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Abstract

We consider an inclusion problem governed by a strongly monotone Lipschitz continu-
ous operator defined on a real Hilbert space. We list the assumption on the data and recall
the existence of a unique solution to the problem. Then we introduce several Tykhonov
triples, compare them and prove the corresponding well-posedness results. Moreover, us-
ing the approximating sequences generated by these triples, we obtain various convergence
results. In particular, with a specific choice of the Tykhonov triple, we deduce a crite-
rion of convergence to the solution of the inclusion. The proofs of our results are based
on arguments of compactness, pseudomonotonicity, convexity, fixed point and the Mosco
convergence of sets.
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1 Introduction

Convergence results to the solution of a given problem is a fundamental topic in both Func-
tional Analysis, Numerical Analysis and their applications. Some typical examples are the
convergence of the solution of a penalty problem to the solution of the original problem when
the penalty parameter converges to zero, the convergence of the solution of a regularized prob-
lem to the solution of a nonsmooth problem when the regularization parameter converges, the
convergence of the solution of a discrete problem to the solution of the continuous problem
when the time-step or the spatial discretization parameter converges to zero. Details on these
topics can be found in [1, 2, 5, 7], for instance.

Convergence results allow us to establish the continuous dependence of the solution of a
problem with respect to the data and parameters. They also allow to establish the link between
different models used in Mechanics, Physics and Engineering Sciences and to justify some
assumptions made in the modelling of different settings. Some few examples are the following:
a viscoelastic problem can be approached by an elastic problem for a small viscosity coefficient,
a frictional contact problem can be approached by a frictionless contact problem when the
coefficient of friction converges to zero, a contact problem with a rigid foundation can be
approached by a contact problem with a deformable foundation for a large stiffness coefficient.
All these approaches can be justified based on convergence results concerning the solutions of
the corresponding problems. References in the field include the books [3, 8, 11, 16, 19].

For the reasons above, a considerable effort was done to obtain convergence results in the
study of various mathematical problems including nonlinear equations, inequality problems,
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inclusions, fixed point problems, optimization problems, among others. The literature in the
field is extensive and the corresponding results have been obtained by using different methods
and functional arguments, Nevertheless, most of these results are stated in the following func-
tional framework: given a space X, a problem P which has a unique solution u ∈ X and a
sequence {uθ} ⊂ X or a family of problems {Pθ} such that uθ is the solution of Problem Pθ,
the aim consists to prove that uθ converge to u in X, as θ converges.

A carefully analysis of this description reveals that, in practice, the functional framework
above has to be completed by providing details on the following three items: i) the set I to
which the parameter θ belongs; ii) the problem Pθ or its sets of solutions, denoted by Ω(θ), for
each θ ∈ I; iii) the meaning we give to the convergence of the parameter θ. Collecting these
three ingredients we arrive in a natural way to the concept of Tykhonov triple, denoted by
T = (I,Ω, C), where C is a set which governs the convergence of the parameter θ. Note that
this concept was introduced in [29] in the functional framework of metric spaces.

Tyknonov triples represent a useful mathematical tool in the analysis of various problems.
Indeed, as we shall see in Section 2, if a Problem P is well-posed with respect a Tyknonov
triple T , then all the approximating sequences generated by T , the so-called T -approximating
sequences, converge to the unique solution of P. Among these sequences we may identify some
remarkable ones and, in this way we implicitly deduce their convergence. To conclude, the
interest in using the mathematical tool provided by the Tyknonov triples arises in the fact
that it allows to obtain general convergence results and to unify convergence results previ-
ously obtained by different functional arguments. The difficulty in using this tool consists
in the choice of the appropriate Tykhonov triple, which needs to be large enough in order
to be used to recover a specific convergence result, but small enough in order to guarantee
the well-posedness of the considered problem. To overcome with this difficulty, some elemen-
tary properties concerning the equivalence and the comparison of Tykhonov triples have been
provided in [29].

Tykhonov triples can be used to extend various well-posedness concepts previously stud-
ied in the literature, including the concept of well-posedness in the sense of Tykhonov for
a minimization problem introduced in [26] and the concept of well-posednes in the sense of
Levitin-Polyak for a constrainted optimization problem introduced in [14]. They can be used
to reformulate the well-posedness results obtained in [4, 10, 12, 13], in the study of varia-
tional inequalities, as well as the well-posedness results obtained in [6, 27, 28], in the study
of hemivariational inequalities and inclusion problems. Recently, Tykhonov triples have been
employed in the study hemivariational inequalities and minimization problems in [9] and [23],
respectively. Moreover, the have been used in [21, 22] in the analysis and control of two elliptic
problems describing the antiplane shear of an elastic body and the heat transfer with unilateral
constraints, in [24] to prove the well-posedness of a quasistatic contact problem with elasto-
viscoplastic materials and in [20] to provide various convergence results for contact problems
with elastic materials.

