Some remarks on the category $\sigma[L]$ of all *L*-subgenerated lattices by Toma Albu⁽¹⁾, Jaime Castro Pérez⁽²⁾, José Ríos Montes⁽³⁾

Dedicated to the memory of Professor Doru Stefănescu (1952-2021)

Abstract

In this paper we present some remarks on the category $\sigma[L]$ of all subgenerated lattices by a modular complete lattice L, defined in [Albu, Dăscălescu, Iosif, Lattices subgenerated by a lattice, and applications (I), in preparation] "somehow" related with the concept of product in L of two lattices, introduced and studied in [Albu, Pérez, Ríos, Prime, irreducible, and completely irreducible lattice preradicals on modular complete lattices, J. Algebra Appl. **21** (2022), 2250097 [33 pages] DOI: 10.1142/S0219498822500979].

Key Words: Modular lattice, upper continuous lattice, linear morphism of lattice, fully invariant sublattice, fully invariant element, trace, generator.
2020 Mathematics Subject Classification: Primary 06C05; Secondary 06C99, 06B35, 16D80, 16N80, 16S90, 18E15.

Introduction

The concept of a lattice subgenerated by a modular complete lattice L has been introduced and investigated in [5]. In this paper we relate this concept with the one of product of two lattices, introduced and studied in [4].

In Section 0 we list some definitions and results about lattices, especially from [2].

Section 1 is devoted to the concepts of *trace* and *generators* defined and investigated in [1], [5], [7]. We present a new definition of trace related with the concept of product in L of two lattices, introduced and studied in [4].

In Section 2 we discuss several properties of the category $\sigma[L]$ introduced and investigated in [5], but not covered there, as those of *self-generator* and *fully invariance* in lattices.

Applications of our latticial results to Grothendieck categories and module categories equipped with a hereditary torsion theory will be given in a subsequent paper.

0 Preliminaries

All posets and lattices considered in this paper are assumed to be *bounded*, i.e., to have a least element denoted by 0 and a last element denoted by 1, and L will always denote such a lattice. If the lattices L and L' are isomorphic, we denote this by $L \simeq L'$. We denote by \mathcal{L} (respectively, $\mathcal{M}, \mathcal{M}_c$) the class of all bounded (respectively, bounded modular, bounded modular complete) lattices.

For a lattice L and elements $a \leq b$ in L we write

$$b/a := [a, b] = \{ x \in L \mid a \leq x \leq b \}.$$

For basic notation and terminology on lattices the reader is referred to [2], [9], [10], and/or [11], but especially to [2].

Recall from [6] the following concept. A mapping $f: L \longrightarrow L'$ between a lattice L with least element 0 and greatest element 1 and a lattice L' with least element 0' and greatest element 1' is called a *linear morphism* if there exist $k \in L$, called a *kernel* of f, and $a' \in L'$ such that the following two conditions are satisfied.

- $f(x) = f(x \lor k), \forall x \in L.$
- $\bullet~f~$ induces a lattice isomorphism

$$\bar{f}: 1/k \xrightarrow{\sim} a'/0', \ \bar{f}(x) = f(x), \ \forall x \in 1/k.$$

If $f: L \longrightarrow L'$ is a linear morphism of lattices, then, by [6, Proposition 1.3], f is an increasing mapping, commutes with arbitrary joins (i.e., $f(\bigvee_{i \in I} x_i) = \bigvee_{i \in I} f(x_i)$ for any family $(x_i)_{i \in I}$ of elements of L, provided both joins exist), preserves intervals (i.e., for any $u \leq v$ in L, one has f(v/u) = f(v)/f(u)), and its kernel k is uniquely determined.

As in [6], the class \mathcal{M} of all (bounded) modular lattices becomes a category, denoted by \mathcal{LM} (\mathcal{L} for "Linear" and \mathcal{M} for "Modular") if for any $L, L' \in \mathcal{M}$ one takes as morphisms from L to L' all the linear morphisms from L to L'. A major property of this category is that the subobjects of an object $L \in \mathcal{LM}$ can be viewed as the intervals a/0for any $a \in L$ (see [6, Proposition 2.2(5)]).

Throughout this paper R will denote an associative ring with non-zero identity element, and Mod-R the category of all unital right R-modules. The notation M_R will be used to designate a unital right R-module M, and $N \leq M$ will mean that N is a submodule of M. The lattice of all submodules of a module M_R will be denoted by $\mathcal{L}(M_R)$.

The latticial counterpart of the concept of a fully invariant submodule of a module is that of a fully invariant element introduced in [8] as follows. Let $L \in \mathcal{M}$. An element $a \in L$ is said to be *fully invariant*, abbreviated FI, if $f(a) \leq a$ for any $f \in \operatorname{End}_{\mathcal{LM}}(L) :=$ $\operatorname{Hom}_{\mathcal{LM}}(L, L)$, and the set of all fully invariant elements of L will be denoted by FI(L).

1 Trace and Generators

The aim of this section is to present some results on trace and generators. Thus, we define an apparently different concept of *trace* than the ones in [1] and [7], "somehow" related with the concept of product in L of two lattices, introduced and studied in [4].

Definition 1.1. ([1, Definition 3.1], [5, Definition 1.2]). A poset L is said to be generated by a poset G, or G-generated, if for any $a \neq 1$ in L there exist $c \in L$ and $g \in G$ such that $c \leq a$ and $c/0 \simeq 1/g$.

One denotes by Gen(G) the class of all modular complete lattices generated by G. \Box

The next concept is a particular case of [7, Definition 3.1] for the *trace* $\operatorname{Tr}(\mathcal{X}, L)$ of a nonempty class \mathcal{X} of lattices in a complete lattice L.

Definition 1.2. For any poset G and any modular complete lattice L we set

 $\operatorname{Tr}(G,L) := \bigvee \{ a \in L \, | \, a/0 \in \operatorname{Gen}(G) \},\$

and call it the trace of G in L.

Lemma 1.3. The following assertions are equivalent for $L, L' \in \mathcal{M}_c$.

- (1) L is L'-generated.
- (2) L = Tr(L', L)/0.

Proof. (1) \Longrightarrow (2) As L is L'-generated, then $L = 1/0 \in \text{Gen}(L')$ by Definition 1.1. Now, by Definition 1.2, we have

$$\operatorname{Tr}(L', L) = \bigvee \{ a \in L \mid a/0 \in \operatorname{Gen}(L') \} = 1,$$

so Tr (L', L)/0 = 1/0 = L.

 $(2) \Longrightarrow (1) \text{ As } 1/0 = L = \text{Tr}(L', L)/0, \text{ then } 1 = \text{Tr}(L', L) = \bigvee \{ a \in L \mid a/0 \in \text{Gen}(L') \}.$ Thus $1 = \bigvee \{ a \in L \mid a/0 \in \text{Gen}(L') \}.$ So $L = \text{Tr}(L', L)/0 \in \text{Gen}(L')$ by [5, Proposition 1.3], i.e., L is L'-generated.

Notice that by [5, Proposition 1.3] $\operatorname{Tr}(L', L)/0 \in \operatorname{Gen}(L')$. Hence $\operatorname{Tr}(L', L)/0$ is L'-generated. So by 1.3, $\operatorname{Tr}(L', \operatorname{Tr}(L', L)/0)/0 = \operatorname{Tr}(L', L)/0$ for $L, L' \in \mathcal{M}_c$.

