, 1}
and 0 ̸= 1. An element a ∈ L is said to be an atom if a ̸= 0 and a/0 = {0, a}, i.e., a/0 is
a simple lattice. We denote by A(L) the set, possibly empty, of all atoms of L. The socle
Soc(L) of a complete lattice L is the join of all atoms of L, i.e., Soc (L) :=

∨
A(L); if L

has no atoms, then Soc (L) = 0. As in [24], a lattice L is called semi-atomic if 1 is a join
of atoms of L.

2 CC lattices

The aim of this section is to discuss CC lattices and CEK lattices that are needed in the
next section. The CC lattices have been introduced in [9] as the latticial counterparts of
CS modules; they are precisely the lattices satisfying the first condition (C1) from the list
below of five conditions (Ci), i = 1, 2, 3, 11, 12.

Throughout this section L will denote a (bounded) modular lattice with a least element
0 and a greatest element 1.

The conditions (Ci) for lattices

Recall that for any lattice L we introduced in Section 1 the following notation:

P (L) := the set of all pseudo-complement elements of L (P for “Pseudo”),
E(L) := the set of all essential elements of L (E for “Essential”),
C(L) := the set of all closed elements of L (C for “Closed”),
D(L) := the set of all complement elements of L (D for “Direct sum-

mand”),
K(L) := the set of all compact elements of L (K for “Kompakt”).

We present now five conditions (Ci), i = 1, 2, 3, 11, 12, introduced in [9] as the latticial
counterparts of the well-known corresponding conditions in Module Theory.

Definitions 2.1. For a lattice L one may consider the following conditions:

(C1) For every x ∈ L there exists d ∈ D(L) such that x ∈ E(d/0).

(C2) For every x ∈ L such that x/0 ≃ d/0 for some d ∈ D(L), one has x ∈ D(L).

(C3) For every d1, d2 ∈ D(L) with d1 ∧ d2 = 0, one has d1 ∨ d2 ∈ D(L).
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(C11) For every x ∈ L there exists a pseudo-complement p of x with p ∈ D(L).

(C12) For every x ∈ L there exist d ∈ D(L), e ∈ E(d/0), and a lattice isomorphism
x/0 ≃ e/0.

Definitions 2.2. ([9, Definitions 1.2]). A lattice L is called CC or extending if it satisfies
(C1), continuous if it satisfies (C1) and (C2), and quasi-continuous if it satisfies (C1) and
(C3).

CC lattices

In this subsection we present some characterizations and properties of CC lattices.

Lemma 2.3. ([9, Proposition 1.7]). The following assertions hold for a lattice L ∈ M.

(1) D(L) ⊆ P (L) ⊆ C(L).

(2) D(L) ∩ (a/0) ⊆ D(a/0) for every a ∈ L.

(3) D(L) ∩ (d/0) = D(d/0) for every d ∈ D(L). �

The next result, a part of [9, Proposition 1.10], explains the term of a CC lattice,
acronym for C losed elements are Complements.

Proposition 2.4. The following statements hold for a modular lattice L.

(1) L is uniform =⇒ L is CC, and, if additionally L is indecomposable, then the inverse
implication “⇐=” also holds.

(2) If additionally L is essentially closed (in particular, if L is upper continu- ous) then

L is CC ⇐⇒ C(L) ⊆ D(L) ⇐⇒ C(L) = D(L).

(3) If additionally L is strongly pseudo-complemented (in particular, if L is upper continuous)
then

L is CC ⇐⇒ C(L) ⊆ D(L) ⇐⇒ C(L) = D(L) ⇐⇒

⇐⇒ P (L) ⊆ D(L) ⇐⇒ P (L) = D(L).

(5) L satisfies (C2) =⇒ L satisfies (C3).

(6) L satisfies (C1) =⇒ L satisfies (C11).

