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Abstract

Let Fq((T
−1)) denote the field of power series over the field Fq of q elements, equipped

with the absolute value | · | normalised in such a way that |T | = q. For a power series ξ in
Fq((T

−1)) and a positive integer n, we denote by λn(ξ) the supremum of the real numbers
λ for which

0 < max{|Q(T )ξ − P1(T )|, . . . , |Q(T )ξn − Pn(T )|} < q−λdeg(Q)

has infinitely many solutions in polynomials Q(T ), P1(T ), . . . , Pn(T ) in Fq[T ]. We study
the set of values taken by the function λn over the power series in Fq((T

−1)) and over the
algebraic power series in Fq((T

−1)).
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1 Introduction

Let k be a commutative field, k[[T−1]] the ring of power series in one indeterminate over k,
and k((T−1)) its quotient field. If k is algebraically closed and of zero characteristic, then
the algebraic closure of k((T−1)) is the infinite union of the fields k((T−1/n)), where n runs
through the positive integers. Such a result does not hold when k has characteristic p with p
positive, since the algebraic closure of k((T−1)) must then contain the element

T−1/p + T−1/p2

+ T−1/p3

+ · · · , (1.1)

which is a root of the polynomial TXp − TX − 1, as noted by Abhyankar [1]. This example
has motivated two of the early papers of Sţefǎnescu [19, 20], where he introduced the notion
of restrictive power series, that is, of power series ξ =

∑
α∈Q aαT

−α such that the set S(ξ) =
{α ∈ Q : aα ̸= 0} is a well ordered set and there exists a positive integer m = m(ξ) such that
every rational number α in S(ξ) can be written sα/(mpnα), for integers sα, nα. Clearly, the
power series (1.1) is a restrictive power series. Sţefǎnescu [19, 20] proved that not all restrictive
power series over k are algebraic over k((T−1)) and established several criteria of algebraicity
over k((T−1)). Among other results, he showed that the series

∑
n≥1 anT

−1/pn

, with an in

Fp, is algebraic over Fp((T
−1)) if and only if the sequence (an)n≥1 is eventually periodic.

Subsequently, Kedlaya [8, 9] constructed an algebraic closure of k((T−1)) for any algebraically
closed field k of positive characteristic in terms of certain generalized power series.
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In the present paper, we focus on the case where k is a finite field and discuss simultaneous
rational approximation to elements of k((T−1)), and in particular to algebraic power series in
k((T−1)). Our setting is the following. Let p be a prime number and q an integer power of p.
Any non-zero element ξ in Fq((T

−1)) can be written

ξ =

+∞∑
n=N

anT
−n,

where N is in Z, aN ̸= 0, and an is in Fq for n ≥ N . We define an absolute value | · | on
Fq((T

−1)) by setting |ξ| := q−N and |0| := 0. In particular, if R(T ) is a non-zero polynomial
in Fq[T ] of degree deg(R), then we have |R| = qdeg(R). The field Fq((T

−1)) is the completion
with respect to | · | of the quotient field Fq(T ) of the polynomial ring Fq[T ]. The sets Fq[T ],
Fq(T ), and Fq((T

−1)) are the analogues of Z, Q, and R, respectively.
If ξ is not in Fq(T ), then its irrationality exponent µ(ξ) is the supremum of the real numbers

µ for which ∣∣∣ξ − P (T )

Q(T )

∣∣∣ < 1

|Q(T )|µ
, for infinitely many

P (T )

Q(T )
in Fq(T ).

Exactly as for real numbers, any element of Fq((T
−1)) has a continued fraction expansion.

Here, the partial quotients are non-constant polynomials in Fq[T ]. As in the real case, we have
µ(ξ) ≥ 2 for every ξ in Fq((T

−1)) \ Fq(T ), with equality for almost all ξ; see e.g. [10, 18].
Mahler [13] established the analogue of Liouville’s theorem in Fq((T

−1)), which asserts that
every irrational power series ξ of degree d satisfies µ(ξ) ≤ d. He also showed that, unlike in
the real case (where Roth’s theorem asserts that the irrationality exponent of an irrational,
algebraic real number is always equal to 2), this inequality is best possible. Namely, the root

T−1 + T−p + T−p2

+ . . .

of the polynomial TXp − TX + 1 is an algebraic element of Fq((T
−1)) of degree p and irra-

tionality exponent p. More generally, for any integer s ≥ 1, the root

ξM,s := T−1 + T−ps

+ T−p2s

+ . . .

of the polynomial TXps − TX + 1 is an algebraic element of Fq((T
−1)) of degree ps and

irrationality exponent ps. Thus, Liouville’s theorem is best possible for algebraic power series in
Fq((T

−1)) of degree ps. This observation motivates the following problem, already formulated
by Mahler [13].

