Some remarks on the category $\sigma[L]$ of all L-subgenerated lattices by
 Toma Albu $^{(1)}$, Jaime Castro Pérez ${ }^{(2)}$, José Ríos Montes ${ }^{(3)}$

Dedicated to the memory of Professor Doru Ştefănescu (1952-2021)

Abstract

In this paper we present some remarks on the category $\sigma[L]$ of all subgenerated lattices by a modular complete lattice L, defined in [Albu, Dăscălescu, Iosif, Lattices subgenerated by a lattice, and applications (I), in preparation] "somehow" related with the concept of product in L of two lattices, introduced and studied in [Albu, Pérez, Ríos, Prime, irreducible, and completely irreducible lattice preradicals on modular complete lattices, J. Algebra Appl. 21 (2022), 2250097 [33 pages] DOI: 10.1142/S0219498822500979].

Key Words: Modular lattice, upper continuous lattice, linear morphism of lattice, fully invariant sublattice, fully invariant element, trace, generator.
2020 Mathematics Subject Classification: Primary 06C05; Secondary 06C99, 06B35, 16D80, 16N80, 16S90, 18E15.

Introduction

The concept of a lattice subgenerated by a modular complete lattice L has been introduced and investigated in [5]. In this paper we relate this concept with the one of product of two lattices, introduced and studied in [4].

In Section 0 we list some definitions and results about lattices, especially from [2].
Section 1 is devoted to the concepts of trace and generators defined and investigated in [1], [5], [7]. We present a new definition of trace related with the concept of product in L of two lattices, introduced and studied in [4].

In Section 2 we discuss several properties of the category $\sigma[L]$ introduced and investigated in [5], but not covered there, as those of self-generator and fully invariance in lattices.

Applications of our latticial results to Grothendieck categories and module categories equipped with a hereditary torsion theory will be given in a subsequent paper.

0 Preliminaries

All posets and lattices considered in this paper are assumed to be bounded, i.e., to have a least element denoted by 0 and a last element denoted by 1 , and L will always denote such a lattice. If the lattices L and L^{\prime} are isomorphic, we denote this by $L \simeq L^{\prime}$. We denote by \mathcal{L} (respectively, $\mathcal{M}, \mathcal{M}_{c}$) the class of all bounded (respectively, bounded modular, bounded modular complete) lattices.

For a lattice L and elements $a \leqslant b$ in L we write

$$
b / a:=[a, b]=\{x \in L \mid a \leqslant x \leqslant b\} .
$$

For basic notation and terminology on lattices the reader is referred to [2], [9], [10], and/or [11], but especially to [2].

Recall from [6] the following concept. A mapping $f: L \longrightarrow L^{\prime}$ between a lattice L with least element 0 and greatest element 1 and a lattice L^{\prime} with least element 0^{\prime} and greatest element 1^{\prime} is called a linear morphism if there exist $k \in L$, called a kernel of f, and $a^{\prime} \in L^{\prime}$ such that the following two conditions are satisfied.

- $f(x)=f(x \vee k), \forall x \in L$.
- f induces a lattice isomorphism

$$
\bar{f}: 1 / k \xrightarrow{\sim} a^{\prime} / 0^{\prime}, \bar{f}(x)=f(x), \forall x \in 1 / k
$$

If $f: L \longrightarrow L^{\prime}$ is a linear morphism of lattices, then, by [6, Proposition 1.3], f is an increasing mapping, commutes with arbitrary joins (i.e., $f\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I} f\left(x_{i}\right)$ for any family $\left(x_{i}\right)_{i \in I}$ of elements of L, provided both joins exist), preserves intervals (i.e., for any $u \leqslant v$ in L, one has $f(v / u)=f(v) / f(u)$), and its kernel k is uniquely determined.

As in [6], the class \mathcal{M} of all (bounded) modular lattices becomes a category, denoted by $\mathcal{L M}\left(\mathcal{L}\right.$ for "Linear" and \mathcal{M} for "Modular") if for any $L, L^{\prime} \in \mathcal{M}$ one takes as morphisms from L to L^{\prime} all the linear morphisms from L to L^{\prime}. A major property of this category is that the subobjects of an object $L \in \mathcal{L} \mathcal{M}$ can be viewed as the intervals $a / 0$ for any $a \in L$ (see [6, Proposition $2.2(5)]$).

Throughout this paper R will denote an associative ring with non-zero identity element, and Mod- R the category of all unital right R-modules. The notation M_{R} will be used to designate a unital right R-module M, and $N \leqslant M$ will mean that N is a submodule of M. The lattice of all submodules of a module M_{R} will be denoted by $\mathcal{L}\left(M_{R}\right)$.

The latticial counterpart of the concept of a fully invariant submodule of a module is that of a fully invariant element introduced in [8] as follows. Let $L \in \mathcal{M}$. An element $a \in L$ is said to be fully invariant, abbreviated $F I$, if $f(a) \leqslant a$ for any $f \in \operatorname{End}_{\mathcal{L M}}(L):=$ $\operatorname{Hom}_{\mathcal{L M}}(L, L)$, and the set of all fully invariant elements of L will be denoted by $F I(L)$.

1 Trace and Generators

The aim of this section is to present some results on trace and generators. Thus, we define an apparently different concept of trace than the ones in [1] and [7], "somehow" related with the concept of product in L of two lattices, introduced and studied in [4].

Definition 1.1. ([1, Definition 3.1], [5, Definition 1.2]). A poset L is said to be generated by a poset G, or G-generated, if for any $a \neq 1$ in L there exist $c \in L$ and $g \in G$ such that $c \nless a$ and $c / 0 \simeq 1 / g$.

One denotes by $\operatorname{Gen}(G)$ the class of all modular complete lattices generated by G.
The next concept is a particular case of [7, Definition 3.1] for the trace $\operatorname{Tr}(\mathcal{X}, L)$ of a nonempty class \mathcal{X} of lattices in a complete lattice L.

Definition 1.2. For any poset G and any modular complete lattice L we set

$$
\operatorname{Tr}(G, L):=\bigvee\{a \in L \mid a / 0 \in \operatorname{Gen}(G)\}
$$

and call it the trace of G in L.
Lemma 1.3. The following assertions are equivalent for $L, L^{\prime} \in \mathcal{M}_{c}$.
(1) L is L^{\prime}-generated.
(2) $L=\operatorname{Tr}\left(L^{\prime}, L\right) / 0$.

Proof. (1) $\Longrightarrow(2)$ As L is L^{\prime}-generated, then $L=1 / 0 \in \operatorname{Gen}\left(L^{\prime}\right)$ by Definition 1.1. Now, by Definition 1.2, we have

$$
\operatorname{Tr}\left(L^{\prime}, L\right)=\bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}=1
$$

so $\operatorname{Tr}\left(L^{\prime}, L\right) / 0=1 / 0=L$.
$(2) \Longrightarrow(1)$ As $1 / 0=L=\operatorname{Tr}\left(L^{\prime}, L\right) / 0$, then $1=\operatorname{Tr}\left(L^{\prime}, L\right)=\bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}$. Thus $1=\bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}$. So $L=\operatorname{Tr}\left(L^{\prime}, L\right) / 0 \in \operatorname{Gen}\left(L^{\prime}\right)$ by [5, Proposition 1.3], i.e., L is L^{\prime}-generated.

Notice that by [5, Proposition 1.3] $\operatorname{Tr}\left(L^{\prime}, L\right) / 0 \in \operatorname{Gen}\left(L^{\prime}\right)$. Hence $\operatorname{Tr}\left(L^{\prime}, L\right) / 0$ is $L^{\prime}-$ generated. So by $1.3, \operatorname{Tr}\left(L^{\prime}, \operatorname{Tr}\left(L^{\prime}, L\right) / 0\right) / 0=\operatorname{Tr}\left(L^{\prime}, L\right) / 0$ for $L, L^{\prime} \in \mathcal{M}_{c}$.

Next, we present another definition of $\operatorname{Tr}(-,-)$ for two lattices L, L^{\prime} in \mathcal{M}_{c}. As usually, we denote by 0 (respectively, 0^{\prime}) the least element of L (respectively, L^{\prime}), and by 1 (respectively, 1^{\prime}) the greatest element of L (respectively, L^{\prime}).