(7) L satisfies (C11) =⇒ L satisfies (C12). �

Proposition 2.5. ([9, Proposition 1.15]). Let L be a modular strongly pseudo-complemented
lattice (in particular an upper continuous lattice). If L is a CC lattice then so is also d/0
for any d ∈ D(L), in other words, the CC condition is inherited by complement intervals.
�
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Corollary 2.6. ([3, Corollary 1.5]). Let L be a modular essentially closed CC lattice.
Then L has finite Goldie dimension if and only if 1 is a finite direct join of uniform elements
of L. �

CEK lattices

We present now the concept of a CEK lattice, that is essential in proving a key lemma
used in the proof of the main result of this paper.

Definitions 2.7. ([3, Definitions 1.6]). Let L be a lattice.

(1) An element a ∈ L is called essentially compact if E(a/0) ∩K(L) ̸= ∅. We denote
by Ek(L) the set of all essentially compact elements of L.

(2) L is called CEK (acronym for Closed are Essentially Compact) if every closed element
of L is essentially compact, i.e., C(L) ⊆ Ek(L).

The next result provides large classes of CEK lattices.

Proposition 2.8. ([3, Proposition 1.7]). Let L be a non-zero complete modular lattice
having the following property:

(†) For every 0 ≠ x ∈ L there exists 0 ̸= k ∈ K(L) with k 6 x.

In particular, L can be any compactly generated lattice.
Then L has finite Goldie dimension if and only if each element of L is essentially

compact, i.e., L = Ek(L). In particular, any modular lattice with finite Goldie dimension
satisfying (†) is CEK. �

3 The Latticial Osofsky-Smith Theorem

In this section we prove the latticial counterpart of the module-theoretical Osofsky-Smith
Theorem. Our contention is that the natural setting for this renown result and its various
extensions is Lattice Theory, being concerned as it is, with latticial concepts like essential,
uniform, complement, pseudo-complements elements, and direct joins in certain lattices.

The Osofsky-Smith Theorem (O-ST): a brief (incomplete) chronology

1964 Barbara L. Osofsky [25] proves her nice theorem saying that a ring R
is semisimple if and only if every cyclic right R-module is injective.

1965 Yuzo Utumi [27] introduces the conditions (Ci), i = 1, 2, 3, for rings.
1977 A.V. Chatters & Charudatta R. Hajarnavis [13] introduce CS rings.
1981 Manabu Harada & Kiyochi Oshiro [22] use the term of extending for
modules satisfying the condition (C1) (i.e., CS modules).

1990 Saad H. Mohamed & Bruno J. Müller publish their seminal monograph
“Continuous and Discrete Modules” [23].

1991 Barbara L. Osofsky & Patrick F. Smith [26] prove their acclaimed re-
sult known as the O-ST.
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1994 Nguyen Viet Dung & Dinh Van Huynh, & Patrick F. Smith & Robert

Wisbauer publish their renown monograph “Extending Modules” [18].

2010 Septimiu Crivei & Constantin Năstăsescu & Blass Torrecillas [15] pro-

vide a categorical (incomplete) version of the O-ST.

2011 Toma Albu [3] proves the O-ST for arbitrary modular lattices, called

the Latticial O-ST.

2014 Toma Albu [4] applies the Latticial O-ST to Grothendieck categories

and module categories equipped with a hereditary torsion theory, obtaining

so the Categorical O-ST and the Relative O-ST, respectively.

2016 Toma Albu & Mihai Iosif & Adnan Tercan [9] introduce and investi-

gate the conditions (Ci), i = 1, 2, 3, 11, 12, for lattices, with applications to

Grothendieck categories and module categories equipped with a hereditary

torsion theory.

Three lemmas

This subsection presents three basic facts that will be used in the next subsection to
prove the main result of this paper.

Lemma 3.1. Let L be a compact, compactly generated, modular lattice. Assume that all
compact intervals b/a of L are CEK, i.e., every c ∈ C(b/a) is an essentially compact
element of b/a. Then D(L) is a Noetherian poset.

Proof. See [3, Lemma 2.1] for a very technical 6-page proof.