Next, we present another definition of Tr(-,-) for two lattices L, L' in \mathcal{M}_c . As usually, we denote by 0 (respectively, 0') the least element of L (respectively, L'), and by 1 (respectively, 1') the greatest element of L (respectively, L').

For any $L, K \in \mathcal{M}_c$ and $N \in \text{Sub}(L)$, where Sub(L) is the collection of all sublattices in \mathcal{LM} of L, we have denoted in [4]

$$N_L K := \alpha_N^L(K),$$

and called it the *product* of N and K in L. If N = n/0, we showed there that

$$\alpha_N^L = \bigvee_{x \in N} \alpha_x^L = \alpha_n^L.$$

This implies that

$$\alpha_N^L(K) = \alpha_n^L(K) = \left(\bigvee \{ f(n) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, K) \} \right) / 0$$

for all $K \in \mathcal{M}_c$.

In particular, for N = L = 1/0 and K = L' = 1'/0', we have

$$\alpha_L^L(L') = \alpha_1^L(L') = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, L') \} \right) / 0.$$

Definition 1.4. For lattices L, L' in \mathcal{M}_c , the sublattice

$$\operatorname{Tr}^*(L',L) = (\bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L',L) \}) / 0$$

of L is called the trace of L' in L.

As one can see, $\operatorname{Tr}^*(L', L)$ is a sublattice of L, while $\operatorname{Tr}(L', L)$ is an element of L. They are related by Proposition 1.7 below.

Proposition 1.5. For any two lattices $L', L \in \mathcal{M}_c$, one has $\operatorname{Tr}^*(L', L) = L'_{L'}L$.

Proof. By Definition 1.4

$$\operatorname{Tr}^*(L',L) = (\bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L',L) \}) / 0.$$

By [3, Definition 2.9] we have

$$\alpha_{1'}^{L'}(L) = \left(\bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L) \} \right) / 0,$$

so $\operatorname{Tr}^*(L', L) = \alpha_{1'}^{L'}(L)$. Now, $\alpha_{1'}^{L'}(L) = \alpha_{L'}^{L'}(L)$ by [4, Notation 2.3], which implies that $\operatorname{Tr}^*(L', L) = \alpha_{L'}^{L'}(L)$. Moreover, by [4, Notation 2.4], we have

$$\alpha_{L'}^{L'}(L) = L'_{L'}L,$$

and so $\operatorname{Tr}^{*}(L', L) = L'_{L'}L.$

Definition 1.6. Let $L \in \mathcal{M}_c$. A lattice $L' \in \mathcal{M}_c$ is said to be generated^{*} by L or L-generated^{*} if $\operatorname{Tr}^*(L', L) = L$.

One denotes by $\operatorname{Gen}^*(G)$ the class of all modular complete lattices generated^{*} by G. \Box

Observe that if T is another lattice such that T is L-generated^{*}, then $\operatorname{Tr}^*(T, L) = L$.

Notice also that if L is L'-generated (in the sense of Definition 1.1), then by Lemma 1.3 we have L = Tr(L', L)/0. Thus

L is L'-generated $\iff L = \text{Tr}(L', L)/0.$

Proposition 1.7. Tr $(L', L)/0 = \text{Tr}^*(L', L)$ for any lattices $L', L \in \mathcal{M}_c$.

Proof. Let $t/0 = T = \text{Tr}^*(L', L)$. By Lemma 1.3, T is L'-generated. Thus $T \in \text{Gen}(L')$. As $\text{Tr}(L', L) = \bigvee \{ a \in L \mid a/0 \in \text{Gen}(L') \}$, we have $t \leq \bigvee \{ a \in L \mid a/0 \in \text{Gen}(L') \}$, so

$$T = t/0 \subseteq (\bigvee \{ a \in L \mid a/0 \in \text{Gen}(L') \})/0 = \text{Tr}(L', L)/0.$$

Hence $\operatorname{Tr}^*(L', L) = T \subseteq \operatorname{Tr}(L', L)/0.$

If we set h := Tr(L', L), then Tr(L', L)/0 = h/0. As $t/0 = T \subseteq \text{Tr}(L', L)/0 = h/0$, we have $t \leq h$. We are going to prove that t = h. Suppose that t < h. Then, as we remarked above, we have

$$t/0 = T = \operatorname{Tr}^*(L', L) = (\bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L) \}) / 0 = L'_{L'}L.$$

Thus $t = \bigvee \{f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L)\}$. Because t < h, we deduce that

T. Albu, J. Castro Pérez, J. Ríos Montes

$$\bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L) \} < h$$

By [5, Proposition 1.3], $\operatorname{Tr}(L', L)/0 = h/0$ is L'-generated. As t < h, there exist $u \in L'$ and $c \in h/0$ such that $c \nleq t$ and $1'/u \simeq c/0$. Since $L', L \in \mathcal{M}_c$, then there exists a linear isomorphism of lattices $1'/u \simeq c/0$, say $\varphi : 1'/u \longrightarrow c/0$, and then $\varphi(1') = c$.

Consider the linear morphism $i \circ \varphi \circ \pi : L' = 1'/0' \longrightarrow L = 1/0$, where π is the surjective linear morphism $\pi : L' = 1'/0' \longrightarrow 1'/u$ and i is the canonical inclusion linear morphism $i : c/0 \hookrightarrow L$. Thus

$$(i \circ \varphi \circ \pi)(1') = (i \circ \varphi)(\pi(1')) = (i \circ \varphi)(1') = i(\varphi(1')) = i(c) = c.$$

Since $i \circ \varphi \circ \pi \in \operatorname{Hom}_{\mathcal{LM}}(L', L)$, we have

$$c = (i \circ \varphi \circ \pi)(1') \leqslant \bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L) \} = t,$$

and hence $c \leq t$, which is a contradiction. Thus t = h, and so

$$\operatorname{Tr}^*(L', L) = T = t/0 = h/0 = \operatorname{Tr}(L', L)/0,$$

as desired.

Observe that by Proposition 1.7, we have

$$\operatorname{Tr}^{*}(L', L) = \operatorname{Tr}(L', L)/0 = L.$$

Thus

$$L$$
 is L' -generated \iff Tr $^*(L', L) = L$.

If we use now Definition 1.6, then $\operatorname{Tr}^*(L', L) = L$ implies that L' is *L*-generated^{*}. Thus

$$L'$$
 is L -generated^{*} \iff $\operatorname{Tr}^*(L', L) = L$.

As one can see, L is L'-generated \iff Tr $^*(L', L) = L \iff L'$ is L-generated^{*}.

We are now going to show that the equality $\text{Gen}(L) = \text{Gen}^*(L)$ is not true in general. To do that, consider the ring \mathbb{Z}_4 of rational integers modulo 4 and the category \mathbb{Z}_4 -Mod.