The current paper represents a continuation of our previous works [15, 17]. The paper [15]
dealt with existence and uniqueness results for several classe of inclusions while [17] dealt with
their optimal control and their application in Contact Mechanics. In contrast, in this current
paper we deal with convergence analysis of one of the inclusions considered in [15, 17]. The
novelty of our results arises in the fact that the analysis is carried out by using the concepts
of Tykhonov well-posedness and Tykhonov triples. Our aim in this paper is twofold. The
first one is to obtain the continuous dependence of the solution with respect to the problem
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data, including the set of constraints. Our second aim is to introduce a general criterion of
convergence to the solution of the corresponding inclusion. The results we present in this paper
find application in the study of boundary value problems which, in a variational formulation,
lead to such kind of inclusions.

The rest of the manuscript is organized as follows. In Section 2 we introduce the inclusion we
are interested in, list the assumption on the data and recall an existence and uniqueness result
obtained in [15], together with some preliminary material. Then, in Section 3 we introduce
the concepts of Tykhonov triple and well-posedness, provide some examples and state and
prove our first well-posedness result, Theorem 2. In Section 4 we state and prove our second
well-posedness result, Theorem 3. As a consequence we deduce a continuous dependence result
of the solution with respect to the data, Corollary 2. In Section 5 we provide a criterion of
convergence to the solution of the inclusion problem, Theorem 4. Its proof is inspired from the
equivalence of the inclusion problem with a fixed point problem for contractive operators.

2 Problem statement and preliminaries

Everywhere in this paper X represents a real Hilbert space endowed with the inner product
(·, ·)X and its associated norm ∥ · ∥X . We denote by 0X the zero element of X, by IX the
identity map on X and by 2X the set of parts of X. The symbols “⇀” and “→” represent the
weak and the strong convergence in X, respectively. All the limits, upper and lower limits will
be considered as n → ∞, even if we do not mention it explicitely. Everywhere in this paper
we assume the following.

K is a nonemply closed convex subset of X. (2.1)


A : X → X is a strongly monotone and Lipschitz continuous
operator, i.e., there exist mA > 0 and LA > 0 such that

(a) (Au−Av, u− v)X ≥ mA∥u− v∥2X ∀u, v ∈ X.

(b) ∥Au−Av∥X ≤ LA∥u− v∥X ∀u, v ∈ X

(2.2)

f ∈ X. (2.3)

We denote by PK : X → K the projection operator on K and by NK : X → 2X the
outward normal cone of K in the sense of convex analysis. It is well known that the following
equivalences hold, for all η, ξ, σ ∈ X:

ξ ∈ NK(η) ⇐⇒ η ∈ K, (ξ, v − η)X ≤ 0 ∀ v ∈ K. (2.4)

σ = PKξ ⇐⇒ σ ∈ K, (ξ − σ, v − σ)X ≤ 0 ∀ v ∈ K. (2.5)

With the above notation and assumptions, the inclusion we consider in this paper is the
following.

Problem P. Find an element u ∈ X such that

−u ∈ NK

(
Au+ f). (2.6)
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The unique solvability of Problem P is provided by the following existence and uniqueness
result.

Theorem 1. Assume (2.1)–(2.3). Then there exists a unique element u ∈ X such that (2.6)
holds.

A proof of Theorem 1 can be found in [15] and, for this reason we skip it. Nevertheless, for
the convenience of the reader we recall the following ingredients which have been used in the
proof and which will be used in Section 5 of the manuscript.

The operator A : X → X is invertible and its inverse
A−1 : X → X is strongly motonone and Lipschitz continuous
with constants m′ = mA

L2
A

and L′ = 1
mA

.
(2.7)

 The element u ∈ X is a solution of Problem P if and only if
σ = Au+ f is a fixed point of the operator Λρ : X → X defined by
Λρξ = PK

(
ξ − ρA−1(ξ − f)

)
∀ ξ ∈ X, for any ρ > 0.

(2.8)


The operator Λρ defined in (2.8) is a contraction on X,

for any real number ρ such that 0 < ρ < 2m′

L′2 =
2m3

A

L2
A
, that is

∥Λρξ − Λρη∥X ≤ k(ρ)∥ξ − η∥X ∀ ξ, η ∈ X

with k(ρ) =
√
1− 2ρm′ + ρ2L′2 < 1.