Problem 1.1. Let d ≥ 2 be an integer. Prove or disprove that Liouville’s theorem is best
possible for algebraic elements in Fq((T

−1)) of degree d.

Let s be a positive integer. Baum and Sweet [5] have noticed that the power series

ξBS,s = [T ;T ps

, T p2s

, . . .] = T +
1

T ps + 1
Tp2s+···

in Fq((T
−1)), which satisfies ξBS,s = T + 1/ξp

s

BS,s, is a root of the polynomial

Xps+1 − TXps

− 1.
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The degree of ξBS,s is equal to ps + 1 and we have µ(ξBS,s) = ps + 1, by [11, p. 214]. This
gives a positive answer to another special case of Problem 1.1.

A third family of examples was found by Osgood [16]. Let d ≥ 2 be an integer coprime
with p. Let s be the smallest positive integer such that d divides ps − 1. Then, there exists a
power series ξO,d in Fq((T

−1)) such that

ξdO,d =
T

1 + T

is algebraic of degree d and satisfies µ(ξO,d) = d. To see this, put

ζ = 1 +
∑
k≥0

(
T−psk

(1 + T−1)(1 + T−ps

) . . . (1 + T−ps(k−1)

)
)

and notice that
(1 + T−1)ζp

s

= ζ,

and that ζ is well approximable by the rational fractions

ζK = 1 +

K∑
k=0

(
T−psk

(1 + T−1)(1 + T−ps

) . . . (1 + T−ps(k−1)

)
)
, K ≥ 1,

obtained by truncation. Namely, we have

|ζ − ζK | = q−ps(K+1)

, |ζK | = q(p
s(K+1)−1)/(ps−1), K ≥ 1.

Furthermore, we check that ξO,d = ζ(p
s−1)/d. The power series ξM,s and ξO,d, which will be

used in the proof of Theorem 3.2, show that Problem 1.1 is solved for every degree d coprime
with p or equal to a power of p. As far as we are aware, Problem 1.1 remains open for the
other values of d, including for d = 6 when p is equal to 2 or 3.

All the power series ξM,s, ξBS,s, and ξO,d belong to the family H(q) of hyperquadratic power
series.

Definition 1.2. For an integer s ≥ 0, let Hs(q) denote the set of irrational power series α in
Fq((T

−1)) for which there exist polynomials A,B,C,D in Fq[T ] such that AD −BC ̸= 0 and

α =
Aαps

+B

Cαps +D
.

The set
H(q) =

∪
s≥0

Hs(q)

is the set of hyperquadratic power series in Fq((T
−1)).

Quadratic power series belong to the set H0(q). Cubic power series α belong to the set
H1(q) since 1, α, αp, and αp+1 are linearly dependent over Fq[T ].

Thakur [21] and Schmidt [17], independently, constructed, for every rational number r
greater than 2, an (hyperquadratic) algebraic power series ξr in Fq((T

−1)) such that µ(ξr) = r.
This motivates the study of the next problem, posed by Thakur [22], and which asks for an
analogue of Roth’s theorem over Fq((T

−1)).
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Problem 1.3. To prove that the irrationality exponent of any algebraic element in Fq((T
−1))

is a rational number.

An important special case of Problem 1.3 has been solved by de Mathan [14], who estab-
lished that the irrationality exponent of any hyperquadratic irrational power series in Fq((T

−1))
is a rational number. For additional results and references, the reader is directed to [12, 17, 23].

Extending the study of the rational approximation to a power series ξ, we consider the
simultaneous rational approximation of ξ, ξ2, . . . , ξn by rational fractions with the same de-
nominator, as well as small values of the linear form A0 + A1ξ + . . . + Anξ

n with coefficients
in Fq[T ]. This leads to the definition of the exponents of approximation wn and λn.