We claim that $\operatorname{Gen}(\mathbb{Z}_4) \neq \operatorname{Gen}^*(\mathbb{Z}_4)$. First, we show that $2\mathbb{Z}_4 \in \operatorname{Gen}(\mathbb{Z}_4)$. By Proposition 1.8, we have

$$\operatorname{Tr} (\mathbb{Z}_4, 2\mathbb{Z}_4)/0 = \operatorname{Tr}^*(\mathbb{Z}_4, 2\mathbb{Z}_4),$$
$$\operatorname{Tr}^*(\mathbb{Z}_4, 2\mathbb{Z}_4) = \mathbb{Z}_4 \mathbb{Z}_4 2\mathbb{Z}_4 = \sum_{f \in \operatorname{Hom} \mathbb{Z}_4} \mathbb{Z}_{4,2\mathbb{Z}_4} f(\mathbb{Z}_4),$$
$$\sum_{f \in \operatorname{Hom} \mathbb{Z}_4} \mathbb{Z}_4 \mathbb{Z}_{4,2\mathbb{Z}_4} f(\mathbb{Z}_4) = 2\mathbb{Z}_4,$$

 \mathbf{SO}

$$\operatorname{Tr} \left(\mathbb{Z}_4, 2\mathbb{Z}_4\right)/0 = \operatorname{Tr}^*(\mathbb{Z}_4, 2\mathbb{Z}_4) = 2\mathbb{Z}_4$$

135

Thus $\operatorname{Tr}(\mathbb{Z}_4, 2\mathbb{Z}_4)/0 = 2\mathbb{Z}_4$. By Lemma 1.3, $2\mathbb{Z}_4$ is \mathbb{Z}_4 -generated and so $2\mathbb{Z}_4 \in \operatorname{Gen}(\mathbb{Z}_4)$.

We are going to show that $2\mathbb{Z}_4 \notin \text{Gen}^*(\mathbb{Z}_4)$. Suppose not, i.e., $2\mathbb{Z}_4 \in \text{Gen}^*(\mathbb{Z}_4)$. By Definition 1.6, we have

$$\operatorname{Tr}^*(2\mathbb{Z}_4, \mathbb{Z}_4) = \mathbb{Z}_4,$$

and by Proposition 1.5,

$$\operatorname{Tr}^{*}(2\mathbb{Z}_{4},\mathbb{Z}_{4}) = 2\mathbb{Z}_{4} \ _{2\mathbb{Z}_{4}}2\mathbb{Z}_{4} = \sum_{f \in \operatorname{Hom}_{\mathbb{Z}_{4}}(2\mathbb{Z}_{4},\mathbb{Z}_{4})} f(2\mathbb{Z}_{4}).$$

As $2\mathbb{Z}_4$ is a simple ideal of \mathbb{Z}_4 , we have

$$\sum_{f \in \operatorname{Hom}_{\mathbb{Z}_4}(2\mathbb{Z}_4, \mathbb{Z}_4)} f(2\mathbb{Z}_4) = 2\mathbb{Z}_4.$$

Thus

$$\operatorname{Tr}^*(2\mathbb{Z}_4, \mathbb{Z}_4) = 2\mathbb{Z}_4,$$

and so

$$\mathbb{Z}_4 = \operatorname{Tr}^*(2\mathbb{Z}_4, \mathbb{Z}_4) = 2\mathbb{Z}_4$$

which is a contradiction. Therefore $2\mathbb{Z}_4 \notin \text{Gen}^*(\mathbb{Z}_4)$. This proves that $\text{Gen}(\mathbb{Z}_4) \neq \text{Gen}^*(\mathbb{Z}_4)$, as claimed.

Proposition 1.8. Let L, L' in \mathcal{M}_c . If for every non-zero linear morphism $f : L' \longrightarrow Y$ there exists a linear morphism $g : L \longrightarrow L'$ with $f \circ g \neq 0$, then L' is L-generated.

Proof. By Lemma 1.3, L' is L-generated $\iff L' = \text{Tr}(L, L')/0'$. Now, $\text{Tr}(L, L')/0' = \text{Tr}^*(L, L')$ by Proposition 1.7, and $\text{Tr}^*(L, L') = L_L L'$ as we observed just a line above Definition 1.5. Thus L' is L-generated $\iff L' = L_L L'$. Consequently, it is enough to prove that $L' = L_L L'$.

Set $N := L_L L' = N = n/0'$. Then $n/0' = N \subseteq L' = 1'/0'$, so $n \leq 1'$. If n = 1', then N = n/0' = 1'/0' = L', i.e., $L_L L' = N = L'$.

Now, assume that n < 1', and consider the surjective linear epimorphism

$$p:L'=1'/0'\longrightarrow 1'/n,\, p(a)=a\vee n,\, a\in L'.$$

Since n < 1', p is a non-zero linear morphism. By hypothesis there exists a linear morphism $g: L \longrightarrow L'$ such that $p \circ g \neq 0$. As $p \circ g: L \longrightarrow 1'/n$, there exists $l \in L$ with $(p \circ g)(l) > n$. But $(p \circ g)(l) = p(g(l)) = g(l) \lor n$. Thus $g(l) \lor n > n$, and then $g(l) \leqslant g(1)$ since g is an increasing mapping.

Remember that

$$n/0' = N = L_L L' = \bigvee (\{f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')\})/0',$$

so $n = \bigvee \{f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')\}$. Hence $n \ge f(1)$ for all $f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')$. As $g \in \operatorname{Hom}_{\mathcal{LM}}(L, L')$, we have $n \ge g(1)$. Since $g(1) \ge g(l)$, we deduce that $n \ge g(l)$. So $g(l) \lor n = n$. On the other hand, we have seen above that $g(l) \lor n > n$, which is a contradiction. Consequently, necessarily n = 1', and then $L_L L' = N = L'$. This finishes the proof.

We present below a new definition, that is a reformulation of [12, Proposition 13.5(2)] showing that if U and L' are two right R-modules, then

L' is U-generated if and only if Tr(U, L') = L'.

Definition 1.9. A lattice $L' \in \mathcal{M}_c$ is said to be generated^{**} by L or L generated^{**} for a lattice $L \in \mathcal{M}_c$ if for every non-zero linear morphism $f: L' \longrightarrow Y$ there exists a linear morphism $g: L \longrightarrow L'$ with $f \circ g \neq 0$.

One denotes by $\operatorname{Gen}^{**}(G)$ the class of all modular complete lattices generated^{**} by G.

Proposition 1.10. With the notation above, L' is L-generated if and only if it is L-generated^{**}.

Proof. Suppose L' is L-generated^{**}. Then, by Proposition 1.8 we deduce that L' is L-generated.

Conversely, assume that L' is L-generated. Then, L' = Tr(L, L')/0' by Lemma 1.3, so

$$L' = \operatorname{Tr}(L, L')/0' = \operatorname{Tr}^*(L, L').$$

Then $L_L L' = \operatorname{Tr}^*(L, L')$ by Proposition 1.5. It follows that

$$L' = \operatorname{Tr}^*(L, L') = L_L L'.$$

Now, let $f: L' \longrightarrow Y = 1''/0''$ be a non-zero linear morphism. Then

$$L_L L' = \operatorname{Tr}^*(L, L') = \left(\bigvee \{g(1) \mid g \in \operatorname{Hom}_{\mathcal{LM}}(L, L') \} \right) / 0',$$

and so

$$1'/0' = L' = L_L L' = (\bigvee \{g(1) \mid g \in \operatorname{Hom}_{\mathcal{LM}}(L, L')\})/0'$$

We deduce that $1' = \bigvee \{g(1) \mid g \in \text{Hom}_{\mathcal{LM}}(L, L')\}$, and because $f: L' \longrightarrow Y = 1''/0''$ is a non-zero linear morphism, we have

$$0^{\prime\prime} \neq f(1^{\prime}) = f(\bigvee \{g(1) \mid g \in \operatorname{Hom}_{\mathcal{LM}}(L,L^{\prime})\}) = \bigvee \{f(g(1)) \mid g \in \operatorname{Hom}_{\mathcal{LM}}(L,L^{\prime})\},$$

so there exists a linear morphism $g: L \longrightarrow L'$ with $f(g(1)) \neq 0''$. Then $f \circ g$ is a non-zero linear morphism. This proves that L' is L-generated^{**}, as desired.