For any $L, K \in \mathcal{M}_{c}$ and $N \in \operatorname{Sub}(L)$, where $\operatorname{Sub}(L)$ is the collection of all sublattices in $\mathcal{L M}$ of L, we have denoted in [4]

$$
N_{L} K:=\alpha_{N}^{L}(K)
$$

and called it the product of N and K in L. If $N=n / 0$, we showed there that

$$
\alpha_{N}^{L}=\bigvee_{x \in N} \alpha_{x}^{L}=\alpha_{n}^{L}
$$

This implies that

$$
\alpha_{N}^{L}(K)=\alpha_{n}^{L}(K)=\left(\bigvee\left\{f(n) \mid f \in \operatorname{Hom}_{\mathcal{L M}}(L, K)\right\}\right) / 0
$$

for all $K \in \mathcal{M}_{c}$.
In particular, for $N=L=1 / 0$ and $K=L^{\prime}=1^{\prime} / 0^{\prime}$, we have

$$
\alpha_{L}^{L}\left(L^{\prime}\right)=\alpha_{1}^{L}\left(L^{\prime}\right)=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right) / 0
$$

Definition 1.4. For lattices L, L^{\prime} in \mathcal{M}_{c}, the sublattice

$$
\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0
$$

of L is called the trace of L^{\prime} in L.
As one can see, $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is a sublattice of L, while $\operatorname{Tr}\left(L^{\prime}, L\right)$ is an element of L. They are related by Proposition 1.7 below.

Proposition 1.5. For any two lattices $L^{\prime}, L \in \mathcal{M}_{c}$, one has $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L_{L^{\prime}}^{\prime} L$.
Proof. By Definition 1.4

$$
\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0
$$

By [3, Definition 2.9] we have

$$
\alpha_{1^{\prime}}^{L^{\prime}}(L)=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0
$$

so $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=\alpha_{1^{\prime}}^{L^{\prime}}(L)$. Now, $\alpha_{1^{\prime}}^{L^{\prime}}(L)=\alpha_{L^{\prime}}^{L^{\prime}}(L)$ by [4, Notation 2.3], which implies that $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=\alpha_{L^{\prime}}^{L^{\prime}}(L)$. Moreover, by [4, Notation 2.4], we have

$$
\alpha_{L^{\prime}}^{L^{\prime}}(L)=L_{L^{\prime}}^{\prime} L
$$

and so $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L_{L^{\prime}}^{\prime} L$.

Definition 1.6. Let $L \in \mathcal{M}_{c}$. A lattice $L^{\prime} \in \mathcal{M}_{c}$ is said to be generated* by L or L-generated* if $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L$.

One denotes by Gen * (G) the class of all modular complete lattices generated* by G.
Observe that if T is another lattice such that T is L-generated ${ }^{*}$, then $\operatorname{Tr}^{*}(T, L)=L$.
Notice also that if L is L^{\prime}-generated (in the sense of Definition 1.1), then by Lemma 1.3 we have $L=\operatorname{Tr}\left(L^{\prime}, L\right) / 0$. Thus

$$
L \text { is } L^{\prime} \text {-generated } \Longleftrightarrow L=\operatorname{Tr}\left(L^{\prime}, L\right) / 0
$$

Proposition 1.7. $\operatorname{Tr}\left(L^{\prime}, L\right) / 0=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ for any lattices $L^{\prime}, L \in \mathcal{M}_{c}$.
Proof. Let $t / 0=T=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$. By Lemma 1.3, T is L^{\prime}-generated. Thus $T \in \operatorname{Gen}\left(L^{\prime}\right)$. As $\operatorname{Tr}\left(L^{\prime}, L\right)=\bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}$, we have $t \leqslant \bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}$, so

$$
T=t / 0 \subseteq\left(\bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}\right) / 0=\operatorname{Tr}\left(L^{\prime}, L\right) / 0
$$

Hence $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=T \subseteq \operatorname{Tr}\left(L^{\prime}, L\right) / 0$.
If we set $h:=\operatorname{Tr}\left(L^{\prime}, L\right)$, then $\operatorname{Tr}\left(L^{\prime}, L\right) / 0=h / 0$. As $t / 0=T \subseteq \operatorname{Tr}\left(L^{\prime}, L\right) / 0=h / 0$, we have $t \leqslant h$. We are going to prove that $t=h$. Suppose that $t<h$. Then, as we remarked above, we have

$$
t / 0=T=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0=L_{L^{\prime}}^{\prime} L
$$

Thus $t=\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}$. Because $t<h$, we deduce that

$$
\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}<h
$$

By [5, Proposition 1.3], $\operatorname{Tr}\left(L^{\prime}, L\right) / 0=h / 0$ is L^{\prime}-generated. As $t<h$, there exist $u \in L^{\prime}$ and $c \in h / 0$ such that $c \nless t$ and $1^{\prime} / u \simeq c / 0$. Since $L^{\prime}, L \in \mathcal{M}_{c}$, then there exists a linear isomorphism of lattices $1^{\prime} / u \simeq c / 0$, say $\varphi: 1^{\prime} / u \longrightarrow c / 0$, and then $\varphi\left(1^{\prime}\right)=c$.

Consider the linear morphism $i \circ \varphi \circ \pi: L^{\prime}=1^{\prime} / 0^{\prime} \longrightarrow L=1 / 0$, where π is the surjective linear morphism $\pi: L^{\prime}=1^{\prime} / 0^{\prime} \longrightarrow 1^{\prime} / u$ and i is the canonical inclusion linear morphism $i: c / 0 \hookrightarrow L$. Thus

$$
(i \circ \varphi \circ \pi)\left(1^{\prime}\right)=(i \circ \varphi)\left(\pi\left(1^{\prime}\right)\right)=(i \circ \varphi)\left(1^{\prime}\right)=i\left(\varphi\left(1^{\prime}\right)=i(c)=c\right.
$$

Since $i \circ \varphi \circ \pi \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)$, we have

$$
c=(i \circ \varphi \circ \pi)\left(1^{\prime}\right) \leqslant \bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}=t
$$

and hence $c \leqslant t$, which is a contradiction. Thus $t=h$, and so

$$
\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=T=t / 0=h / 0=\operatorname{Tr}\left(L^{\prime}, L\right) / 0
$$

as desired.

Observe that by Proposition 1.7, we have

$$
\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=\operatorname{Tr}\left(L^{\prime}, L\right) / 0=L
$$

Thus

$$
L \text { is } L^{\prime} \text {-generated } \Longleftrightarrow \operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L
$$

If we use now Definition 1.6, then $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L$ implies that L^{\prime} is L - generated* .
Thus

$$
L^{\prime} \text { is } L \text { - generated }{ }^{*} \Longleftrightarrow \operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L
$$

As one can see, L is L^{\prime}-generated $\Longleftrightarrow \operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L \Longleftrightarrow L^{\prime}$ is L - generated ${ }^{*}$.
We are now going to show that the equality $\operatorname{Gen}(L)=\operatorname{Gen}^{*}(L)$ is not true in general. To do that, consider the ring \mathbb{Z}_{4} of rational integers modulo 4 and the category \mathbb{Z}_{4}-Mod.

We claim that Gen $\left(\mathbb{Z}_{4}\right) \neq \operatorname{Gen}^{*}\left(\mathbb{Z}_{4}\right)$. First, we show that $2 \mathbb{Z}_{4} \in \operatorname{Gen}\left(\mathbb{Z}_{4}\right)$. By Proposition 1.8 , we have

$$
\begin{gathered}
\operatorname{Tr}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right) / 0=\operatorname{Tr}^{*}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right), \\
\operatorname{Tr}^{*}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right)=\mathbb{Z}_{4 \mathbb{Z}_{4}} 2 \mathbb{Z}_{4}=\sum_{f \in \operatorname{Hom}_{\mathbb{Z}_{4}}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right)} f\left(\mathbb{Z}_{4}\right), \\
\sum_{f \in \operatorname{Hom}_{\mathbb{Z}_{4}}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right)} f\left(\mathbb{Z}_{4}\right)=2 \mathbb{Z}_{4},
\end{gathered}
$$

so

$$
\operatorname{Tr}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right) / 0=\operatorname{Tr}^{*}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right)=2 \mathbb{Z}_{4}
$$