The height H(P ) of a polynomial P (X) = bn(T )X
n+ . . .+b1(T )X+b0(T ) over Fq[T ] is the

maximum of the absolute values of its coefficients, that is, of |b0|, |b1|, . . . , |bn|. Furthermore,
the ‘fractional part’ ∥ · ∥ is defined by

∥∥∥ +∞∑
n=N

anT
−n

∥∥∥ =
∣∣∣ +∞∑
n=max{1,N}

anT
−n

∣∣∣,
for every power series ξ =

∑+∞
n=N anT

−n in Fq((T
−1)).

Definition 1.4. Let ξ be in Fq((T
−1)). Let n ≥ 1 be an integer. We denote by wn(ξ) the

supremum of the real numbers w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in polynomials P (X) over Fq[T ] of degree at most n. We denote
by λn(ξ) the supremum of the real numbers λ for which

0 < max{∥Q(T )ξ∥, . . . , ∥Q(T )ξn∥} < q−λdeg(Q)

has infinitely many solutions in polynomials Q(T ) in Fq[T ]. Furthermore, for positive real
numbers w, λ, set

Bn(ξ, w) = lim inf
H(P )→+∞

H(P )w · |P (ξ)|

and
B′

n(ξ, λ) = lim inf
|Q|→+∞

|Q|λ ·max{∥Q(T )ξ∥, . . . , ∥Q(T )ξn∥}.

Since Fq is a finite field, requiring ‘infinitely many solutions in polynomials Q(T ) in Fq[T ]’
is equivalent to requiring ‘solutions in polynomials Q(T ) in Fq[T ] of arbitrarily large degree’.
Observe that the exponents w1, λ1 and µ− 1 coincide.

The quantities Bn(ξ, wn(ξ)) and B′
n(ξ, λn(ξ)) refine the information given by the values of

wn(ξ) and λn(ξ). De Mathan [14] showed that, for any hyperquadratic irrational power series
ξ in Fq((T

−1)), the quantity B(ξ, w1(ξ)) is positive and finite.
By spectrum of an exponent of approximation, we mean the set of values taken by this

exponent at irrational elements. As in the real case, the continued fraction algorithm allows
us easily to construct an irrational power series in Fq((T

−1)) with any prescribed irrationality
exponent in [2,+∞]. Recalling that µ(ξ) ≥ 2 for every irrational power series ξ, this shows
that the spectrum of µ is equal to the interval [2,+∞] and that of w1 to the interval [1,+∞].
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Problem 1.5. Let n be a positive integer. To determine the spectra of the exponents of approx-
imation wn and λn over Fq((T

−1)) and over the set of algebraic power series in Fq((T
−1)). To

prove or disprove that the exponents wn and λn take rational values at algebraic power series
in Fq((T

−1)).

There are essentially two ways to attack the first question of Problem 1.5. A first one
consists in constructing explicitly power series ξ with prescribed values for wn(ξ) and/or λn(ξ).
A second one is to use metric Diophantine approximation to compute the Hausdorff dimension
of the set of power series ξ such that wn(ξ) is equal to some given value. The first approach has
been worked out by Ooto [15], see Theorems 4.1 and 4.2. The second one has been initiated by
Chen [7], whose results yield upper and lower bounds for the Hausdorff dimension of the set

{ξ ∈ Fq((T
−1)) : wn(ξ) = wn},

for any real number wn ≥ n. Actually, she established that the spectrum of the exponent w∗
n,

which measures the quality of approximation by algebraic power series of bounded degree (see
also [6]), contains the whole interval [n,+∞].

As far as we are aware, the exponents λn have not yet been studied in the setting of fields
of power series. The purpose of the present note is to fill this gap. We establish several
transference statements between the exponents λk, λn and wn and a contribution towards
the resolution of Problem 1.5. In Section 3, we briefly discuss uniform simultaneous rational
approximation.

2 Results

For an algebraic power series ξ in Fq((T
−1)) of degree d, an argument ‘à la Liouville’ shows

that wn(ξ) ≤ d − 1 for every n ≥ 1. Since, by Dirichlet’s box principle, wd−1(ξ) ≥ d − 1, we
deduce that wn(ξ) = d− 1 for n ≥ d− 1. Furthermore, λn(ξ) ≤ w1(ξ) ≤ d− 1 for every n ≥ 1
and λn(ξ) = λd−1(ξ) for n ≥ d− 1.