Lemma 1.11. Let $1/0 = L, L' \in \mathcal{M}_c$. If $T = \operatorname{Tr}^*(L', L)$, then T es L'-generated. Proof. As above, $T = \operatorname{Tr}^*(L', L) = L'_{L'}L$, so, by product of lattices we have

$$t/0 = T = L'_{L'}L = (\bigvee \{f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L)\})/0$$

hence $t = \bigvee \{ f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L) \}.$

Let $a \in T$, $a \neq t$. Then $a < t = \bigvee \{f(1') \mid f \in \text{Hom}_{\mathcal{LM}}(L', L)\}$, so there exists $f \in \text{Hom}_{\mathcal{LM}}(L', L)\}$ with $f(1') \leq a$. As $f: 1'/0' = L' \longrightarrow L = 1/0$ is a linear morphism, there exists $k \in 1'/0'$ such that k is the kernel of f. If c := f(1'), then f induces a lattice isomorphism

$$\bar{f}: 1'/k \xrightarrow{\sim} c/0, \ \bar{f}(x) = f(x), \ \forall x \in 1'/k, \ \text{and so}$$

 $c/0 \simeq 1'/k$, i.e., T is L'-generated by Definition 1.1, as desired.

Proposition 1.12. The lattice Tr(L', L)/0 is L'-generated.

Proof. By Proposition 1.7, $\operatorname{Tr}(L',L)/0 = \operatorname{Tr}^*(L',L)$, and $\operatorname{Tr}^*(L',L)$ is L'-generated by Lemma 1.11, so $\operatorname{Tr}(L',L)/0$ is L'-generated.

Corollary 1.13. The following assertions hold for $L, L' \in \mathcal{M}_c$.

- (1) $\operatorname{Tr}^*(L', L)$ is the largest sublattice of L generated by L'.
- (2) $\operatorname{Tr}^*(L', L)$ is fully invariant in L.

Proof. (1) Since $\operatorname{Tr}(L', L) = \bigvee \{ a \in L \mid a/0 \in \operatorname{Gen}(L') \}$, by [5, Proposition 1.3] we have $\operatorname{Tr}(L', L)/0 \in \operatorname{Gen}(L')$. Hence $\operatorname{Tr}(L', L)/0$ is L'-generated. Now, $\operatorname{Tr}(L', L)/0 = \operatorname{Tr}^*(L', L)$ by Proposition 1.7, so $\operatorname{Tr}^*(L', L)$ is L'-generated.

Let T = t/0 be a sublattice of L such that T is L'-generated, i.e., $T = t/0 \in \text{Gen}(L')$. Then

$$t \leq \bigvee \{ a \in L \mid a/0 \in \operatorname{Gen}(L') \} = \operatorname{Tr}(L', L).$$

Therefore $T = t/0 \subseteq \text{Tr}(L', L)/0 = \text{Tr}^*(L', L)$. Thus $\text{Tr}^*(L', L)$ is the largest sublattice of L generated by L'.

(2) Let $g: L \longrightarrow L$ be a linear morphism. Then

 $g(\operatorname{Tr}^{*}(L', L)) = g(\bigvee \{f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L)\}) / 0).$

As g commutes with arbitrary joins, we have

$$g(\bigvee\{f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L',L)\})/0) = \bigvee(\{(g \circ f)(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L',L)\})/0.$$

Because $g \circ f \in \operatorname{Hom}_{\mathcal{LM}}(L', L)$ we have

$$\bigvee (\{(g \circ f)(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L', L)\}) / 0 \subseteq \bigvee (\{h(1') \mid h \in \operatorname{Hom}_{\mathcal{LM}}(L', L)\}) / 0,$$

and then $g(\operatorname{Tr}^*(L',L)) \subseteq \operatorname{Tr}^*(L',L)$, so $\operatorname{Tr}^*(L',L)$ is fully invariant in L, as desired. \Box

Proposition 1.14. Let $L, L' \in \mathcal{M}_c$ with $L' \in \operatorname{Gen}^{**}(L)$. Then $\operatorname{Gen}^{**}(L') \subseteq \operatorname{Gen}^{**}(L)$.

Proof. Let $1''/0'' = L'' \in \text{Gen}^{**}(L')$, so L'' is L'-generated by Proposition 1.10, and then L'' = Tr(L', L'')/0'' by Lemma 1.3. Further, $\text{Tr}(L', L'')/0' = \text{Tr}^*(L', L'')$, and by Proposition 1.5 we have $\text{Tr}^*(L', L'') = L'_{L'}L''$. Thus

$$L'' = \operatorname{Tr}(L', L'')/0'' = \operatorname{Tr}^*(L', L'') = L'_{L'}L''.$$

So $L'' = L'_{L'}L''$. Moreover, by Definition 1.4, we have

$$L'_{L'}L'' = (\bigvee \{ f(1') \mid f \in \text{Hom}_{\mathcal{LM}}(L', L'') \}) / 0''.$$

Notice that if $f \in \text{Hom}_{\mathcal{LM}}(L', L'')$ then f(L') = f(1'/0') = f(1')/f(0') = f(1')/0'', so

 $\bigvee_{f\in \operatorname{Hom}_{\mathcal{LM}}(L',L'')}f(L')=\bigvee_{f\in \operatorname{Hom}_{\mathcal{LM}}(L',L'')}(f(1')/0'').$

By Notation [4, 2.4], we have

$$\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')} (f(1')/0'') = (\bigvee \{f(1') \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')\})/0'' = L'_{L'}L''.$$

Thus $\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')} f(L') = L'_{L'}L''.$

Since $L' \in \text{Gen}^{**}(L)$, then by Proposition 1.10 we deduce that L' is *L*-generated. So, by Lemma 1.3, L' = Tr(L, L')/0', and by Proposition 1.7 $\text{Tr}(L, L')/0' = \text{Tr}^*(L, L')$. Now, by Proposition 1.5 we have $\text{Tr}^*(L, L') = L_L L'$. Thus

$$L' = \operatorname{Tr}(L, L')/0' = \operatorname{Tr}^*(L, L') = L_L L'.$$

On the other hand, by Definition 1.4 we have $L' = L_L L' = \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} h(L)$. If $f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')$, then

$$f(L') = f(L_L L') = f(\bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} h(L)) = \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} f(h(L)),$$

and so $f(L') = \bigvee_{h \in \operatorname{Hom}_{\mathcal{CM}}(L,L')} (f \circ h)(L)$. Since $f \circ h \in \operatorname{Hom}_{\mathcal{LM}}(L,L'')$, it follows that

$$f(L') = \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (f \circ h)(L) \subseteq \bigvee_{g \in \operatorname{Hom}_{\mathcal{LM}}(L,L'')} g(L)$$

Moreover, by Definition 1.4 we have $\bigvee_{g \in \operatorname{Hom}_{\mathcal{LM}}(L,L'')} g(L) = L_L L''$. Thus $f(L') \subseteq L_L L''$ for all $f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')$. We deduce that

$$\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')} f(L') \subseteq L_L L''.$$

Since $L'' = L'_{L'}L'' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L',L'')} f(L')$, then

$$L'' = L'_{L'}L'' \subseteq L_L L'' \subseteq L''.$$

Thus $L'' = L_L L''$. By Proposition 1.5, we have $\operatorname{Tr}^*(L, L'') = L_L L'' = L''$. So, by Lemma 1.11, we deduce that L'' is *L*-generated, and by Proposition 1.10 it follows that L'' is *L*-generated^{**}. Therefore $L'' \in \operatorname{Gen}^{**}(L)$, as desired.