Thus $\operatorname{Tr}\left(\mathbb{Z}_{4}, 2 \mathbb{Z}_{4}\right) / 0=2 \mathbb{Z}_{4}$. By Lemma $1.3,2 \mathbb{Z}_{4}$ is \mathbb{Z}_{4}-generated and so $2 \mathbb{Z}_{4} \in \operatorname{Gen}\left(\mathbb{Z}_{4}\right)$.
We are going to show that $2 \mathbb{Z}_{4} \notin \operatorname{Gen}^{*}\left(\mathbb{Z}_{4}\right)$. Suppose not, i.e., $2 \mathbb{Z}_{4} \in \operatorname{Gen}{ }^{*}\left(\mathbb{Z}_{4}\right)$. By Definition 1.6, we have

$$
\operatorname{Tr}^{*}\left(2 \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)=\mathbb{Z}_{4}
$$

and by Proposition 1.5,

$$
\operatorname{Tr}^{*}\left(2 \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)=2 \mathbb{Z}_{4} 2 \mathbb{Z}_{4} 2 \mathbb{Z}_{4}=\sum_{f \in \operatorname{Hom}_{\mathbb{Z}_{4}}\left(2 \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)} f\left(2 \mathbb{Z}_{4}\right)
$$

As $2 \mathbb{Z}_{4}$ is a simple ideal of \mathbb{Z}_{4}, we have

$$
\sum_{f \in \operatorname{Hom}_{\mathbb{Z}_{4}\left(2 \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)}} f\left(2 \mathbb{Z}_{4}\right)=2 \mathbb{Z}_{4} .
$$

Thus

$$
\operatorname{Tr}^{*}\left(2 \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)=2 \mathbb{Z}_{4}
$$

and so

$$
\mathbb{Z}_{4}=\operatorname{Tr}^{*}\left(2 \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)=2 \mathbb{Z}_{4}
$$

which is a contradiction. Therefore $2 \mathbb{Z}_{4} \notin \operatorname{Gen}^{*}\left(\mathbb{Z}_{4}\right)$. This proves that $\operatorname{Gen}\left(\mathbb{Z}_{4}\right) \neq$ Gen ${ }^{*}\left(\mathbb{Z}_{4}\right)$, as claimed.

Proposition 1.8. Let L, L^{\prime} in \mathcal{M}_{c}. If for every non-zero linear morphism $f: L^{\prime} \longrightarrow Y$ there exists a linear morphism $g: L \longrightarrow L^{\prime}$ with $f \circ g \neq 0$, then L^{\prime} is L-generated.

Proof. By Lemma 1.3, L^{\prime} is L-generated $\Longleftrightarrow L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}$. Now, $\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=$ $\operatorname{Tr}^{*}\left(L, L^{\prime}\right)$ by Proposition 1.7, and $\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=L_{L} L^{\prime}$ as we observed just a line above Definition 1.5. Thus L^{\prime} is L-generated $\Longleftrightarrow L^{\prime}=L_{L} L^{\prime}$. Consequently, it is enough to prove that $L^{\prime}=L_{L} L^{\prime}$.

Set $N:=L_{L} L^{\prime}=N=n / 0^{\prime}$. Then $n / 0^{\prime}=N \subseteq L^{\prime}=1^{\prime} / 0^{\prime}$, so $n \leqslant 1^{\prime}$. If $n=1^{\prime}$, then $N=n / 0^{\prime}=1^{\prime} / 0^{\prime}=L^{\prime}$, i.e., $L_{L} L^{\prime}=N=L^{\prime}$.

Now, assume that $n<1^{\prime}$, and consider the surjective linear epimorphism

$$
p: L^{\prime}=1^{\prime} / 0^{\prime} \longrightarrow 1^{\prime} / n, p(a)=a \vee n, a \in L^{\prime}
$$

Since $n<1^{\prime}, p$ is a non-zero linear morphism. By hypothesis there exists a linear morphism $g: L \longrightarrow L^{\prime}$ such that $p \circ g \neq 0$. As $p \circ g: L \longrightarrow 1^{\prime} / n$, there exists $l \in L$ with $(p \circ g)(l)>n$. But $(p \circ g)(l)=p(g(l))=g(l) \vee n$. Thus $g(l) \vee n>n$, and then $g(l) \leqslant g(1)$ since g is an increasing mapping.

Remember that

$$
n / 0^{\prime}=N=L_{L} L^{\prime}=\bigvee\left(\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right) / 0^{\prime}
$$

so $n=\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}$. Hence $n \geqslant f(1)$ for all $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)$. As $g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)$, we have $n \geqslant g(1)$. Since $g(1) \geqslant g(l)$, we deduce that $n \geqslant g(l)$. So $g(l) \vee n=n$. On the other hand, we have seen above that $g(l) \vee n>n$, which is a contradiction. Consequently, necessarily $n=1^{\prime}$, and then $L_{L} L^{\prime}=N=L^{\prime}$. This finishes the proof.

We present below a new definition, that is a reformulation of [12, Proposition 13.5(2)] showing that if U and L^{\prime} are two right R-modules, then

$$
L^{\prime} \text { is } U \text {-generated if and only if } \operatorname{Tr}\left(U, L^{\prime}\right)=L^{\prime}
$$

Definition 1.9. A lattice $L^{\prime} \in \mathcal{M}_{c}$ is said to be generated** by L or L generated** for a lattice $L \in \mathcal{M}_{c}$ if for every non-zero linear morphism $f: L^{\prime} \longrightarrow Y$ there exists a linear morphism $g: L \longrightarrow L^{\prime}$ with $f \circ g \neq 0$.

One denotes by $\operatorname{Gen}^{* *}(G)$ the class of all modular complete lattices generated ${ }^{* *}$ by G.
Proposition 1.10. With the notation above, L^{\prime} is L-generated if and only if it is L generated**.

Proof. Suppose L^{\prime} is L-generated**. Then, by Proposition 1.8 we deduce that L^{\prime} is L generated.

Conversely, assume that L^{\prime} is L-generated. Then, $L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}$ by Lemma 1.3, so

$$
L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)
$$

Then $L_{L} L^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)$ by Proposition 1.5. It follows that

$$
L^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=L_{L} L^{\prime}
$$

Now, let $f: L^{\prime} \longrightarrow Y=1^{\prime \prime} / 0^{\prime \prime}$ be a non-zero linear morphism. Then

$$
L_{L} L^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=\left(\bigvee\left\{g(1) \mid g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right) / 0^{\prime}
$$

and so

$$
1^{\prime} / 0^{\prime}=L^{\prime}=L_{L} L^{\prime}=\left(\bigvee\left\{g(1) \mid g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right) / 0^{\prime}
$$

We deduce that $1^{\prime}=\bigvee\left\{g(1) \mid g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}$, and because $f: L^{\prime} \longrightarrow Y=1^{\prime \prime} / 0^{\prime \prime}$ is a non-zero linear morphism, we have

$$
0^{\prime \prime} \neq f\left(1^{\prime}\right)=f\left(\bigvee\left\{g(1) \mid g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right)=\bigvee\left\{f(g(1)) \mid g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}
$$

so there exists a linear morphism $g: L \longrightarrow L^{\prime}$ with $f(g(1)) \neq 0^{\prime \prime}$. Then $f \circ g$ is a non-zero linear morphism. This proves that L^{\prime} is L - generated ${ }^{* *}$, as desired.

Lemma 1.11. Let $1 / 0=L, L^{\prime} \in \mathcal{M}_{c}$. If $T=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$, then T es L^{\prime}-generated.
Proof. As above, $T=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)=L_{L^{\prime}}^{\prime} L$, so, by product of lattices we have

$$
t / 0=T=L_{L^{\prime}}^{\prime} L=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0
$$

hence $t=\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}$.
Let $a \in T, a \neq t$. Then $a<t=\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}$, so there exists $\left.f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}$ with $f\left(1^{\prime}\right) \nless a$. As $f: 1^{\prime} / 0^{\prime}=L^{\prime} \longrightarrow L=1 / 0$ is a linear morphism, there exists $k \in 1^{\prime} / 0^{\prime}$ such that k is the kernel of f. If $c:=f\left(1^{\prime}\right)$, then f induces a lattice isomorphism

$$
\bar{f}: 1^{\prime} / k \xrightarrow{\sim} c / 0, \bar{f}(x)=f(x), \forall x \in 1^{\prime} / k, \text { and so }
$$

$c / 0 \simeq 1^{\prime} / k$, i.e., T is L^{\prime}-generated by Definition 1.1, as desired.