The next result is the latticial counterpart of a well-known simple result saying that a
non-zero module MR satisfying ACC or DCC on direct summands is a finite direct sum of
finitely many indecomposable submodules (see, e.g., [11, Proposition 10.14]).

Lemma 3.2. ([3, Lemma 3.1]). Let L be a non-zero modular lattice such that the set
D(L) of complement elements of L is either Noetherian or Artinian. Then 1 is a direct
join of finitely many indecomposable elements of L. �

Lemma 3.3. ([3, Lemma 3.2]). Any modular, upper continuous, compact, CC lattice is
CEK. �

Proof. We have to show that C(L) ⊆ Ek(L), i.e., D(L) ⊆ Ek(L) by Proposition 2.4(2).
So, let d ∈ D(L). Then d ∈ E(d/0) ∩K(L) by [5, Proposition 2.1.18 (1)], and hence L is
CEK, as desired.

The main result

Theorem 3.1. (Latticial O-ST [3, Theorem 3.4]). Let L be a compact, compactly
generated, modular lattice. Assume that all compact subfactors of L are CC. Then 1 is a
finite direct join of uniform elements of L.
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Proof. First, observe that the lattice L is upper continuous because it is compactly gen-
erated. By assumption, every compact subfactor of L is CC, so CEK by Lemma 3.3.
Using now Lemma 3.1, we deduce that D(L) is a Noetherian poset, and so, by Lemma 3.2,

1 =
·∨
16i6n di is a finite direct join of indecomposable elements di of L. Since L is CC, so

is also any di/0 by Proposition 2.5. On the other hand, every di, 1 6 i 6 n, is uniform by
Proposition 2.4(1). Consequently, 1 is a finite direct join of uniform elements of L, and we
are done.

Following [17], a right R-module M is said to be CF (acronym for C losed are F initely
generated) if every closed submodule ofM is finitely generated, and completely CF provided
every quotient of M is also CF. More generally, we say that a lattice L is CK (acronym for
C losed are Kompact) if every closed element of L is compact, i.e., C(L) ⊆ K(L). Clearly,
any CK lattice is also CEK, so we deduce at once from Lemmas 3.1 and 3.2 the following
result.

Proposition 3.4. Let L be a compact, compactly generated, modular lattice. Assume that
all compact subfactors of L are CK. Then D(L) is a Noetherian poset, in particular 1 is
a finite direct join of indecomposable elements of L. �

We extend now the Latticial O-ST to more general lattices, so that it can be also applied
to cyclic modules (which have no latticial counterparts).

Denote by K the class of all compact lattices and by U the class of all upper continuous
lattices, and let P be a non-empty subclass of K ∩M ∩ U satisfying the following three
conditions (see [3, p. 4502]):

(P1) If L ∈ P, L′ ∈ L, and L ≃ L′ then L′ ∈ P.

(P2) If L ∈ P then 1/a ∈ P, ∀ a ∈ L.

(P3) If L ∈ P and b/a ∈ P is a subfactor of L, then ∃ c ∈ L such that c/0 ∈ P and
b = a ∨ c.

Examples of classes P satisfying the conditions (P1)− (P3) above are:

• any ∅ ̸= P ⊆ K ∩M∩ U such that

L ∈ P =⇒ (1/a ∈ P & a/0 ∈ P, ∀ a ∈ L);

• the class of all compact, compactly generated, modular lattices;

• the class of all compact, semi-atomic, upper continuous, modular lattices;

• the class of lattices isomorphic to lattices of all submodules of all cyclic right R-
modules.

For any lattice L we set P(L) := { c ∈ L | c/0 ∈ P }. Note that ∅ ̸= P(L) ⊆ K(L)
whenever L ∈ U .
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Theorem 3.2. (Latticial P-O-ST [3, Theorem 3.7]). Let P be a non-empty subclass
of K∩M∩U satisfying the conditions (P1)− (P3) above, and let L ∈ P. Assume that all
subfactors of L in P are CC. Then 1 is a finite direct join of uniform elements of L. �

Proof. The proof is similar to that of Theorem 3.1 by using a straightforward adaptation
of Lemma 3.1 to the lattices L ∈ P.