Proposition 1.15. Let $L, L' \in \mathcal{M}_c$. If $L' \in \text{Gen}^{**}(L)$, then $L'/Y \in \text{Gen}^{**}(L)$ for all Y in Sub (L').

Proof. Let $Y = y/0' \in \text{Sub}(L')$. Then $L_L(L'/Y) \subseteq L'/Y$ by the definition of product of lattices. Consider the linear epimorphism

$$p: L' \longrightarrow L'/Y, \ p(x) = x \lor y, \ \forall x \in L'.$$

Then p(L') = L'/Y. Since L' is *L*-generated^{**}, then L' is *L*-generated by Proposition 1.10, so L' = Tr(L, L')/0' by Lemma 1.3. It follows that $\text{Tr}(L, L')/0' = \text{Tr}^*(L, L')$ by Proposition 1.7. Now, by Proposition 1.5 $\text{Tr}^*(L, L') = L_L L'$, we have

$$L' = \text{Tr}(L, L')/0' = \text{Tr}^*(L, L') = L_L L'.$$

On the other hand, $L_L L' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} f(L)$ by Definition 1.4, so

$$L' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}(L,L')}} f(L).$$

Thus

$$p(L') = p(L_L L') = p(\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} f(L)) = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (p \circ f)(L).$$

Clearly $p \circ f \in \operatorname{Hom}_{\mathcal{LM}}(L, L'/Y)$ for all $f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')$, so

$$(p \circ f)(L) \subseteq \bigvee_{g \in \operatorname{Hom}_{\mathcal{LM}}(L,L'/Y)} g(L) \text{ for all } f \in \operatorname{Hom}_{\mathcal{LM}}(L,L').$$

Thus

$$\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (p \circ f)(L) \subseteq \bigvee_{g \in \operatorname{Hom}_{\mathcal{LM}}(L,L'/Y)} g(L).$$

Observe that $\bigvee_{q \in \operatorname{Hom}_{\mathcal{CM}}(L,L'/Y)} g(L) = L_L(L'/Y).$

$$L'/Y = p(L') = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (p \circ f)(L) \subseteq L_L(L'/Y).$$

So $L_L(L'/Y) = L'/Y$. Apply now Proposition 1.5, Proposition 1.7, and Proposition 1.10 to deduce that L'/Y is L-generated^{**}, i.e., $L'/Y \in \text{Gen}^{**}(L)$, which finishes the proof. \Box

Lemma 1.16. Let $L \in \mathcal{M}_c$, and let $(X_i)_{i \in I}$ be a family in Sub(L). If $Y \in$ Sub(L) and $X_i \subseteq Y$ for all $i \in I$, then $\bigvee_{i \in I} X_i \subseteq Y$.

Proof. Let $X_i = x_i/0$ for each $i \in I$, and let Y = y/0. As $X_i \subseteq Y$, we have $x_i/0 \subseteq y/0$, so $x_i \leq y$ for all $i \in I$. Thus $\bigvee x_i \leq y$, and then $(\bigvee x_i)/0 \leq y/0 = Y$. By [4, Section 2], we have $\bigvee_{i \in I} X_i = (\bigvee x_i)/0$. Consequently $\bigvee_{i \in I} X_i \subseteq Y$, as desired.

Proposition 1.17. Let $L, L' \in \mathcal{M}_c$. If $(X_i)_{i \in I}$ is a family in Sub(L') and $X_i \in \text{Gen}^{**}(L)$ for all $i \in I$, then $\bigvee_{i \in I} X_i \in \text{Gen}^{**}(L)$.

Proof. Set $X := \bigvee_{i \in I} X_i$. Then $L_L X = L_L(\bigvee_{i \in I} X_i) \subseteq \bigvee_{i \in I} X_i$. As $X_i \subseteq X$, then by [4, Proposition 2.7], $L_L X_i \subseteq L_L X$. By Proposition 1.10, X_i is *L*-generated, so by Lemma 1.3, Proposition 1.7, and Proposition 1.5 we deduce that $X_i = L_L X_i$ for all $i \in I$. Thus $X_i = L_L X_i \subseteq L_L X$ for all $i \in I$. Now $\bigvee_{i \in I} X_i \subseteq L_L X$ by Lemma 1.16, and then $X = \bigvee_{i \in I} X_i = L_L X$. Proposition 1.7, Lemma 1.3, and Proposition 1.10 imply that X is *L*-generated^{**}, i.e., $\bigvee_{i \in I} X_i = X \in \text{Gen}^{**}(L)$, as desired.

Lemma 1.18. Let $L, L' \in \mathcal{M}_c$. Then L' is L-generated^{**} $\iff L_L L' = L'$.

Proof. Observe that

$$L'$$
 is L-generated^{**} $\iff L'$ is L-generated

by Proposition 1.10, and

$$L'$$
 is L-generated $\iff L' = \operatorname{Tr}(L, L')/0'$

by Lemma 1.3, so

$$L'$$
 is L-generated^{**} $\iff L' = \text{Tr}(L, L')/0'$.

On the other hand, $L' = \text{Tr}(L, L')/0' = \text{Tr}^*(L, L')$ by Proposition 1.7, and $\text{Tr}^*(L, L') = L_L L'$ by Proposition 1.5. Thus

$$L'$$
 is L -generated^{**} $\iff L_L L' = L'$,

and we are done.

Proposition 1.19. Let $L, X \in \mathcal{M}_c$. Then

$$\bigvee \{ Y \in \operatorname{Sub}(X) \mid Y \in \operatorname{Gen}^{**}(L) \} = \operatorname{Tr}^{*}(L, X).$$

Proof. By Proposition 1.5, $\operatorname{Tr}^*(L, X) = L_L X$. Let $Y \in \operatorname{Sub}(X)$. If $Y \in \operatorname{Gen}^{**}(L)$, then Y is L-generated^{**}, and $L_L Y = Y$ by Lemma 1.18. As $Y \subseteq X$, then by [4, Proposition 2.7] we have $L_L Y \subseteq L_L X$. Thus $L_L Y \subseteq L_L X = \operatorname{Tr}^*(L, X)$, so $Y = L_L Y \subseteq \operatorname{Tr}^*(L, X)$ for all $Y \in \operatorname{Sub}(X)$. Since $Y \in \operatorname{Gen}^{**}(L)$, then by Lemma 1.16,

$$\bigvee \{ Y \in \text{Sub}(X) \mid Y \in \text{Gen}^{**}(L) \} \subseteq \text{Tr}^{*}(L, X).$$

Observe that $\operatorname{Tr}^*(L, X)$ is *L*-generated by Lemma 1.11, and $\operatorname{Tr}^*(L, X)$ is *L*-generated^{**} by Proposition 1.10, i.e., $\operatorname{Tr}^*(L, X) \in \operatorname{Gen}^{**}(L)$. Since $\operatorname{Tr}^*(L, X) = L_L X \subseteq X$, then $\operatorname{Tr}^*(L, X) \in \operatorname{Sub}(X)$. Hence

$$\operatorname{Tr}^*(L,X) \subseteq \bigvee \{ Y \in \operatorname{Sub}(X) \mid Y \in \operatorname{Gen}^{**}(L) \}$$

Thus $\bigvee \{ Y \in \text{Sub}(X) \mid Y \in \text{Gen}^{**}(L) \} = \text{Tr}^{*}(L, X)$, and we are done.