(2.9)

Everywhere below we denote by u the solution of Problem P provided by Theorem 1.
Consider a sequence of elements {un} ⊂ X. Our aim in what follows is to provide conditions
which guarantee the convergence

un → u in X, as n → ∞. (2.10)

In order to provide an answer to the question above, we use a two steps strategy:
a) First, we identify a set ST of sequences in X with the property that each element of ST

converge to u in X. This set will be associated to a Tykhonov triple T and, for this reason, it is
denoted by ST . The Tykhonov triple T is choosed in such a way that Problem P is well-posed
with T . The details will be introduced in the next section, together with relevant examples.

b) Second, we prove that the given sequence {un} belongs to ST and, using the step a) we
conclude that (2.10) holds.

Our interest is to apply this strategy in order to establish convergence result of the solution
u with respect to the data K, A and f . To this end we consider three sequences {Kn}, {An}
and {fn} such that, for each n ∈ N, Kn, An and fn represent a perturbation of K, A and f ,
respectively, assumed to satisfy conditions (2.1)–(2.3). Then, using Theorem 1 it follows that
for each n ∈ N the exists a unique solution to the following inclusion problem.

Problem Pn. Find an element un ∈ X such that

−un ∈ NKn

(
Anun + fn). (2.11)

To deduce the convergence of the solution un to u we use the notion of Mosco convergence
that we recall in what follows.
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Definition 1. Let {Kn} be a sequence of nonempty sets of X and let K a nonempty set of X.
We say that the sequence {Kn} converge to K in the sense of Mosco if the following properties
hold. 

(i) For every v ∈ K, there exists a sequence {vn} ⊂ X such that
vn ∈ Kn for each n ∈ N and vn → v in X.

(ii) For each sequence {vn} such that vn ∈ Kn for each n ∈ N
and vn ⇀ v in X, we have v ∈ K.

(2.12)

For the convergence defined above we shall use notation Kn
M−→ K in X. Moreover, we

recall following equivalence result, proved in [25].

Proposition 1. Let {Kn} be a sequence of nonempty closed convex subsets of X and let K be

a nonempty closed convex subset of X. Then, Kn
M−→ K in X if and only if PKnξ → PKξ in

X, for any ξ ∈ X.

In addiditon, we recall the following classical pseudomonotonicity property of the operator
A, proved in [18, p.20], for instance.

Proposition 2. Assume (2.2) and let {un} be a sequence of elements in X such that un ⇀
ũ in X and lim sup (Aun, un − ũ)X ≤ 0. Then

lim inf (Aun, un − v)X ≥ (Aũ, ũ− v)X ∀ v ∈ X.

We end this section with the following elementary result which will be used in Section 3
below.

Proposition 3. Let K be a closed convex nonempty subset of X and let A = IX . Then, for
each f ∈ X the solution of the inclusion (2.6) is given by

u = PKf − f. (2.13)

In addition, if K is the ball of radious 1 centred on 0X , then

u =


(

1
∥f∥X

− 1
)
f if ∥f∥X > 1,

0 if ∥f∥X ≤ 1.

(2.14)

Proof. We use (2.4) to see that, in the particular case when A = IX , u is a solution to (2.6) if
and only if

u+ f ∈ K, (u+ f − v, u)X ≤ 0 ∀ v ∈ K

or, equivalently,

u+ f ∈ K, ((u+ f)− v, (u+ f)− f)X ≤ 0 ∀ v ∈ K. (2.15)

We now combine (2.15) and (2.5) to see that u+ f = PKf which proves (2.13).
Assume now that K is is the closed ball of radious 1 centred on 0X , i.e.,

K =
{
v ∈ V : ∥v∥X ≤ 1

}
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Then, using (2.5) it is easy to see that

PKf =


f

∥f∥X
if ∥f∥X > 1,

f if ∥f∥X ≤ 1.

and, using (2.13) we deduce (2.14). 2

3 Tykhonov triples and Tykhonov well-posedness

We now recall the concepts of Tykhonov triple and Tykhonov well-posedness (well-posedness,
for short) introduced in [29]. Note that these concepts have been introduced for a general
problem which could be an equation, an inequality, an inclusion, a fixed point or an optimization
problem, in the framework of metric spaces. Nevertheless, for the convenience of the reader,
we restrict below to recall them in the particular setting of inclusion (2.6) where, recall, X is
a Hilbert space.