Proposition 1.12. The lattice $\operatorname{Tr}\left(L^{\prime}, L\right) / 0$ is L^{\prime}-generated.
Proof. By Proposition 1.7, $\operatorname{Tr}\left(L^{\prime}, L\right) / 0=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$, and $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is L^{\prime}-generated by Lemma 1.11, so $\operatorname{Tr}\left(L^{\prime}, L\right) / 0$ is L^{\prime}-generated.

Corollary 1.13. The following assertions hold for $L, L^{\prime} \in \mathcal{M}_{c}$.
(1) $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is the largest sublattice of L generated by L^{\prime}.
(2) $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is fully invariant in L.

Proof. (1) Since $\operatorname{Tr}\left(L^{\prime}, L\right)=\bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}$, by [5, Proposition 1.3] we have $\operatorname{Tr}\left(L^{\prime}, L\right) / 0 \in \operatorname{Gen}\left(L^{\prime}\right)$. Hence $\operatorname{Tr}\left(L^{\prime}, L\right) / 0$ is L^{\prime}-generated. Now, $\operatorname{Tr}\left(L^{\prime}, L\right) / 0=$ $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ by Proposition 1.7, so $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is L^{\prime}-generated.

Let $T=t / 0$ be a sublattice of L such that T is L^{\prime}-generated, i.e., $T=t / 0 \in \operatorname{Gen}\left(L^{\prime}\right)$. Then

$$
t \leqslant \bigvee\left\{a \in L \mid a / 0 \in \operatorname{Gen}\left(L^{\prime}\right)\right\}=\operatorname{Tr}\left(L^{\prime}, L\right)
$$

Therefore $T=t / 0 \subseteq \operatorname{Tr}\left(L^{\prime}, L\right) / 0=\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$. Thus $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is the largest sublattice of L generated by L^{\prime}.
(2) Let $g: L \longrightarrow L$ be a linear morphism. Then

$$
\left.g\left(\operatorname{Tr}^{*}\left(L^{\prime}, L\right)\right)=g\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0\right)
$$

As g commutes with arbitrary joins, we have

$$
\left.g\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0\right)=\bigvee\left(\left\{(g \circ f)\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0
$$

Because $g \circ f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)$ we have

$$
\bigvee\left(\left\{(g \circ f)\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0 \subseteq \bigvee\left(\left\{h\left(1^{\prime}\right) \mid h \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L\right)\right\}\right) / 0
$$

and then $\left.g\left(\operatorname{Tr}^{*}\left(L^{\prime}, L\right)\right) \subseteq \operatorname{Tr}^{*}\left(L^{\prime}, L\right)\right)$, so $\operatorname{Tr}^{*}\left(L^{\prime}, L\right)$ is fully invariant in L, as desired. $\quad \square$

Proposition 1.14. Let $L, L^{\prime} \in \mathcal{M}_{c}$ with $L^{\prime} \in \operatorname{Gen}^{* *}(L)$. Then $\operatorname{Gen}^{* *}\left(L^{\prime}\right) \subseteq \operatorname{Gen}^{* *}(L)$.

Proof. Let $1^{\prime \prime} / 0^{\prime \prime}=L^{\prime \prime} \in \operatorname{Gen}^{* *}\left(L^{\prime}\right)$, so $L^{\prime \prime}$ is L^{\prime}-generated by Proposition 1.10, and then $L^{\prime \prime}=\operatorname{Tr}\left(L^{\prime}, L^{\prime \prime}\right) / 0^{\prime \prime}$ by Lemma 1.3. Further, $\operatorname{Tr}\left(L^{\prime}, L^{\prime \prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L^{\prime}, L^{\prime \prime}\right)$, and by Proposition 1.5 we have $\operatorname{Tr}^{*}\left(L^{\prime}, L^{\prime \prime}\right)=L_{L^{\prime}}^{\prime} L^{\prime \prime}$. Thus

$$
L^{\prime \prime}=\operatorname{Tr}\left(L^{\prime}, L^{\prime \prime}\right) / 0^{\prime \prime}=\operatorname{Tr}^{*}\left(L^{\prime}, L^{\prime \prime}\right)=L_{L^{\prime}}^{\prime} L^{\prime \prime}
$$

So $L^{\prime \prime}=L_{L^{\prime}}^{\prime} L^{\prime \prime}$. Moreover, by Definition 1.4, we have

$$
L_{L^{\prime}}^{\prime} L^{\prime \prime}=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)\right\}\right) / 0^{\prime \prime}
$$

Notice that if $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)$ then $f\left(L^{\prime}\right)=f\left(1^{\prime} / 0^{\prime}\right)=f\left(1^{\prime}\right) / f\left(0^{\prime}\right)=f\left(1^{\prime}\right) / 0^{\prime \prime}$, so

$$
\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}\left(L^{\prime}, L^{\prime \prime}\right)} f\left(L^{\prime}\right)=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)}\left(f\left(1^{\prime}\right) / 0^{\prime \prime}\right)}
$$

By Notation [4, 2.4], we have

$$
\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)}\left(f\left(1^{\prime}\right) / 0^{\prime \prime}\right)=\left(\bigvee\left\{f\left(1^{\prime}\right) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)\right\}\right) / 0^{\prime \prime}=L_{L^{\prime}}^{\prime} L^{\prime \prime}
$$

Thus $\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)} f\left(L^{\prime}\right)=L_{L^{\prime}}^{\prime} L^{\prime \prime}$.
Since $L^{\prime} \in \operatorname{Gen}^{* *}(L)$, then by Proposition 1.10 we deduce that L^{\prime} is L-generated. So, by Lemma 1.3, $L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}$, and by Proposition 1.7 $\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)$. Now, by Proposition 1.5 we have $\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=L_{L} L^{\prime}$. Thus

$$
L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=L_{L} L^{\prime}
$$

On the other hand, by Definition 1.4 we have $L^{\prime}=L_{L} L^{\prime}=\bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} h(L)$.
If $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)$, then

$$
f\left(L^{\prime}\right)=f\left(L_{L} L^{\prime}\right)=f\left(\bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} h(L)\right)=\bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(h(L))
$$

and so $f\left(L^{\prime}\right)=\bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)}(f \circ h)(L)$. Since $f \circ h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime \prime}\right)$, it follows that

$$
f\left(L^{\prime}\right)=\bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)}(f \circ h)(L) \subseteq \bigvee_{g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime \prime}\right)} g(L)
$$

Moreover, by Definition 1.4 we have $\bigvee_{g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime \prime}\right)} g(L)=L_{L} L^{\prime \prime}$. Thus $f\left(L^{\prime}\right) \subseteq L_{L} L^{\prime \prime}$ for all $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)$. We deduce that

$$
\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)} f\left(L^{\prime}\right) \subseteq L_{L} L^{\prime \prime}
$$

Since $L^{\prime \prime}=L_{L^{\prime}}^{\prime} L^{\prime \prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L^{\prime}, L^{\prime \prime}\right)} f\left(L^{\prime}\right)$, then

$$
L^{\prime \prime}=L_{L^{\prime}}^{\prime} L^{\prime \prime} \subseteq L_{L} L^{\prime \prime} \subseteq L^{\prime \prime}
$$

Thus $L^{\prime \prime}=L_{L} L^{\prime \prime}$. By Proposition 1.5, we have $\operatorname{Tr}^{*}\left(L, L^{\prime \prime}\right)=L_{L} L^{\prime \prime}=L^{\prime \prime}$. So, by Lemma 1.11, we deduce that $L^{\prime \prime}$ is L-generated, and by Proposition 1.10 it follows that $L^{\prime \prime}$ is L-generated**. Therefore $L^{\prime \prime} \in \operatorname{Gen}^{* *}(L)$, as desired.