Lemma 1.20. The following statements hold for $L, L', L'' \in \mathcal{M}_c$ and $1'/0' = L' \in \operatorname{Gen}^{**}(L)$.

- (1) If $L' \simeq L''$ in \mathcal{LM} , then $L'' \in \text{Gen}^{**}(L)$.
- (2) If $a' \in L'$ then $1'/a' \in \operatorname{Gen}^{**}(L)$.

Proof. (1) We are going to prove that $L'' = L_L L''$. By definition of the product of lattices we have $L_L L'' \subseteq L''$. By hypothesis, there exists a linear isomorphism $g: L' \xrightarrow{\sim} L''$, so g(L') = L''.

As $L' \in \text{Gen}^{**}(L)$, then $L_L L' = L'$ by Lemma 1.18, and

$$L' = L_L L' = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, L') \} \right) / 0' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')} f(L)$$

Some remarks on the category $\sigma[L]$

by [4, Notation 2.4].

Thus

$$L'' = g(L') = g(\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} f(L)) = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (g \circ f)(L),$$

where $g \circ f : L \longrightarrow L''$, so $g \circ f \in \operatorname{Hom}_{\mathcal{LM}}(L, L'')$. Since $L_L L'' = \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L, L'')} h(L)$, we have

$$L'' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (g \circ f)(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L,L'')} h(L) = L_L L''.$$

Therefore $L'' \subseteq L_L L''$, so $L'' = L_L L''$. Now, by Lemma 1.18 it follows that L'' is L-generated^{**}, and then $L'' \in \text{Gen}^{**}(L)$.

(2) We are now going to prove that $1'/a' = L_L(1'/a')$. By the definition of product of two lattices we have $L_L(1'/a') \subseteq 1'/a'$.

Consider the surjective linear morphism

$$p: L' \longrightarrow 1'/a', \ p(x) = x \lor a', \ \forall x \in L'$$

Then, as $L' \in \text{Gen}^{**}(L)$, we have $L_L L' = L'$ by Lemma 1.18. On the other hand

$$L' = L_L L' = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, L') \} \right) / 0' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')} f(L)$$

by [4, Notation 2.4].

As p is a linear epimorphism we have p(L') = 1'/a', so

$$1'/a' = p(L') = p(\bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} f(L)) = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (p \circ f)(L),$$

where $p \circ f : L \longrightarrow 1'/a'$, so $p \circ f \in \operatorname{Hom}_{\mathcal{LM}}(L, (1'/a'))$. Since $L_L(1'/a') = \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L, (1'/a'))} h(L)$, we deduce that

$$1'/a' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} (p \circ f)(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{LM}}(L,(1'/a'))} h(L) = L_L(1'/a').$$

Therefore $1'/a' \subseteq L_L(1'/a')$, so $1'/a' = L_L(1'/a')$. By Lemma 1.18 it follows that 1'/a' is *L*-generated^{**}. Thus $1'/a' \in \text{Gen}^{**}(L)$, as desired.

Proposition 1.21. The following assertions are equivalent for $L, L' \in \mathcal{M}_c$.

- (1) $L' \in \text{Gen}^{**}(L)$.
- (2) There exists a family $(X_i)_{i \in I}$ in Sub(L'), such that $L' = \bigvee_{i \in I} X_i$ and X_i is a linear homomorphic image of L.

Proof. (1) \Longrightarrow (2). Assume that $L' \in \text{Gen}^{**}(L)$. Then $L' = L_L L'$ by Lemma 1.18, and by [4, Notation 2.4] we have

$$L' = L_L L' = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, L') \} \right) / 0'.$$

Therefore

$$L' = \bigvee_{f \in \operatorname{Hom}_{\mathcal{LM}}(L,L')} f(L)$$

For each $f \in \operatorname{Hom}_{\mathcal{LM}}(L, L')$ we set $X_f := f(L)$ and $I := \operatorname{Hom}_{\mathcal{LM}}(L, L')$. Thus X_f is a linear homomorphic image of L for all $f \in I$, and so

$$L' = \bigvee_{f \in I} X_f,$$

which proves (2).

 $(2) \Longrightarrow (1)$ Suppose that $L' = \bigvee_{i \in I} X_i$ and X_i is a linear homomorphic image of L for every $i \in I$, i.e., there exist linear epimorphisms $f_i : L \longrightarrow X_i$ for every $i \in I$. If k_i is the kernel of f_i , then f_i induces a lattice isomorphism

$$f_i: 1/k_i \xrightarrow{\sim} f(1)/f(k_i), \ f_i(x) = f_i(x), \ \forall x \in 1/k_i.$$

Since f_i is linear epimorphism, then $f_i(L) = X_i$. Thus $X_i = f_i(1)/f_i(k_i)$. Hence we deduce that $f_i(L) = X_i \simeq 1/k_i$. As $L = L_L L$, then Lemma 1.18 and Proposition 1.10 imply that L is L-generated^{**}. As $k_i \in L$, then $1/k_i$ is L-generated^{**} by Lemma 1.20, and so X_i is L-generated^{**} for all $i \in I$ by Lemma 1.20.

Since $X_i \subseteq L'$ for all $i \in I$, then by Proposition 1.17 $L' = \bigvee_{i \in I} X_i$ is *L*-generated^{**}, i.e., $L' \in \text{Gen}^{**}(L)$, and we are done.

Proposition 1.22. Gen $(L) = \text{Gen}^{**}(L)$ for any $L \in \mathcal{M}_c$.

Proof. The result follows immediately from Proposition 1.10.

2 The category $\sigma[L]$

Definition 2.1. For any lattice $L \in \mathcal{M}_c$ we denote by $\sigma[L]$ the full subcategory of \mathcal{M}_c that contains all lattices $L' \in \mathcal{M}_c$ such that L' is linearly isomorphic to a sublattice of an L-generated lattice (or equivalently, L-generated^{**} by Proposition 1.10).

Lemma 2.2. Let $L, L' \in \mathcal{M}_c$. If $h : L \longrightarrow L'$ is a linear isomorphism and K is a sublattice of L, then L/K and L'/h(K) are (linearly) isomorphic.

Proof. Let K = k/0. As h is a linear morphism, then h preserves intervals by [7, Lemma 0.6], so h(1/k) = h(1)/h(k), h(1) = 1', and h(1/k) = 1'/h(k).

Since L/K = 1/k, L'/h(K) = 1'/h(k), and h is a linear isomorphism, then L/K and L'/h(K) are (linearly) isomorphic, as desired.