Our first result is a power series analogue of inequalities relating the exponents λn estab-
lished in the real and in the p-adic settings [3, 4].

Theorem 2.1. Let ξ be a power series in Fq((T
−1)). For any positive integer k, we have

(k + 1)
(
1 + λk+1(ξ)

)
≥ k

(
1 + λk(ξ)

)
,

with equality if λk+1(ξ) > 1. Consequently, for every integer n with n ≥ k, we have

λn(ξ) ≥
kλk(ξ)− n+ k

n
, (2.1)

and equality holds if λn(ξ) > 1.

We display an immediate consequence of Theorem 2.1.

Corollary 2.2. Let ξ be a power series in Fq((T
−1)). Then, λn(ξ) = +∞ holds for every

positive n if, and only if, λ1(ξ) = +∞.

In a similar way as in the real case, two relations between the exponents wn and λn can be
deduced from Khintchine’s transference principle in fields of power series [2, Theorem 2].
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Proposition 2.3. For any positive integer n and any power series ξ in Fq((T
−1)) which is

not algebraic of degree at most n, we have

wn(ξ)

(n− 1)wn(ξ) + n
≤ λn(ξ) ≤

wn(ξ)− n+ 1

n
.

A more precise statement follows from [2, Theorem 2]. Namely, if we have B′
n(ξ, λ) = 0 for

some real number λ ≥ 1/n, then Bn(ξ, nλ+ n− 1) = 0. Likewise, if Bn(ξ, w) is finite for some
real number w ≥ n, then B′

n(ξ, (w − n+ 1)/n) is also finite. We omit the details of the proof.
It follows from Proposition 2.3 that

nλn(ξ) ≤ wn(ξ)− n+ 1, (2.2)

while Theorem 2.1 with k = 1 asserts that

nλn(ξ) ≥ λ1(ξ)− n+ 1. (2.3)

Actually, this inequality is easy to prove directly. We can assume that |ξ| = 1. Assume that
there are λ > 0, c > 0, and polynomials Q(T ) in Fq[T ] of arbitrarily large degree such that
∥Qξ∥ ≤ c|Q|−λ. Let P (T ) be in Fq[T ] such that ∥Qξ∥ = |Qξ −P | and P and Q have the same
degree. Then, for j = 1, . . . , n, we have

∥Qnξj∥ ≤ |Qn−j | · ∥Qjξj∥ ≤ |Qn−j | · |Qjξj − P j |
≤ |Q|(n−j)+(j−1) |Qξ − P | ≤ c|Q|−λ+n−1.

This gives (2.3) and also shows that B′
n(ξ, (λ− n+ 1)/n) is positive if B1(ξ, λ) is positive.

If wn(ξ) = λ1(ξ), then both inequalities (2.2) and (2.3) become equalities and we get the
following statement.

Corollary 2.4. Let n ≥ 1 be an integer. Let ξ be a power series in Fq((T
−1)). If wn(ξ) =

λ1(ξ), then

λn(ξ) =
wn(ξ)− n+ 1

n
.

By combining Corollary 2.4 with results of Ooto [15] asserting the existence of power series
ξ such that wn(ξ) = λ1(ξ) and reproduced as Theorems 4.1 and 4.2 below, we obtain partial
results towards the determination of the spectrum of λn.

Theorem 2.5. Let n be a positive integer. The spectrum of the exponent λn over the power
series in Fq((T

−1)) includes the interval [1,+∞]. The spectrum of the exponent λn over the
algebraic power series in Fq((T

−1)) includes all the rational numbers in (1,+∞).

Since the algebraic numbers ξM,s and ξO,d defined in Section 1 satisfy the assumptions of
Corollary 2.4, they allow us to find new elements of the spectra of the exponents λn.

Theorem 2.6. Let a/b be a positive rational number. Then, for every prime number p greater
than a+ b and for every power q of p, there exists an algebraic power series ξa/b in Fq((T

−1))
such that λb(ξa/b) = a/b and B′

b(ξa/b, a/b) is positive and finite.
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Theorem 2.6 is not plainly satisfactory since the prime number p cannot be arbitrarily
chosen and the exponent λb depends on the given rational number.