Proposition 1.15. Let $L, L^{\prime} \in \mathcal{M}_{c}$. If $L^{\prime} \in \operatorname{Gen}{ }^{* *}(L)$, then $L^{\prime} / Y \in \operatorname{Gen}^{* *}(L)$ for all Y in $\operatorname{Sub}\left(L^{\prime}\right)$.
Proof. Let $Y=y / 0^{\prime} \in \operatorname{Sub}\left(L^{\prime}\right)$. Then $L_{L}\left(L^{\prime} / Y\right) \subseteq L^{\prime} / Y$ by the definition of product of lattices. Consider the linear epimorphism

$$
p: L^{\prime} \longrightarrow L^{\prime} / Y, p(x)=x \vee y, \forall x \in L^{\prime}
$$

Then $p\left(L^{\prime}\right)=L^{\prime} / Y$. Since L^{\prime} is L - generated ${ }^{* *}$, then L^{\prime} is L-generated by Proposition 1.10, so $L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}$ by Lemma 1.3. It follows that $\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)$ by Proposition 1.7. Now, by Proposition $1.5 \operatorname{Tr}^{*}\left(L, L^{\prime}\right)=L_{L} L^{\prime}$, we have

$$
L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=L_{L} L^{\prime}
$$

On the other hand, $L_{L} L^{\prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)$ by Definition 1.4 , so

$$
L^{\prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)
$$

Thus

$$
p\left(L^{\prime}\right)=p\left(L_{L} L^{\prime}\right)=p\left(\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)\right)=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)}(p \circ f)(L)
$$

Clearly $p \circ f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime} / Y\right)$ for all $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)$, so

$$
(p \circ f)(L) \subseteq \bigvee_{g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime} / Y\right)} g(L) \text { for all } f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)
$$

Thus

$$
\bigvee_{f \in \operatorname{Hom}_{\mathcal{L} \mathcal{M}}\left(L, L^{\prime}\right)}(p \circ f)(L) \subseteq \bigvee_{g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime} / Y\right)} g(L)
$$

Observe that $\bigvee_{g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime} / Y\right)} g(L)=L_{L}\left(L^{\prime} / Y\right)$.

$$
L^{\prime} / Y=p\left(L^{\prime}\right)=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}\left(L, L^{\prime}\right)}(p \circ f)(L) \subseteq L_{L}\left(L^{\prime} / Y\right) ~}
$$

So $L_{L}\left(L^{\prime} / Y\right)=L^{\prime} / Y$. Apply now Proposition 1.5, Proposition 1.7, and Proposition 1.10 to deduce that L^{\prime} / Y is L-generated ${ }^{* *}$, i.e., $L^{\prime} / Y \in \operatorname{Gen}^{* *}(L)$, which finishes the proof.

Lemma 1.16. Let $L \in \mathcal{M}_{c}$, and let $\left(X_{i}\right)_{i \in I}$ be a family in $\operatorname{Sub}(L)$. If $Y \in \operatorname{Sub}(L)$ and $X_{i} \subseteq Y$ for all $i \in I$, then $\bigvee_{i \in I} X_{i} \subseteq Y$.

Proof. Let $X_{i}=x_{i} / 0$ for each $i \in I$, and let $Y=y / 0$. As $X_{i} \subseteq Y$, we have $x_{i} / 0 \subseteq y / 0$, so $x_{i} \leqslant y$ for all $i \in I$. Thus $\bigvee x_{i} \leqslant y$, and then $\left(\bigvee x_{i}\right) / 0 \leqslant y / 0=Y$. By [4, Section 2], we have $\bigvee_{i \in I} X_{i}=\left(\bigvee x_{i}\right) / 0$. Consequently $\bigvee_{i \in I} X_{i} \subseteq Y$, as desired.

Proposition 1.17. Let $L, L^{\prime} \in \mathcal{M}_{c}$. If $\left(X_{i}\right)_{i \in I}$ is a family in $\operatorname{Sub}\left(L^{\prime}\right)$ and $X_{i} \in \operatorname{Gen}^{* *}(L)$ for all $i \in I$, then $\bigvee_{i \in I} X_{i} \in \operatorname{Gen}^{* *}(L)$.

Proof. Set $X:=\bigvee_{i \in I} X_{i}$. Then $L_{L} X=L_{L}\left(\bigvee_{i \in I} X_{i}\right) \subseteq \bigvee_{i \in I} X_{i}$. As $X_{i} \subseteq X$, then by [4, Proposition 2.7], $L_{L} X_{i} \subseteq L_{L} X$. By Proposition 1.10, X_{i} is L-generated, so by Lemma 1.3, Proposition 1.7, and Proposition 1.5 we deduce that $X_{i}=L_{L} X_{i}$ for all $i \in I$. Thus $X_{i}=L_{L} X_{i} \subseteq L_{L} X$ for all $i \in I$. Now $\bigvee_{i \in I} X_{i} \subseteq L_{L} X$ by Lemma 1.16, and then $X=\bigvee_{i \in I} X_{i}=L_{L} X$. Proposition 1.7, Lemma 1.3, and Proposition 1.10 imply that X is L - generated ${ }^{* *}$, i.e., $\bigvee_{i \in I} X_{i}=X \in \operatorname{Gen}^{* *}(L)$, as desired.

Lemma 1.18. Let $L, L^{\prime} \in \mathcal{M}_{c}$. Then L^{\prime} is L-generated ${ }^{* *} \Longleftrightarrow L_{L} L^{\prime}=L^{\prime}$.

Proof. Observe that

$$
L^{\prime} \text { is } L \text {-generated }{ }^{* *} \Longleftrightarrow L^{\prime} \text { is } L \text {-generated }
$$

by Proposition 1.10, and

$$
L^{\prime} \text { is } L \text {-generated } \Longleftrightarrow L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}
$$

by Lemma 1.3, so

$$
L^{\prime} \text { is } L \text {-generated }{ }^{* *} \Longleftrightarrow L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}
$$

On the other hand, $L^{\prime}=\operatorname{Tr}\left(L, L^{\prime}\right) / 0^{\prime}=\operatorname{Tr}^{*}\left(L, L^{\prime}\right)$ by Proposition 1.7, and $\operatorname{Tr}^{*}\left(L, L^{\prime}\right)=$ $L_{L} L^{\prime}$ by Proposition 1.5. Thus

$$
L^{\prime} \text { is } L \text {-generated }{ }^{* *} \Longleftrightarrow L_{L} L^{\prime}=L^{\prime}
$$

and we are done.

Proposition 1.19. Let $L, X \in \mathcal{M}_{c}$. Then

$$
\bigvee\left\{Y \in \operatorname{Sub}(X) \mid Y \in \operatorname{Gen}^{* *}(L)\right\}=\operatorname{Tr}^{*}(L, X)
$$

Proof. By Proposition 1.5, $\operatorname{Tr}^{*}(L, X)=L_{L} X$. Let $Y \in \operatorname{Sub}(X)$. If $Y \in \operatorname{Gen}^{* *}(L)$, then Y is L-generated**, and $L_{L} Y=Y$ by Lemma 1.18. As $Y \subseteq X$, then by [4, Proposition 2.7] we have $L_{L} Y \subseteq L_{L} X$. Thus $L_{L} Y \subseteq L_{L} X=\operatorname{Tr}^{*}(L, X)$, so $Y=L_{L} Y \subseteq \operatorname{Tr}^{*}(L, X)$ for all $Y \in \operatorname{Sub}(X)$. Since $Y \in \operatorname{Gen}^{* *}(L)$, then by Lemma 1.16,

$$
\bigvee\left\{Y \in \operatorname{Sub}(X) \mid Y \in \operatorname{Gen}^{* *}(L)\right\} \subseteq \operatorname{Tr}^{*}(L, X)
$$

Observe that $\operatorname{Tr}^{*}(L, X)$ is L-generated by Lemma 1.11, and $\operatorname{Tr}^{*}(L, X)$ is L-generated** by Proposition 1.10, i.e., $\operatorname{Tr}^{*}(L, X) \in \operatorname{Gen}^{* *}(L)$. Since $\operatorname{Tr}^{*}(L, X)=L_{L} X \subseteq X$, then $\operatorname{Tr}^{*}(L, X) \in \operatorname{Sub}(X)$. Hence

$$
\operatorname{Tr}^{*}(L, X) \subseteq \bigvee\left\{Y \in \operatorname{Sub}(X) \mid Y \in \operatorname{Gen}^{* *}(L)\right\}
$$

Thus $\bigvee\left\{Y \in \operatorname{Sub}(X) \mid Y \in \operatorname{Gen}^{* *}(L)\right\}=\operatorname{Tr}^{*}(L, X)$, and we are done.