Proposition 2.3. The category $\sigma[L]$ is closed under sublattices and quotient linear epimorphisms for any $L \in \mathcal{M}_c$. *Proof.* First, we are going to prove that $\sigma[L]$ is closed under sublattices. Let $L' \in \sigma[L]$ and $L'' \subseteq L'$. Then, by the definition of $\sigma[L]$, we have $L' \simeq T'$, where T' is a sublattice of an L-generated lattice T. Then L'' is isomorphic to a sublattice of T'. Since T' is a sublattice of T, we deduce that $L'' \in \sigma[L]$, so $\sigma[L]$ is closed under sublattices.

We are now going to show that $\sigma[L]$ is closed under quotient linear epimorphisms. Let $L' \in \sigma[L]$ and $L'' \subseteq L'$. As $L' \in \sigma[L]$, then $L' \simeq T'$ by the definition of $\sigma[L]$, where T' is a sublattice of an L-generated lattice T, so, L'' is isomorphic to sublattice T'' of T', and $L'/L'' \simeq T'/T''$ by Lemma 2.2, As T'' is sublattice of T' and T' is a sublattice of T, we deduce that T'' is sublattice of T, and so $T'/T'' \subseteq T/T''$.

On the other hand, Gen^{**}(L) = Gen (L) by Proposition 1.22, so $T \in \text{Gen}(L)$, and then $T \in \text{Gen}^{**}(L)$. Now, $T/T'' \in \text{Gen}^{**}(L)$ by Proposition 1.15. Thus $T/T'' \in \text{Gen}(L)$, so T/T'' is L-generated. Since $T'/T'' \subseteq T/T''$ and $L'/L'' \simeq T'/T''$, it follows that $L'/L'' \in \sigma[L]$, as desired.

Lemma 2.4. If Gen $[L] \subseteq$ Gen [H] for $L, H \in \mathcal{M}_c$, then $\sigma[L] \subseteq \sigma[H]$.

Proof. Let $L' \in \sigma[L]$ and $L'' \subseteq L'$. As $L' \in \sigma[L]$, then by the definition of $\sigma[L]$, we have $L' \simeq T'$, where T' is a sublattice of an L-generated lattice T. Thus $T \in \text{Gen}[L]$. By hypothesis, we have $\text{Gen}[L] \subseteq \text{Gen}[H]$, so $T \in \text{Gen}[H]$, hence T is H-generated. Since $L' \simeq T' \subseteq T$, we have $L' \in \sigma[H]$, which shows that $\sigma[L] \subseteq \sigma[H]$.

Proposition 2.5. Let $L, L' \in \mathcal{M}_c$. If L' is L-generated (or equivalently, L-generated^{**}), then $\sigma[L'] \subseteq \sigma[L]$.

Proof. As L' is L-generated, $L' \in \text{Gen}[L]$. Then $L' \in \text{Gen}[L]^{**}$ by Proposition 1.22. Now, $\text{Gen}[L']^{**} \subseteq \text{Gen}[L]^{**}$ by Proposition 1.14. Further, by Proposition 1.22, we have $\text{Gen}[L'] \subseteq \text{Gen}[L]$, and $\sigma[L'] \subseteq \sigma[L]$ by Lemma 2.4.

Corollary 2.6. Let $L \in \mathcal{M}_c$ and $T = t/0 \in \text{Sub}(L)$. Then $\sigma[1/t] \subseteq \sigma[L]$.

Proof. As $t/0 = T \subseteq L$, then $t \in L$. By Lemma 1.20, we have $1/t \in \text{Gen}[L]^{**}$, so, by Proposition 1.22, we deduce that $1/t \in \text{Gen}[L]$. Now, by Proposition 2.5, we have $\sigma[1/t] \subseteq \sigma[L]$.

Proposition 2.7. Let $L, T \in \mathcal{M}_c$ and let $(T_i)_{i \in I}$ be a family in Sub(T). If $T_i \in \text{Gen}[L]$ for all $i \in I$, then $\bigvee_{i \in I} T_i \in \sigma[L]$.

Proof. Set $T' := \bigvee_{i \in I} T_i$. We claim that $L_L T' = T'$. Indeed, by the definition of product of lattices, we have $L_L T' \subseteq T'$. Since $T_i \in \text{Gen}[L]$ for all $i \in I$, then by Lemma 1.18, we deduce that $L_L T_i = T_i$ for all $i \in I$. As $T_i \subseteq T'$ for all $i \in I$, then, by [4, Proposition 2.7], we have

 $T_i = L_L T_i \subseteq L_L T' \subseteq T'$ for all $i \in I$.

Thus $T_i \subseteq T'$ for all $i \in I$, so we deduce that

$$T' = \bigvee_{i \in I} T_i \subseteq L_L T' \subseteq T'.$$

Therefore $L_L T' = T'$, as claimed.

By Lemma 1.18, it follows that T' is L-generated, and so $\bigvee_{i \in I} T_i = T' \in \text{Gen}(L)$. Now, $\text{Gen}(L) \subseteq \sigma[L]$ by the definition of $\sigma[L]$. Consequently $T' = \bigvee_{i \in I} T_i \in \sigma[L]$, and we are done.

Definition 2.8. A lattice $L \in \mathcal{M}_c$ is said to be a self-generator if it generates all its sublattices, and a lattice $L' \in \sigma[L]$ is called a generator in $\sigma[L]$ if L' generates all lattices in $\sigma[L]$.

Proposition 2.9. The following assertions are equivalent for $L \in \mathcal{M}_c$ and $X \in \text{Sub}(L)$.

- (1) L is a self-generator.
- (2) The mapping $X \mapsto \operatorname{Hom}_{\mathcal{LM}}(L, X)$ from the set $\operatorname{Sub}(L)$ of all sublattices of L to the set of all subsets of $\operatorname{End}_{\mathcal{LM}}(L)$ is injective.

Proof. 1) \Longrightarrow 2) Let $X, Y \in \text{Sub}(L)$ be such that $\text{Hom}_{\mathcal{LM}}(L, X) = \text{Hom}_{\mathcal{LM}}(L, Y)$. Since L is a self-generator, then X and Y are L-generated. By Proposition 1.10, we deduce that X and Y are L-generated^{**}, and by Lemma 1.18, it follows that $L_L X = X$ and $L_L Y = Y$.

On the other hand, we have

$$X = L_L X = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, X) \} \right) / 0$$

and

$$Y = L_L Y = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, Y) \} \right) / 0$$

Since Hom $_{\mathcal{LM}}(L, X) = \text{Hom }_{\mathcal{LM}}(L, Y)$, we have

$$X = L_L X = L_L Y = Y,$$

which shows that the map $X \mapsto \operatorname{Hom}_{\mathcal{LM}}(L, X)$ is injective.

2) \implies 1) Let $X \in \text{Sub}(L)$. By Lemma 1.11, it follows that $L_L X$ is L-generated. Set $L_L X := X'$, so by Lemma 1.18, we deduce that X' is L-generated **. Again by Lemma 1.18, we have $L_L X' = X'$.