We conclude with a metric result. For the definition of the Hausdorff dimension, the reader
is directed e.g. to [7, 10]. Among other results, the power series analogue of the Jarńık–
Besicovitch theorem is established in these papers: for any real number λ ≥ 1, the Haudorff
dimension of the set of power series ξ in Fq((T

−1)) such that λ1(ξ) = λ is equal to 2/(1 + λ).
It follows from Theorem 2.1 that any power series ξ such that λn(ξ) > 1 satisfies λ1(ξ) =

nλn(ξ)+n−1. Combined with the Jarńık–Besicovitch theorem, this gives at once the following
statement.

Theorem 2.7. Let n be a positive integer and λ > 1 a real number. Then, the Hausdorff
dimension of the set

{ξ ∈ Fq((T
−1)) : λn(ξ) = λ}

is equal to 2/(n(1 + λ)).

3 Uniform simultaneous approximation

We take the opportunity of this note to discuss briefly uniform simultaneous approximation to
tuples of power series in Fq((T

−1)).

Definition 3.1. Let n ≥ 1 be an integer. Let ξ = (ξ1, . . . , ξn) be in Fq((T
−1))n. We denote

by λn(ξ) the supremum of the real numbers λ for which

0 < max{∥Q(T )ξ1∥, . . . , ∥Q(T )ξn∥} < q−λdeg(Q)

has infinitely many solutions in polynomials Q(T ) in Fq[T ]. We denote by λ̂n(ξ) the supremum

of the real numbers λ̂ for which there exists an integer d0 such that, for every d > d0, there
exists a polynomial Q(T ) in Fq[T ] of degree at most d such that

0 < max{∥Q(T )ξ1∥, . . . , ∥Q(T )ξn∥} < q−λ̂d.

It easily follows from the theory of continued fractions that λ̂1((ξ)) = 1 for every irrational

power series ξ in Fq((T
−1)). Consequently, we have λ̂n(ξ) ≤ 1 for every ξ in Fq((T

−1))n with
at least one irrational coordinate. Furthermore, we have λn(ξ) = 1/n for almost all tuples ξ in

Fq((T
−1))n, with respect to the Haar measure on Fq((T

−1))n; see [10]. Consequently, the set

of ξ such that λ̂n(ξ) > 1/n is a set of zero Haar measure. For n = 2, we give explicit examples
of pairs of power series in this set.

Theorem 3.2. For any ε > 0, there exist algebraic power series ξ1, ξ2 in Fq((T
−1)) such that

1, ξ1, ξ2 are linearly independent over Fq[T ] and

λ̂2((ξ1, ξ2)) > 1− ε.

Proof. Let s be a positive integer. Observe that

∥T pks

ξM,s∥ = q−p(k+1)s+pks

, k ≥ 1,
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and that

∥T pks

T (pks−1)/(ps−1)ξO,ps−1∥ = q−p(k+1)s+pks+(pks−1)/(ps−1), k ≥ 1.

Observe that 1, ξM,s, and ξO,ps−1 are linearly independent over Fq[T ], since the algebraic power
series ξM,s and ξO,ps−1 have different degrees.

Put Qk(T ) = T pks

T (pks−1)/(ps−1). Then,

max{∥Qk(T )ξM,s∥, ∥Qk(T )ξO,ps−1∥} = q−p(k+1)s+pks+(pks−1)/(ps−1), k ≥ 1,

and degQk(T ) = (p(k+1)s − 1)/(ps − 1). We derive that

λ̂2(ξM,s, ξO,ps−1) ≥ lim
k→+∞

p(k+1)s − pks − (pks − 1)/(ps − 1)

(p(k+2)s − 1)/(ps − 1)
= 1− 2

ps
,

and the theorem follows. Presumably, we have λ̂2(ξM,s, ξO,ps−1) = 1 − 2
ps , but this seems to

be difficult to prove.