Lemma 1.20. The following statements hold for $L, L^{\prime}, L^{\prime \prime} \in \mathcal{M}_{c}$ and $1^{\prime} / 0^{\prime}=L^{\prime} \in$ Gen ${ }^{* *}(L)$.
(1) If $L^{\prime} \simeq L^{\prime \prime}$ in $\mathcal{L} \mathcal{M}$, then $L^{\prime \prime} \in \operatorname{Gen}^{* *}(L)$.
(2) If $a^{\prime} \in L^{\prime}$ then $1^{\prime} / a^{\prime} \in \operatorname{Gen}^{* *}(L)$.

Proof. (1) We are going to prove that $L^{\prime \prime}=L_{L} L^{\prime \prime}$. By definition of the product of lattices we have $L_{L} L^{\prime \prime} \subseteq L^{\prime \prime}$. By hypothesis, there exists a linear isomorphism $g: L^{\prime} \xrightarrow{\sim} L^{\prime \prime}$, so $g\left(L^{\prime}\right)=L^{\prime \prime}$.

As $L^{\prime} \in \operatorname{Gen}^{* *}(L)$, then $L_{L} L^{\prime}=L^{\prime}$ by Lemma 1.18, and

$$
L^{\prime}=L_{L} L^{\prime}=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right) / 0^{\prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)
$$

by [4, Notation 2.4].
Thus

$$
L^{\prime \prime}=g\left(L^{\prime}\right)=g\left(\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)\right)=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)}(g \circ f)(L)
$$

where $g \circ f: L \longrightarrow L^{\prime \prime}$, so $g \circ f \in \operatorname{Hom}_{\mathcal{L} M}\left(L, L^{\prime \prime}\right)$.
Since $L_{L} L^{\prime \prime}=\bigvee_{h \in \operatorname{Hom}_{\mathcal{L} \mathcal{M}}\left(L, L^{\prime \prime}\right)} h(L)$, we have

$$
L^{\prime \prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)}(g \circ f)(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime \prime}\right)} h(L)=L_{L} L^{\prime \prime}
$$

Therefore $L^{\prime \prime} \subseteq L_{L} L^{\prime \prime}$, so $L^{\prime \prime}=L_{L} L^{\prime \prime}$. Now, by Lemma 1.18 it follows that $L^{\prime \prime}$ is L generated ${ }^{* *}$, and then $L^{\prime \prime} \in \operatorname{Gen}^{* *}(L)$.
(2) We are now going to prove that $1^{\prime} / a^{\prime}=L_{L}\left(1^{\prime} / a^{\prime}\right)$. By the definition of product of two lattices we have $L_{L}\left(1^{\prime} / a^{\prime}\right) \subseteq 1^{\prime} / a^{\prime}$.

Consider the surjective linear morphism

$$
p: L^{\prime} \longrightarrow 1^{\prime} / a^{\prime}, p(x)=x \vee a^{\prime}, \forall x \in L^{\prime}
$$

Then, as $L^{\prime} \in \operatorname{Gen}^{* *}(L)$, we have $L_{L} L^{\prime}=L^{\prime}$ by Lemma 1.18. On the other hand

$$
L^{\prime}=L_{L} L^{\prime}=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)\right\}\right) / 0^{\prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)
$$

by [4, Notation 2.4].
As p is a linear epimorphism we have $p\left(L^{\prime}\right)=1^{\prime} / a^{\prime}$, so

$$
1^{\prime} / a^{\prime}=p\left(L^{\prime}\right)=p\left(\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)} f(L)\right)=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, L^{\prime}\right)}(p \circ f)(L)
$$

where $p \circ f: L \longrightarrow 1^{\prime} / a^{\prime}$, so $p \circ f \in \operatorname{Hom}_{\mathcal{L} M}\left(L,\left(1^{\prime} / a^{\prime}\right)\right)$.
Since $L_{L}\left(1^{\prime} / a^{\prime}\right)=\bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}\left(L,\left(1^{\prime} / a^{\prime}\right)\right)} h(L)$, we deduce that

$$
1^{\prime} / a^{\prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L}}\left(L, L^{\prime}\right)}(p \circ f)(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{L}}\left(L,\left(1^{\prime} / a^{\prime}\right)\right)} h(L)=L_{L}\left(1^{\prime} / a^{\prime}\right)
$$

Therefore $1^{\prime} / a^{\prime} \subseteq L_{L}\left(1^{\prime} / a^{\prime}\right)$, so $1^{\prime} / a^{\prime}=L_{L}\left(1^{\prime} / a^{\prime}\right)$. By Lemma 1.18 it follows that $1^{\prime} / a^{\prime}$ is L-generated ${ }^{* *}$. Thus $1^{\prime} / a^{\prime} \in \operatorname{Gen}^{* *}(L)$, as desired.

Proposition 1.21. The following assertions are equivalent for $L, L^{\prime} \in \mathcal{M}_{c}$.
(1) $L^{\prime} \in \operatorname{Gen}^{* *}(L)$.
(2) There exists a family $\left(X_{i}\right)_{i \in I}$ in $\operatorname{Sub}\left(L^{\prime}\right)$, such that $L^{\prime}=\bigvee_{i \in I} X_{i}$ and X_{i} is a linear homomorphic image of L.

Proof. (1) $\Longrightarrow(2)$. Assume that $L^{\prime} \in \operatorname{Gen}^{* *}(L)$. Then $L^{\prime}=L_{L} L^{\prime}$ by Lemma 1.18, and by [4, Notation 2.4] we have

$$
L^{\prime}=L_{L} L^{\prime}=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L} \mathcal{M}}\left(L, L^{\prime}\right)\right\}\right) / 0^{\prime}
$$

Therefore

$$
L^{\prime}=\bigvee_{f \in \operatorname{Hom}_{\mathcal{L}}\left(L, L^{\prime}\right)} f(L)
$$

For each $f \in \operatorname{Hom}_{\mathcal{L} \mathcal{M}}\left(L, L^{\prime}\right)$ we set $X_{f}:=f(L)$ and $I:=\operatorname{Hom}_{\mathcal{L}}\left(L, L^{\prime}\right)$. Thus X_{f} is a linear homomorphic image of L for all $f \in I$, and so

$$
L^{\prime}=\bigvee_{f \in I} X_{f}
$$

which proves (2).
$(2) \Longrightarrow(1)$ Suppose that $L^{\prime}=\bigvee_{i \in I} X_{i}$ and X_{i} is a linear homomorphic image of L for every $i \in I$, i.e., there exist linear epimorphisms $f_{i}: L \longrightarrow X_{i}$ for every $i \in I$. If k_{i} is the kernel of f_{i}, then f_{i} induces a lattice isomorphism

$$
\bar{f}_{i}: 1 / k_{i} \xrightarrow{\sim} f(1) / f\left(k_{i}\right), \bar{f}_{i}(x)=f_{i}(x), \forall x \in 1 / k_{i} .
$$

Since f_{i} is linear epimorphism, then $f_{i}(L)=X_{i}$. Thus $X_{i}=f_{i}(1) / f_{i}\left(k_{i}\right)$. Hence we deduce that $f_{i}(L)=X_{i} \simeq 1 / k_{i}$. As $L=L_{L} L$, then Lemma 1.18 and Proposition 1.10 imply that L is L - generated**. As $k_{i} \in L$, then $1 / k_{i}$ is L - generated $^{* *}$ by Lemma 1.20 , and so X_{i} is L - generated $^{* *}$ for all $i \in I$ by Lemma 1.20 .

Since $X_{i} \subseteq L^{\prime}$ for all $i \in I$, then by Proposition $1.17 L^{\prime}=\bigvee_{i \in I} X_{i}$ is L - generated ${ }^{* *}$, i.e., $L^{\prime} \in \operatorname{Gen}^{* *}(L)$, and we are done.

Proposition 1.22. Gen $(L)=\operatorname{Gen}^{* *}(L)$ for any $L \in \mathcal{M}_{c}$.
Proof. The result follows immediately from Proposition 1.10.

2 The category $\sigma[L]$

Definition 2.1. For any lattice $L \in \mathcal{M}_{c}$ we denote by $\sigma[L]$ the full subcategory of \mathcal{M}_{c} that contains all lattices $L^{\prime} \in \mathcal{M}_{c}$ such that L^{\prime} is linearly isomorphic to a sublattice of an L-generated lattice (or equivalently, L-generated ${ }^{* *}$ by Proposition 1.10).