The next result is a reformulation of Theorem 3.2.

Corollary 3.5. Let ∅ ̸= P ⊆ K∩M∩U satisfying the conditions (P1)− (P3) above, and
let L ∈ P. Assume that c/0 is a completely CC lattice for every c ∈ P(L). Then 1 is a
finite direct join of uniform elements of L. �

Notice that Corollary 3.6 below is a latticial version of the following module-theoretical
result:

A right R-module M is semisimple ⇐⇒ every cyclic subfactor of M is M -injective

(see [18, Corollary 7.14]), which, in turn, is a “modularization” of the well-known Osofsky’s
Theorem [25] saying that a ring R is semisimple if and only if every cyclic right R-module
is injective.

Corollary 3.6. ([3, Corollary 3.9]). Let ∅ ̸= P ⊆ K ∩M ∩ U satisfying the conditions
(P1) − (P3) above. Then, the following statements are equivalent for a complete modular
lattice L such that any of its elements is a join of elements of P(L).

(1) L is semi-atomic.

(2) F is CC and K(F ) ⊆ D(F ) for every subfactor F ∈ P of L. �

Using the concept of a linear morphism of lattices, recently introduced in [6] and briefly
discussed in the next subsection, we expect to provide a consequence, involving linear
injective lattices (see [6, Definitions 3.1]), of the Latticial O-ST.

Linear lattice morphisms

The concept of a linear morphism of lattices we present below evokes the property of a
linear mapping φ : M −→ N between modules MR and NR to have a kernel Ker (φ) and
to verify the Fundamental Theorem of Isomorphism M/Ker (φ) ≃ Im (φ).

A mapping f : L −→ L′ between a lattice L with least element 0 and greatest element
1 and a lattice L′ with least element 0′ and greatest element 1′ is called a linear morphism
if there exist k ∈ L, called a kernel of f , and a′ ∈ L′ such that the following two conditions
are satisfied.

• f(x) = f(x ∨ k), ∀x ∈ L.

• f induces a lattice isomorphism

f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.
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If f : L −→ L′ is a linear morphism of lattices, then, by [6, Proposition 1.2] f is an
increasing mapping, commutes with arbitrary joins (i.e., f

(∨
i∈I xi

)
=

∨
i∈I f(xi) for any

family (xi)i∈I of elements of L, provided both joins exist), preserves intervals (i.e., for any
u 6 v in L, one has f(v/u) = f(v)/f(u)), and its kernel k is uniquely determined.

As in [6], the class M of all (bounded) modular lattices becomes a category, denoted by
LM (L for “Linear” and M for “M odular”) if for any L, L′ ∈ M one takes as morphisms
from L to L′ all the linear morphisms from L to L′. A basic property of this category
says that the subobjects of any L ∈ LM can be viewed as the intervals a/0 of L, a ∈ L
(see [6, Proposition 2.2 (5)]).

4 The Categorical Osofsky-Smith Theorem

A latticial strategy

We first present a general strategy which consists on putting a module-theoretical
result into a latticial frame (we call it latticization), in order to translate that result to
Grothendieck categories (we call it absolutization) and module categories equipped with
hereditary torsion theories (we call it relativization).

More precisely, if P is a problem, involving subobjects or submodules, to be investi-
gated in Grothendieck categories or in module categories with respect to hereditary torsion
theories, our strategy since more than 30 years consists of the following three steps:

I. Translate/formulate, if possible, the problem P into a latticial setting.

II. Investigate the obtained problem P in this latticial frame.

III. Back to Grothendieck categories and module categories equipped with hereditary
torsion theories.

This approach is equally natural and simple, because we ignore the specific context,
sometimes not so easy to deal with, of Grothendieck categories and module categories
equipped with hereditary torsion theories, and focus only on those latticial properties which
are relevant in our given specific categorical or relative module-theoretical problem P. The
renowned Hopkins-Levitzki Theorem and Osofsky-Smith Theorem from Ring and Module
Theory are among the most relevant illustrations of the power of this strategy (see [2], [3],
and [4]).