4 Proofs

Proof of Theorem 2.1. We adapt the proofs given in [3] for the real case and in [4] for the p-adic
case. Let n ≥ 2 be an integer and ξ a power series in Fq((T

−1)) with λn(ξ) > 1. Without any
loss of generality, we assume that |ξ| = 1. Let λ be a real number with 1 < λ < λn(ξ). Then,
there are arbitrarily large integers d and polynomials Q,P1, . . . , Pn in Fq[T ] of degree at most
d and with no common factor, such that

|Qξj − Pj | < q−λd, j = 1, . . . , n.

Since |ξ| = 1, the polynomials Q,P1, . . . , Pn have the same degree and

|Pj+1 − Pjξ| = |Pj+1 −Qξj+1 − ξ(Pj −Qξj)| < q−λd, j = 1, . . . , n− 1.

Set P0 = Q. Observe that, for j = 1, . . . , n− 1, we have

∆j := Pj−1Pj+1 − P 2
j = Pj−1(Pj+1 − Pjξ)− Pj(Pj − Pj−1ξ),

thus, by the triangle inequality,
|∆j | < q(1−λ)d.

Since ∆j is in Fq[T ], it satisfies |∆j | ≥ 1 unless it is zero. Therefore, since λ > 1, we get that

∆1 = . . . = ∆n−1 = 0,

which implies that there exist coprime non-zero polynomials A,B in Fq[T ] such that

P1

Q
=

P2

P1
= . . . =

Pn

Pn−1
=

A

B
.
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We deduce at once that the point(P1

Q
, . . . ,

Pn

Q

)
=

(A
B
, . . . ,

(A
B

)n)
lies on the Veronese curve x 7→ (x, x2, . . . , xn) and that Q (resp., Pn) is an integer multi-
ple of Bn (resp., of An). Since gcd(Q,P1, . . . , Pn) = 1, we have in fact (Q,P1, . . . , Pn) =
±(Bn, Bn−1A, . . . , An). In particular, we get∣∣∣ξ − P1

Q

∣∣∣ = ∣∣∣ξ − A

B

∣∣∣ < q−(λ+1)d ≤ q−n(1+λ)deg(B).

This proves that
λn(ξ) > 1 implies λ1(ξ) ≥ n(1 + λn(ξ))− 1. (4.1)

Let k be an integer with 1 ≤ k < n and write λk = λk(ξ). Assume first that λk is finite.
Let ε be a positive real number with ε < λk. Then, there are arbitrarily large integers d and
polynomials Q,V1, . . . , Vk in Fq[T ] of degree at most d such that

q−(λk+ε)d ≤ max{|Qξ − V1|, . . . , |Qξk − Vk|} ≤ q−(λk−ε)d. (4.2)

Take such an integer d with d ≥ 3k. In particular, Q is nonzero. There exist polynomials
A0, A1, . . . , Ak in Fq[T ], not all zero, such that

A0Q+A1V1 + . . .+AkVk = 0

and

max
0≤j≤d

degAj ≤
d

k
.

Indeed, setting δ = ⌊d/k⌋, there are q(δ+1)(k+1)−1 different non-zero (k+1)-tuples (B0, B1, . . . , Bk)
of polynomials in Fq[T ] of degree at most δ. For each of them, the degree of the polynomial
B0Q+B1V1 + . . .+BkVk is at most equal to δ + d. Since

q(δ+1)(k+1) − 1 > qδ+d+1,

we can conclude by the box principle.
We may assume Ak ̸= 0, otherwise we replace k by the largest index j with Aj ̸= 0 in the

argument below. Then, we derive from (4.2) that

|Q(Akξ
k + . . .+A1ξ +A0)| =

|Q(Akξ
k + . . .+A1ξ +A0)− (AkVk + . . .+A1V1 +A0Q)| ≤ qd/kq−(λk−ε)d.

(4.3)

Using triangle inequalities, we get from (4.2) and (4.3) that

|AkQξk+1 +Ak−1Vk +Ak−2Vk−1 + . . .+A1V2 +A0V1|

≤ max{|Q(Akξ
k+1 + . . .+A0ξ)|,

|Q(Ak−1ξ
k + . . .+A0ξ)−Ak−1Vk − . . .−A0V1|}

≤ max{|Q(Akξ
k + . . .+A1ξ +A0)|, q−(λk−ε)dqd/k}

≤ q−(λk−ε)dqd/k.