Lemma 2.2. Let $L, L^{\prime} \in \mathcal{M}_{c}$. If $h: L \longrightarrow L^{\prime}$ is a linear isomorphism and K is a sublattice of L, then L / K and $L^{\prime} / h(K)$ are (linearly) isomorphic.

Proof. Let $K=k / 0$. As h is a linear morphism, then h preserves intervals by [7, Lemma 0.6], so $h(1 / k)=h(1) / h(k), h(1)=1^{\prime}$, and $h(1 / k)=1^{\prime} / h(k)$.

Since $L / K=1 / k, L^{\prime} / h(K)=1^{\prime} / h(k)$, and h is a linear isomorphism, then L / K and $L^{\prime} / h(K)$ are (linearly) isomorphic, as desired.

Proposition 2.3. The category $\sigma[L]$ is closed under sublattices and quotient linear epimorphisms for any $L \in \mathcal{M}_{c}$.

Proof. First, we are going to prove that $\sigma[L]$ is closed under sublattices. Let $L^{\prime} \in \sigma[L]$ and $L^{\prime \prime} \subseteq L^{\prime}$. Then, by the definition of $\sigma[L]$, we have $L^{\prime} \simeq T^{\prime}$, where T^{\prime} is a sublattice of an L-generated lattice T. Then $L^{\prime \prime}$ is isomorphic to a sublattice of T^{\prime}. Since T^{\prime} is a sublattice of T, we deduce that $L^{\prime \prime}$ is isomorphic to a sublattice of T, which implies that $L^{\prime \prime} \in \sigma[L]$, so $\sigma[L]$ is closed under sublattices.

We are now going to show that $\sigma[L]$ is closed under quotient linear epimorphisms. Let $L^{\prime} \in \sigma[L]$ and $L^{\prime \prime} \subseteq L^{\prime}$. As $L^{\prime} \in \sigma[L]$, then $L^{\prime} \simeq T^{\prime}$ by the definition of $\sigma[L]$, where T^{\prime} is a sublattice of an L-generated lattice T, so, $L^{\prime \prime}$ is isomorphic to sublattice $T^{\prime \prime}$ of T^{\prime}, and $L^{\prime} / L^{\prime \prime} \simeq T^{\prime} / T^{\prime \prime}$ by Lemma 2.2, As $T^{\prime \prime}$ is sublattice of T^{\prime} and T^{\prime} is a sublattice of T, we deduce that $T^{\prime \prime}$ is sublattice of T, and so $T^{\prime} / T^{\prime \prime} \subseteq T / T^{\prime \prime}$.

On the other hand, Gen ${ }^{* *}(L)=\operatorname{Gen}(L)$ by Proposition 1.22 , so $T \in \operatorname{Gen}(L)$, and then $T \in \operatorname{Gen}^{* *}(L)$. Now, $T / T^{\prime \prime} \in \operatorname{Gen}^{* *}(L)$ by Proposition 1.15. Thus $T / T^{\prime \prime} \in \operatorname{Gen}(L)$, so $T / T^{\prime \prime}$ is L-generated. Since $T^{\prime} / T^{\prime \prime} \subseteq T / T^{\prime \prime}$ and $L^{\prime} / L^{\prime \prime} \simeq T^{\prime} / T^{\prime \prime}$, it follows that $L^{\prime} / L^{\prime \prime} \in$ $\sigma[L]$, as desired.

Lemma 2.4. If $\operatorname{Gen}[L] \subseteq \operatorname{Gen}[H]$ for $L, H \in \mathcal{M}_{c}$, then $\sigma[L] \subseteq \sigma[H]$.
Proof. Let $L^{\prime} \in \sigma[L]$ and $L^{\prime \prime} \subseteq L^{\prime}$. As $L^{\prime} \in \sigma[L]$, then by the definition of $\sigma[L]$, we have $L^{\prime} \simeq T^{\prime}$, where T^{\prime} is a sublattice of an L-generated lattice T. Thus $T \in \operatorname{Gen}[L]$. By hypothesis, we have Gen $[L] \subseteq \operatorname{Gen}[H]$, so $T \in \operatorname{Gen}[H]$, hence T is H-generated. Since $L^{\prime} \simeq T^{\prime} \subseteq T$, we have $L^{\prime} \in \sigma[H]$, which shows that $\sigma[L] \subseteq \sigma[H]$.

Proposition 2.5. Let $L, L^{\prime} \in \mathcal{M}_{c}$. If L^{\prime} is L-generated (or equivalently, L-generated**), then $\sigma\left[L^{\prime}\right] \subseteq \sigma[L]$.

Proof. As L^{\prime} is L-generated, $L^{\prime} \in \operatorname{Gen}[L]$. Then $L^{\prime} \in \operatorname{Gen}[L]^{* *}$ by Proposition 1.22. Now, Gen $\left[L^{\prime}\right]^{* *} \subseteq$ Gen $[L]^{* *}$ by Proposition 1.14. Further, by Proposition 1.22 , we have Gen $\left[L^{\prime}\right] \subseteq$ Gen $[L]$, and $\sigma\left[L^{\prime}\right] \subseteq \sigma[L]$ by Lemma 2.4.

Corollary 2.6. Let $L \in \mathcal{M}_{c}$ and $T=t / 0 \in \operatorname{Sub}(L)$. Then $\sigma[1 / t] \subseteq \sigma[L]$.
Proof. As $t / 0=T \subseteq L$, then $t \in L$. By Lemma 1.20 , we have $1 / t \in \operatorname{Gen}[L]^{* *}$, so, by Proposition 1.22, we deduce that $1 / t \in \operatorname{Gen}[L]$. Now, by Proposition 2.5 , we have $\sigma[1 / t] \subseteq \sigma[L]$.

Proposition 2.7. Let $L, T \in \mathcal{M}_{c}$ and let $\left(T_{i}\right)_{i \in I}$ be a family in $\operatorname{Sub}(T)$. If $T_{i} \in \operatorname{Gen}[L]$ for all $i \in I$, then $\bigvee_{i \in I} T_{i} \in \sigma[L]$.

Proof. Set $T^{\prime}:=\bigvee_{i \in I} T_{i}$. We claim that $L_{L} T^{\prime}=T^{\prime}$. Indeed, by the definition of product of lattices, we have $L_{L} T^{\prime} \subseteq T^{\prime}$. Since $T_{i} \in$ Gen $[L]$ for all $i \in I$, then by Lemma 1.18, we deduce that $L_{L} T_{i}=T_{i}$ for all $i \in I$. As $T_{i} \subseteq T^{\prime}$ for all $i \in I$, then, by [4, Proposition 2.7], we have

$$
T_{i}=L_{L} T_{i} \subseteq L_{L} T^{\prime} \subseteq T^{\prime} \text { for all } i \in I
$$

Thus $T_{i} \subseteq T^{\prime}$ for all $i \in I$, so we deduce that

$$
T^{\prime}=\bigvee_{i \in I} T_{i} \subseteq L_{L} T^{\prime} \subseteq T^{\prime}
$$

Therefore $L_{L} T^{\prime}=T^{\prime}$, as claimed.
By Lemma 1.18, it follows that T^{\prime} is L-generated, and so $\bigvee_{i \in I} T_{i}=T^{\prime} \in \operatorname{Gen}(L)$. Now, $\operatorname{Gen}(L) \subseteq \sigma[L]$ by the definition of $\sigma[L]$. Consequently $T^{\prime}=\bigvee_{i \in I} T_{i} \in \sigma[L]$, and we are done.

Definition 2.8. A lattice $L \in \mathcal{M}_{c}$ is said to be a self-generator if it generates all its sublattices, and a lattice $L^{\prime} \in \sigma[L]$ is called a generator in $\sigma[L]$ if L^{\prime} generates all lattices in $\sigma[L]$.
Proposition 2.9. The following assertions are equivalent for $L \in \mathcal{M}_{c}$ and $X \in \operatorname{Sub}(L)$.
(1) L is a self-generator.
(2) The mapping $X \longmapsto \operatorname{Hom}_{\mathcal{L M}}(L, X)$ from the set $\operatorname{Sub}(L)$ of all sublattices of L to the set of all subsets of $\operatorname{End} \underset{\mathcal{L M}}{ }(L)$ is injective.