This section deals with the absolutization of the module-theoretical Osofsky-Smith The-
orem [26, Theorem 1]. Thus, by applying the Latticial Osofsky-Smith Theorem from the
previous section to the specific case of Grothendieck categories we obtain at once the Cat-
egorical or Absolute Osofsky-Smith Theorem.

Grothendieck categories

Throughout this section G denotes a Grothendieck category, i.e., an Abelian category
with exact direct limits and with a generator. For any object X of G, L(X) will denote
the lattice of all subobjects of X.
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As it is well-known, L(X) is an upper continuous modular lattice (see, e.g., [28, Chapter
4, Proposition 5.3, and Chapter 5, Section 1]). For any subobjects Y and Z of X ∈ G we
denote by Y ∩Z their meet and by Y +Z their join in the lattice L(X). For all undefined
notation and terminology on Abelian categories the reader is referred to [10] and [28].

Recall that an object X of G is said to be Noetherian (respectively, Artinian) if the
lattice L(X) is Noetherian (respectively, Artinian). More generally, if P is any property
on lattices, we say that an object X ∈ G is/has P if the lattice L(X) is/has P. Similarly,
a subobject Y of an object X ∈ G is/has P if the element Y of the lattice L(X) is/has P.
Thus, we obtain the concepts of a uniform object, compact object, (Ci), i = 1, 2, 3, 11, 12,
condition for an object, CC object, pseudo-complement subobject of an object, essential
subobject of an object, closed subobject of an object, complement subobject of an object,
etc. For a complement (respectively, compact) subobject of an object X ∈ G we use in
this section the well-established term of a direct summand (respectively, finitely generated
subobject) of X, and for this reason, instead of saying that X is a CC object we shall say
that X is a CS object (acronym for C losed subobjects are direct Summands).

Recall that the category G is called locally finitely generated if it has a family of finitely
generated generators, or equivalently if the lattices L(X) are compactly generated for all
objects X of G. We say that an object X ∈ G is locally finitely generated if the lattice
L(X) is compactly generated.

Theorem 4.1. (Categorical O-ST [4, Theorem 4.2]). Let G be a Gro- thendieck
category, and let X ∈ G be a finitely generated, locally finitely generated object such that
every finitely generated subfactor object of X is CS. Then X is a finite direct sum of
uniform objects.

Proof. Just apply Theorem 3.1 to the lattice L = L(X).

An object X of a Grothendieck category G is called CF (acronym for C losed are
F initely generated) if every closed subobject of X is finitely generated, and completely CF
if every quotient object of X is CF.

Corollary 4.1. LetX be a finitely generated, locally finitely generated object of a Grothendieck
category G such that every finitely generated subobject of X is completely CF. Then X
is a finite direct sum of indecomposable subobjects.

Proof. Specialize Proposition 3.4 for the lattice L = L(X).

Denote by H the class of all finitely generated objects of G, and let A be a subclass
of H satisfying the following three conditions:

(A1) If X ∈ A, X ′ ∈ G, and X ≃ X ′, then X ′ ∈ A.

(A2) If X ∈ A then X/X ′ ∈ A, ∀X ′ ⊆ X.

(A3) If X ∈ A and Z ⊆ Y ⊆ X with Y/Z ∈ A, then ∃U ⊆ X such that U ∈ A and
Y = Z + U .

The class H could be empty, and in this case everything that follows makes no sense.
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Theorem 4.2. (Categorical A-O-ST [4, Theorem 4.8]). Let A be a class of finitely
generated objects of a Grothendieck category G satisfying the conditions (A1)− (A3) above,
and let X ∈ A. Assume that all subfactors of X in A are CS. Then X is a finite direct
sum of uniform objects of G.

Proof. Specialize Theorem 3.2 for the lattice L = L(X).

We present now a consequence, involving injective objects, of the Categorical O-ST.
Recall that for any Grothendieck category one can define as in Mod-R the concepts of an
M -injective object, self-injective object, simple object, and semisimple object (see, e.g., [10,
p. 9]).