(4.4)
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Since Ak ̸= 0, it now follows from

deg(Ak−1Vk +Ak−2Vk−1 + . . .+A1V2 +A0V1) ≤ d+
d

k
,

(4.2), and (4.4) that

λk+1(ξ) ≥
λk(ξ)− 1/k − ε

1 + 1/k
. (4.5)

As ε can be chosen arbitrarily close to 0, we deduce that

(k + 1)λk+1(ξ) ≥ kλk(ξ)− 1

or, equivalently,
(k + 1)

(
1 + λk+1(ξ)

)
≥ k

(
1 + λk(ξ)

)
. (4.6)

This concludes the proof of the first inequality of the theorem if λk(ξ) is finite. In the case
where λk(ξ) is infinite, the quantity λk(ξ)− ε in (4.5) can be replaced by any arbitrarily large
real number and we conclude that λk+1(ξ) is infinite, thus (4.6) also holds in this case.

By iterating (4.6) up to k = n− 1, we immediately get (2.1). In particular, we obtain

(k + 1)(λk+1(ξ) + 1) ≥ λ1(ξ) + 1 and k(λk(ξ) + 1) ≥ λ1(ξ) + 1. (4.7)

Assume now that λk+1(ξ) > 1. Then, we also have λk(ξ) > 1 and we get from (4.1) that
λ1(ξ) ≥ (k+1)(1+λk+1(ξ))− 1 and λ1(ξ) ≥ k(1+λk(ξ))− 1. Combined with (4.7), this gives
at once

(k + 1)
(
1 + λk+1(ξ)

)
= k

(
1 + λk(ξ)

)
= 1 + λ1(ξ).

By iterating this equality, we obtain that (2.1) is an equality when λn(ξ) exceeds 1.

The proof of Theorem 2.5 rests on the following two results of Ooto [15].

Theorem 4.1 (Ooto). For any positive integer n and any real number w with w ≥ 2n − 1,
there exist uncountably many power series ξw in Fq((T

−1)) such that

w1(ξw) = . . . = wn(ξw) = w.

Theorem 4.2 (Ooto). For any positive integer n and any rational number w with w > 2n−1,
there exist algebraic power series ξw in Fq((T

−1)) such that

w1(ξw) = . . . = wn(ξw) = w.

The algebraic power series ξw constructed in Theorem 4.2 are hyperquadratic, thusB1(ξw, w)
is positive and finite. A quick look at the proof shows that this is also the case for Bj(ξw, w)
for j = 2, . . . , n.

Proof of Theorem 2.5. Let λ ≥ 1 be a real number. By Theorem 4.1, there exists a power
series ξ such that w1(ξ) = . . . = wn(ξ) = n(λ+ 1)− 1. It then follows from Corollary 2.4 that
λn(ξ) = λ. If λ is rational and greater than 1, then Theorem 4.2 asserts the existence of an
algebraic power series ξ such that w1(ξ) = . . . = wn(ξ) = n(λ+ 1)− 1. We again conclude by
applying Corollary 2.4.
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Proof of Theorem 2.6. Let a/b be a rational number, p a prime number exceeding a + b, and
q a power of p. The power series ξO,a+b is algebraic of degree a+ b and satisfies

w1(ξO,a+b) = . . . = wa+b(ξO,a+b) = a+ b− 1.

In particular, we have

λb(ξO,a+b) =
wb(ξO,a+b)− b+ 1

b
=

a

b
.

Since ξO,a+b is hyperquadratic, a result of de Mathan [14] already mentioned asserts that
B1(ξO,a+b, a + b − 1) is positive and finite. The same holds for Bj(ξO,a+b, a + b − 1), where
j = 2, . . . , a+ b. Combined with the observation following Proposition 2.3, this completes the
proof of the theorem.
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[20] D. Ştefǎnescu, On meromorphic formal power series, Bull. Math. Soc. Sci. Math. R. S.
Roumanie, 27 (75), 169–178 (1983).

[21] D. S. Thakur, Diophantine approximation exponents and continued fractions for alge-
braic power series, J. Number Theory, 79, 284–291 (1999).

[22] D. S. Thakur, Function Field Arithmetic, World Scientific Publishing Co., Inc., River
Edge, NJ (2004).

[23] D. S. Thakur, From rationality to transcendence in finite characteristic, in Transcen-
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