We claim that $\operatorname{Hom}_{\mathcal{LM}}(L, X') = \operatorname{Hom}_{\mathcal{LM}}(L, X)$. Indeed, $X' = L_L X \subseteq X$. Let $f \in \operatorname{Hom}_{\mathcal{LM}}(L, X')$. Then $f \in \operatorname{Hom}_{\mathcal{LM}}(L, X)$, so $\operatorname{Hom}_{\mathcal{LM}}(L, X') \subseteq \operatorname{Hom}_{\mathcal{LM}}(L, X)$. For $g \in \operatorname{Hom}_{\mathcal{LM}}(L, X)$ we have

$$g(L) \subseteq \bigvee_{h \in \operatorname{Hom}_{\mathcal{C}M}(L,X)} h(L) = L_L X = X',$$

and then $g \in \operatorname{Hom}_{\mathcal{LM}}(L, X')$, which implies that

$$\operatorname{Hom}_{\mathcal{LM}}(L,X) = \operatorname{Hom}_{\mathcal{LM}}(L,X'),$$

as claimed.

Since the map $X \mapsto \text{Hom}_{\mathcal{LM}}(L, X)$ is injective, it follows that X = X'. Thus $X = X' = L_L X$. So, by Lemma 1.18, X is L-generated^{**}. Now, by Proposition 1.10, we deduce that X is L-generated. Thus L is a self-generator.

For $L \in \mathcal{M}_c$ and $X \in \sigma[L]$ we set $\psi(X) := \operatorname{Hom}_{\mathcal{LM}}(L, X)$.

Proposition 2.10. The following assertions are equivalent for $L \in \mathcal{M}_c$.

- (1) L is a generator in $\sigma[L]$.
- (2) The map $\psi : \sigma[L] \longrightarrow \{ \operatorname{Hom}_{\mathcal{LM}}(L, X) \mid X \in \sigma[L] \}$ is injective.

Proof. 1) \implies 2) Let $X, Y \in \sigma[L]$ be such that $\psi(X) = \psi(Y)$, i.e., $\operatorname{Hom}_{\mathcal{LM}}(L, X) = \operatorname{Hom}_{\mathcal{LM}}(L, Y)$. Because L is a generator in $\sigma[L]$, then X and Y are L-generated, so L-generated^{**} by Proposition 1.10, and by Lemma 1.18, we deduce that $L_L X = X$ and $L_L Y = Y$.

On the other hand, we have

$$X = L_L X = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, X) \} \right) / 0_X$$

and

 $Y = L_L Y = \left(\bigvee \{ f(1) \mid f \in \operatorname{Hom}_{\mathcal{LM}}(L, Y) \} \right) / 0_Y.$

Since Hom $_{\mathcal{LM}}(L, X) = \text{Hom }_{\mathcal{LM}}(L, Y)$, we deduce that

$$X = L_L X = L_L Y = Y.$$

Thus the map ψ is injective.

2) \implies 1) Let $X \in \sigma[L]$. Then, $L_L X$ is *L*-generated by Lemma 1.11. If we set $L_L X := X'$, then by Lemma 1.18, we deduce that X' is *L*-generated^{**}. Now, by Lemma 1.18, we have $L_L X' = X'$.

We claim that $\operatorname{Hom}_{\mathcal{LM}}(L, X') = \operatorname{Hom}_{\mathcal{LM}}(L, X)$. Indeed, we have $X' = L_L X \subseteq X$. Now let $f \in \operatorname{Hom}_{\mathcal{LM}}(L, X')$. As $X' \subseteq X$, it follows that $f \in \operatorname{Hom}_{\mathcal{LM}}(L, X)$, and then $\operatorname{Hom}_{\mathcal{LM}}(L, X') \subseteq \operatorname{Hom}_{\mathcal{LM}}(L, X)$. For any $g \in \operatorname{Hom}_{\mathcal{LM}}(L, X)$ we have

$$g(L) \subseteq \bigvee_{h \in \operatorname{Hom} \, \in \, \mathcal{M}(L,X)} h(L) = L_L X = X',$$

so $g \in \operatorname{Hom}_{\mathcal{LM}}(L, X')$, which implies that

$$\operatorname{Hom}_{\mathcal{LM}}(L, X) = \operatorname{Hom}_{\mathcal{LM}}(L, X'),$$

as claimed.

Thus $\psi(X) = \psi(X')$, so $X = X' = L_L X$ because the map ψ is injective. Now, by Lemma 1.18, X is L-generated^{**}, and then X is L-generated by Proposition 1.10. This shows that L is a generator $\sigma[L]$, and we are done.

Proposition 2.11. Let $L \in \mathcal{M}_c$ be a generator in $\sigma[L]$. Then every simple lattice in $\sigma[L]$ is a linear homomorphic image of L.

Proof. Let $S \in \sigma[L]$ be a simple lattice. As L is a generator in $\sigma[L]$, then S is L-generated, so L-generated^{**} by Proposition 1.10. Then $S = L_L S$ by Lemma 1.18. It follows that there exists a non-zero linear morphism $f: L \longrightarrow S$. Since S is a simple lattice we deduce that f(L) = S, which implies that S is a linear homomorphic image of L.

References

- [1] T. ALBU, Classes of lattices (co)generated by a lattice and their global (dual) Krull dimension, *Discrete Mathematics*, **185**, 1-18 (1998).
- [2] T. ALBU, Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of Parana's Mathematical Society No. 1, Sociedade Paranaense de Matemática, Maringá, Paraná, Brasil (2015).
- [3] T. ALBU, J. CASTRO PÉREZ, J. RÍOS MONTES, The lattice structure of all lattice preradicals on modular complete lattices, and applications (I), Bull. Math. Soc. Sci. Math. Roumanie, 62 (110), 3-20 (2019).
- [4] T. ALBU, J. CASTRO PÉREZ, J. RÍOS MONTES, Prime, irreducible, and completely irreducible lattice preradicals on modular complete lattices (I), J. Algebra Appl., 21 (2022), 2250097 [33 pages], https://doi.org/10.1142/S0219498822500979.
- [5] T. ALBU, S. DĂSCĂLESCU, M. IOSIF, Lattices subgenerated by a lattice, and applications (I), in preparation.
- [6] T. ALBU, M. IOSIF, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie, 56 (104), 33-46 (2013).
- [7] T. ALBU, M. IOSIF, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra, 444, 339-366 (2015).
- [8] T. ALBU, Y. KARA, A. TERCAN, Fully invariant-extending modular lattices, and applications (I), J. Algebra, 517, 207-222 (2019).
- [9] P. CRAWLEY, R. P. DILWORTH, Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey (1973).
- [10] G. GRÄTZER, General Lattice Theory, Second Edition, Birkhäuser, Basel (2003).
- [11] B. STENSTRÖM, *Rings of Quotients*, Springer-Verlag, Berlin-Heidelberg-New York (1975).
- [12] R. WISBAUER, *Foundations of Module and Ring Theory*, Gordon and Breach Science Publishers, Philadelphia-Reading-Paris-Tokyo-Melbourne (1991).

Received: 21.01.2022 Accepted: 06.04.2022

> ⁽¹⁾ Simion Stoilow Institute of Mathematics of the Romanian Academy, IMAR P.O. Box 1-764, RO-010145 Bucharest 1, Romania E-mail: Toma.Albu@imar.ro

> ⁽²⁾ Instituto Tecnológico y de Estudios Superiores de Monterrey, ITESM, México E-mail: jcastrop@itesm.mx

⁽³⁾ Instituto de Matématicas, Universidad Nacional Autonóma de México, UNAM, México E-mail: jrios@matem.unam.mx