Lemma 4.2. ([4, Lemma 4.13]). Any self-injective object of a Grothendieck category G is
a CS object. �

Proposition 4.3. ([4, Proposition 4.14]). The following assertions are equivalent for a
locally finitely generated object X of a Grothendieck category G.

(1) X is semisimple.

(2) Every finitely generated subfactor of X is X-injective. �

Remark 4.4. Observe that some statements/results of [26] and [15] related to the Categor-
ical O-ST saying that “basically the same proof for modules works in the categorical setting”
are not in order (see [4, p. 2670]). Such statements are very risky and may lead to incorrect
results. One reason is that we cannot prove equality between two subobjects of an object in
a category as we do for submodules by taking elements of them. Notice that the well-hidden
errors in the statements/results occurring in the papers mentioned above on the Categorical
O-ST could be spotted only by using our latticial approach of it. Consequently, we do not
only correctly absolutize the module-theoretical O-ST but also provide a correct proof of
its categorical extension by passing first through its latticial counterpart. �

5 The Relative Osofsky-Smith Theorem

In this section we present the relative version with respect to a hereditary torsion theory of
the module-theoretical Osofsky-Smith Theorem [26, Theorem 1]. Its proofs is an immediate
specialization of the Latticial O-ST to a suitable particular lattice.

Torsion theories

In this subsection, we present relative versions with respect to a hereditary torsion
theory τ on Mod-R of some module-theoretical results related to CS modules M . Their
proofs are immediate applications of the lattice-theoretical results obtained in the previous
sections for the lattice Satτ (M) of all τ -saturated submodules of M .

The concept of a torsion theory for Abelian categories has been introduced by S.E.
Dickson [16] in 1966. We present it below only for module categories in one of the many
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equivalent ways that can be done. Basic torsion-theoretic concepts and results can be found
in [20] and [28].

All rings considered in this paper are associative with unit element 1 ̸= 0, and modules
are unital right modules. If R is a ring, then Mod-R denotes the category of all right
R-modules. We often write MR to emphasize that M is a right R-module; L(MR), or just
L(M), stands for the lattice of all submodules of M . The notation N 6 M means that N
is a submodule of M .

A hereditary torsion theory on Mod-R is a pair τ = (T , F) of nonempty subclasses T
and F of Mod-R such that T is a localizing subcategory of Mod-R in the Gabriel’s sense
[19] (this means that T is a Serre class of Mod-R which is closed under direct sums) and
F = {FR |HomR(T, F ) = 0, ∀T ∈ T }. This means that any hereditary torsion theory
τ = (T , F) is uniquely determined by its first component T .

Recall that a nonempty subclass T of Mod-R is a Serre class if for any short exact
sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0

in Mod-R, one has

X ∈ T ⇐⇒ X ′ ∈ T & X ′′ ∈ T .

One says that T is closed under direct sums if for any family (Xi)i∈I , I arbitrary set,
with Xi ∈ T , ∀ i ∈ I, it follows that

⊕
i∈I Xi ∈ T .

The prototype of a hereditary torsion theory is the pair (A,B) in Mod-Z, where A is
the class of all torsion Abelian groups, and B is the class of all torsion-free Abelian groups.

Throughout this paper τ = (T , F) will be a fixed hereditary torsion theory on Mod-R.
For any module MR we denote

τ(M) :=
∑

N6M,N∈T

N.

Since T is a localizing subcategory of Mod-R, it follows that τ(M) ∈ T , and we call it the
τ -torsion submodule of M . Note that, as for Abelian groups, we have

M ∈ T ⇐⇒ τ(M) = M and M ∈ F ⇐⇒ τ(M) = 0.

The members of T are called τ -torsion modules, while the members of F are called τ -
torsion-free modules.