Proof. 1) $\Longrightarrow 2)$ Let $X, Y \in \operatorname{Sub}(L)$ be such that $\operatorname{Hom}_{\mathcal{L M}}(L, X)=\operatorname{Hom}_{\mathcal{L M}}(L, Y)$. Since L is a self-generator, then X and Y are L-generated. By Proposition 1.10, we deduce that X and Y are L-generated ${ }^{* *}$, and by Lemma 1.18, it follows that $L_{L} X=X$ and $L_{L} Y=Y$.

On the other hand, we have

$$
X=L_{L} X=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}(L, X)\right\}\right) / 0
$$

and

$$
Y=L_{L} Y=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}(L, Y)\right\}\right) / 0
$$

Since $\operatorname{Hom}_{\mathcal{L M}}(L, X)=\operatorname{Hom}_{\mathcal{L M}}(L, Y)$, we have

$$
X=L_{L} X=L_{L} Y=Y
$$

which shows that the map $X \longmapsto \operatorname{Hom}_{\mathcal{L M}}(L, X)$ is injective.
$2) \Longrightarrow 1)$ Let $X \in \operatorname{Sub}(L)$. By Lemma 1.11, it follows that $L_{L} X$ is L-generated. Set $L_{L} X:=X^{\prime}$, so by Lemma 1.18, we deduce that X^{\prime} is L-generated ${ }^{* *}$. Again by Lemma 1.18, we have $L_{L} X^{\prime}=X^{\prime}$.

We claim that $\operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)=\operatorname{Hom}_{\mathcal{L M}}(L, X)$. Indeed, $X^{\prime}=L_{L} X \subseteq X$. Let $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)$. Then $f \in \operatorname{Hom}_{\mathcal{L M}}(L, X)$, so $\operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right) \subseteq \operatorname{Hom}_{\mathcal{L M}}(L, X)$. For $g \in \operatorname{Hom}_{\mathcal{L M}}(L, X)$ we have

$$
g(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}(L, X)} h(L)=L_{L} X=X^{\prime}
$$

and then $g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)$, which implies that

$$
\operatorname{Hom}_{\mathcal{L M}}(L, X)=\operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)
$$

as claimed.
Since the map $X \longmapsto \operatorname{Hom}_{\mathcal{L M}}(L, X)$ is injective, it follows that $X=X^{\prime}$. Thus $X=X^{\prime}=L_{L} X$. So, by Lemma 1.18, X is L-generated ${ }^{* *}$. Now, by Proposition 1.10, we deduce that X is L-generated. Thus L is a self-generator.

For $L \in \mathcal{M}_{c}$ and $X \in \sigma[L]$ we set $\psi(X):=\operatorname{Hom}_{\mathcal{L M}}(L, X)$.
Proposition 2.10. The following assertions are equivalent for $L \in \mathcal{M}_{c}$.
(1) L is a generator in $\sigma[L]$.
(2) The map $\psi: \sigma[L] \longrightarrow\left\{\operatorname{Hom}_{\mathcal{L M}}(L, X) \mid X \in \sigma[L]\right\}$ is injective.

Proof. 1) $\Longrightarrow 2)$ Let $X, Y \in \sigma[L]$ be such that $\psi(X)=\psi(Y)$, i.e., $\operatorname{Hom}_{\mathcal{L M}}(L, X)=$ $\operatorname{Hom}_{\mathcal{L M}}(L, Y)$. Because L is a generator in $\sigma[L]$, then X and Y are L-generated, so L-generated** by Proposition 1.10, and by Lemma 1.18, we deduce that $L_{L} X=X$ and $L_{L} Y=Y$.

On the other hand, we have

$$
X=L_{L} X=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}(L, X)\right\}\right) / 0_{X}
$$

and

$$
Y=L_{L} Y=\left(\bigvee\left\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{L M}}(L, Y)\right\}\right) / 0_{Y}
$$

Since $\operatorname{Hom}_{\mathcal{L M}}(L, X)=\operatorname{Hom}_{\mathcal{L M}}(L, Y)$, we deduce that

$$
X=L_{L} X=L_{L} Y=Y
$$

Thus the map ψ is injective.
$2) \Longrightarrow 1)$ Let $X \in \sigma[L]$. Then, $L_{L} X$ is L-generated by Lemma 1.11. If we set $L_{L} X:=$ X^{\prime}, then by Lemma 1.18, we deduce that X^{\prime} is L-generated**. Now, by Lemma 1.18, we have $L_{L} X^{\prime}=X^{\prime}$.

We claim that $\operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)=\operatorname{Hom}_{\mathcal{L M}}(L, X)$. Indeed, we have $X^{\prime}=L_{L} X \subseteq X$. Now let $f \in \operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)$. As $X^{\prime} \subseteq X$, it follows that $f \in \operatorname{Hom}_{\mathcal{L M}}(L, X)$, and then $\operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right) \subseteq \operatorname{Hom}_{\mathcal{L M}}(L, X)$. For any $g \in \operatorname{Hom}_{\mathcal{L M}}(L, X)$ we have

$$
g(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{L M}}(L, X)} h(L)=L_{L} X=X^{\prime}
$$

so $g \in \operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)$, which implies that

$$
\operatorname{Hom}_{\mathcal{L M}}(L, X)=\operatorname{Hom}_{\mathcal{L M}}\left(L, X^{\prime}\right)
$$

as claimed.
Thus $\psi(X)=\psi\left(X^{\prime}\right)$, so $X=X^{\prime}=L_{L} X$ because the map ψ is injective. Now, by Lemma 1.18, X is L-generated**, and then X is L-generated by Proposition 1.10. This shows that L is a generator $\sigma[L]$, and we are done.

Proposition 2.11. Let $L \in \mathcal{M}_{c}$ be a generator in $\sigma[L]$. Then every simple lattice in $\sigma[L]$ is a linear homomorphic image of L.
Proof. Let $S \in \sigma[L]$ be a simple lattice. As L is a generator in $\sigma[L]$, then S is L-generated, so L-generated** by Proposition 1.10. Then $S=L_{L} S$ by Lemma 1.18. It follows that there exists a non-zero linear morphism $f: L \longrightarrow S$. Since S is a simple lattice we deduce that $f(L)=S$, which implies that S is a linear homomorphic image of L.

References

[1] T. Albu, Classes of lattices (co)generated by a lattice and their global (dual) Krull dimension, Discrete Mathematics, 185, 1-18 (1998).
[2] T. Albu, Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of Parana's Mathematical Society No. 1, Sociedade Paranaense de Matemática, Maringá, Paraná, Brasil (2015).
[3] T. Albu, J. Castro Pérez, J. Ríos Montes, The lattice structure of all lattice preradicals on modular complete lattices, and applications (I), Bull. Math. Soc. Sci. Math. Roumanie, 62 (110), 3-20 (2019).
[4] T. Albu, J. Castro Pérez, J. Ríos Montes, Prime, irreducible, and completely irreducible lattice preradicals on modular complete lattices (I), J. Algebra Appl., 21 (2022), 2250097 [33 pages], https://doi.org/10.1142/S0219498822500979.
[5] T. Albu, S. DĂScălescu, M. Iosif, Lattices subgenerated by a lattice, and applications (I), in preparation.
[6] T. Albu, M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie, 56 (104), 33-46 (2013).
[7] T. Albu, M. Iosif, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra, 444, 339-366 (2015).
[8] T. Albu, Y. Kara, A. Tercan, Fully invariant-extending modular lattices, and applications (I), J. Algebra, 517, 207-222 (2019).
[9] P. Crawley, R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey (1973).
[10] G. Grätzer, General Lattice Theory, Second Edition, Birkhäuser, Basel (2003).
[11] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin-Heidelberg-New York (1975).
[12] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia-Reading-Paris-Tokyo-Melbourne (1991).

Received: 21.01.2022
Accepted: 06.04.2022
${ }^{(1)}$ Simion Stoilow Institute of Mathematics of the Romanian Academy, IMAR P.O. Box 1-764, RO-010145 Bucharest 1, Romania

E-mail: Toma.Albu@imar.ro
${ }^{(2)}$ Instituto Tecnológico y de Estudios Superiores de Monterrey, ITESM, México
E-mail: jcastrop@itesm.mx
${ }^{(3)}$ Instituto de Matématicas, Universidad Nacional Autonóma de México, UNAM, México E-mail: jrios@matem.unam.mx