For anyN 6 M we denote by N the submodule ofM such that N/N = τ(M/N), called
the τ -saturation of N (in M). One says that N is τ -saturated if N = N, or equivalently,
if M/N ∈ F , and the set of all τ -saturated submodules of M is denoted by Satτ (M), i.e.,

Satτ (M) := { N | N 6 M and M/N ∈ F },

which is an upper continuous modular lattice by [28, Chapter 9, Proposition 4.1].
A module MR is said to be τ -CC if the lattice Satτ (M) is CC. More generally if P

is any property on lattices, we say that a module MR is/has τ -P if the lattice Satτ (M)
is/has P. Thus, we obtain the concepts of a τ -Artinian module, τ -Noetherian module,
τ -uniform module, τ -compact module, τ -compactly generated module, condition τ -(Ci) ,
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τ -CC module, etc. We say that a submodule N of MR is/has τ -P if its τ -saturation N ,
which is an element of Satτ (M), is/has P. Thus, we obtain the concepts of a τ -pseudo-
complement submodule of a module, τ -complement submodule of a module, τ -essential
submodule of a module, τ -closed submodule of a module, τ -independent set/family of

submodules of a module, etc. Since N = N , it follows that N is/has τ -P if and only
if N is/has τ -P. Also, because the lattices Satτ (M) and Satτ (M/τ(M)) are canonically
isomorphic, we deduce that MR is τ -P if and only if M/τ(M) is τ -P.

In the sequel we shall use the well-established term of a τ -direct summand of a module
instead of that of a τ -complement submodule of a module and of a τ -CS module instead
of that of a τ -CC module.

All the notions and results from the previous sections for an arbitrary modular lattice
L can now be immediately specialized for the particular case when L = Satτ (MR). We
present below only a few results.

Consider the quotient category Mod-R/T (see, e.g., [1, Lesson 8] for a brief explanation
of this concept) of Mod-R modulo its localizing subcategory T , and let

Tτ : Mod-R −→ Mod-R/T

be the canonical functor. By [10, Proposition 7.10], for any module MR, the mapping

Satτ (M) −→ L(Tτ (M)), N 7→ Tτ (N),

is an isomorphism of lattices, so, for any property P on lattices, the module MR is/has τ -
P if and only if the object Tτ (M) in the quotient Grothendieck category Mod-R/T is/has
P. This shows that any τ -relative property in Mod-R can be formulated as a categorical
(or absolute) property in the Grothendieck category Mod-R/T , and conversely, using the
Gabriel-Popescu Theorem (see, e.g., [1, Lesson 8] for its brief explanation) any categorical
property of subobjects of objects in an arbitrary Grothendieck category can be translated
into relative property of submodules of modules with respect to a suitable hereditary theory.

We say that a finite family (Ni)16i6n of submodules of a module MR is τ -independent
if Ni ̸∈ T for all 1 6 i 6 n, and

Nk+1 ∩
∑

16j6k

Nj ⊆ τ(M), ∀ k, 1 6 k 6 n− 1,

or, equivalently

Nk+1 ∩
∑

16j6k

Nj = Nk+1 ∧
( ∨
16j6k

Nj

)
= τ(M),

in other words, the family
(
Ni

)
16i6n

of elements of the lattice Satτ (M) is independent.

More generally, a family (Ni)i∈I of submodules of M is called τ -independent if the family(
Ni

)
i∈I

of elements of the lattice Satτ (M) is independent.

Theorem 5.1. (Relative O-ST [4, Theorem 5.8]). Let MR be a τ -compact, τ -
compactly generated module. Assume that all τ -compact subfactors of M are τ -CS. Then
there exists a finite τ -independent family (Ui)16i6n of τ -uniform submodules of M such
that M/(

∑
16i6n Ui) ∈ T . �
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A more simplified version of the Relative O-ST in case the given module MR is τ -
torsion-free is the following one.

Theorem 5.2. (Torsion-free Relative O-ST [4, Theorem 5.12]). Let MR ∈ F be
a τ -compact, τ -compactly generated module. Assume that all τ -compact subfactors of M
are τ -CS. Then, there exists a finite independent family (Ui)16i6n of uniform submodules
of M such that M/(

∑
16i6n Ui) ∈ T . �

As noticed above, M is τ -P if and only if M/τ(M) is so. Therefore, in view of Theorem
5.2 we can clearly formulate the Relative O-ST in terms of essentiality and independence in
the lattice L(M/τ(M)) instead of τ -essentiality and τ -independence in the lattice L(M),
respectively:

Theorem 5.3. ([4, Theorem 5.13]). Let MR be a τ -compact, τ -compactly generated mod-
ule. If all τ -compact subfactors of M are τ -CS, then there exists a finite family (Ui)16i6n

of submodules of M , all containing τ(M), such that (Ui/τ(M))16i6n is an independent
family of uniform submodules of M/τ(M) and M/(

∑
16i6n Ui) ∈ T . �

For a hereditary torsion theory τ = (T ,F) on Mod-R one denotes by

Fτ := { I 6 RR | R/I ∈ T }

the Gabriel filter associated with τ . By a basis of the Gabriel filter Fτ we mean a subset
B of Fτ such that every right ideal in Fτ contains some J ∈ B.

The next result provides a characterization of Grothendieck categories possessing a
finitely generated generator in terms of Gabriel filters and quotient categories.

Proposition 5.1. ([8, Proposition 2.12]). The following assertions are equivalent for a
Grothendieck category G.

(1) G has a finitely generated generator.

(2) There exists a unital ring A and a hereditary torsion theory χ = (H, E) on Mod-A
such that the Gabriel filter Fχ has a basis of finitely generated right ideals of A and
G ≃ Mod-A/H.

(3) There exists a unital ring A and a hereditary torsion theory χ = (H, E) on Mod-A
such that the lattice Satχ(A) is compact and G ≃ Mod-A/H.

�

In case Fτ has a basis consisting of finitely generated right deals of R, we deduce from
Proposition 5.1 that the Grothendieck category Mod-R/T is locally finitely generated, and
so, any module MR is τ -compactly generated. Therefore, the next result is an immediate
consequence of Theorem 5.3.

Theorem 5.4. ([4, Theorem 5.14]). Let τ = (T ,F) be a hereditary torsion theory on Mod-
R such that its Gabriel filter Fτ has a basis consisting of finitely generated right ideals of
R (in particular, this holds when R is τ -Noetherian), and let MR be a τ -compact module.
If all τ -compact subfactors of M are τ -CS, then there exists a finite family (Ui)16i6n

of submodules of M , all containing τ(M), such that (Ui/τ(M))16i6n is an independent
family of uniform submodules of M/τ(M) and M/(

∑
16i6n Ui) ∈ T . �
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According to our definitions of module-theoretical concepts relative to a hereditary tor-
sion theory τ , a module UR is said to be τ -simple if the lattice Satτ (U) is simple, which
means that it has exactly two elements, i.e., U ̸∈ T and Satτ (U) = {τ(U), U}. Recall that
UR is called τ -cocritical if it is τ -simple and U ∈ F .

The τ -socle of a module MR , denoted by Socτ (M), is defined as the τ -saturation of
the sum of all τ -simple (or τ -cocritical) submodules ofM , andM is said to be τ -semisimple
if M = Socτ (M). By [7, Proposition 6.5(1)], Socτ (M) is exactly the socle of the lattice
Satτ (M), and so, we have

MR is a τ -semisimple module ⇐⇒ Satτ (M) is a semi-atomic lattice ⇐⇒
⇐⇒ Tτ (M) is a semisimple object of the quotient category Mod-R/T .

The next result is a relative version of the well-known Osofsky’s Theorem [25] we pre-
sented just before Corollary 3.6.

Proposition 5.2. ([4, Proposition 5.16]). Let τ = (T ,F) be a hereditary torsion theory
on Mod-R such that its Gabriel filter Fτ has a basis consisting of finitely generated right
ideals of R (in particular, this holds when R is τ -Noetherian). Assume that R/I is an
injective R-module for each I ∈ Satτ (R). Then, any right R-module is τ -semisimple. �
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