Definition 2. a) A Tykhonov triple is a mathematical object of the form T = (I,Ω, C) where
I is a given nonempty set, Ω : I → 2X is a set-valued mapping such that Ω(θ) ̸= ∅ for each
θ ∈ I and C is a nonempty subset of sequences with elements in I.

b) Given a Tykhonov triple T = (I,Ω, C), a sequence {un} ⊂ X is called a T -approximating
sequence if there exists a sequence {θn} ∈ C, such that un ∈ Ω(θn) for each n ∈ N.

c) Given a Tykhonov triple T = (I,Ω, C), Problem P is said to be T -well-posed (or, equiv-
alently, well-posed with T ) if it has a unique solution and every T -approximating sequence
converges in X to this solution.

Let T = (I,Ω, C) be a Tykhonov triple. Below in this paper we refer to I as the set
of parameters. A typical element of I will be denoted by θ. We refer to the family of sets
{Ω(θ)}θ∈I as the family of approximating sets and, moreover, we say that the set C defines the
criterion of convergence. Note that approximating sequences always exist since, by assumption,
C ̸= ∅ and, moreover, for any sequence {θn} ∈ C and any n ∈ N, the set Ω(θn) is not empty. We
also remark that the concept of approximating sequence above depends on the Tykhonov triple
T and, for this reason, we use the terminology “T -approximating sequence”. As a consequence,
the concept of well-posedness for Problem P depends on the Tykhonov triple T and, therefore,
we refer to it as “well-posedness with T ” or “T -well-posedness”, as mentionned in Definition
2 c).

Next, we denote by SP the set of sequences of X which converge to the solution u of
Problem P and, given a Tykhonov triple T = (I,Ω, C), we use the notation ST for set of
T -approximating sequences, that is,

SP =
{
{un} ⊂ X : un → u in X

}
, (3.1)

ST =
{
{un} ⊂ X : {un} is a T -approximating sequence

}
. (3.2)

To avoid any confusion, we underlie that in (3.1), (3.2) and below in this paper we use the
notation {ωn} for a sequence of elements ω and use big parenthesis for sets, i.e., for instance,
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we write A =
{
a, b, c

}
for the set A with elements a, b, c. Next, we use Definition 2 c) and

equalities (3.1), (3.2) to see that

Problem P is T -well-posed if and only if ST ⊂ SP . (3.3)

Moreover, the set ST of T -approximating sequences suggests us to introduce the following
definition.

Definition 3. Given two Tykhonov triples T = (I,Ω, C) and T ′ = (I ′,Ω′, C′), we say that:

a) T and T ′ are equivalent if their sets of approximating sequences are the same, i.e.,
ST = ST ′ . In this case we write T ≈ T ′.

b) T is smaller than T ′ if ST ⊂ ST ′ . In this case we write T ≤ T ′.

c) T is stricly smaller than T ′ if ST ⊂ ST ′ and ST ′ ̸⊂ ST . In this case we write T < T ′.

It is easy to see that “ ≈ ” represents an equivalence relation on the set of Tykhonov triples
while “ ≤ ” defines a relation of order on the same set.

We now provide two special exemples Tykhonov triples associated to Problem P.

Example 1. Assume that {un} is a given sequence of elements in X. Moreover, consider the
Tykhonov triple T 0 = (I0,Ω0, C0) defined as follows :

I0 = N =
{
1, 2, , . . . , n, . . .

}
,

Ω0 : I0 → 2X , Ω0(n) =
{
un

}
∀n ∈ N,

C0 =
{
{kn} ⊂ I0 : k1 < k2 < . . . < kn . . .

}
.

Then, using Definition 2 a) it is easy to see that a sequence {ũn} ⊂ X is a T 0-approximating
sequence if and only if {ũn} is a subsequence of the sequence {un}. Therefore, by Definition 2
c) we deduce that un → u in X if and only if Problem P is well posed with the Tykhonov triple
T 0.

Example 2. Let T P = (IP ,ΩP , CP) where

IP = R+ = [0,+∞), (3.4)

ΩP : IP → 2X , ΩP(θ) =
{
ũ ∈ X : ∥ũ− u∥X ≤ θ

}
∀ θ ≥ 0, (3.5)

CP =
{
{θn} ⊂ IP : θn → 0

}
. (3.6)

Then, Problem P is T P -well-posed. To prove this statement, we shall prove that

STP = SP . (3.7)

Let {un} be a T P -approximating sequence, i.e., {un} ∈ STP . Then, using (3.4)–(3.6) we
deduce that there exists {θn} ⊂ R+ such that θn → 0 and ∥un−u∥X ≤ θn for each n ∈ N. This
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implies that un → u in X and, using by definition (3.1), we deduce that {un} ⊂ SP . Conversely,
assume that {un} ⊂ SP . Then, (3.1) implies that un → u in X. Denote θn = ∥un − u∥X ,
for each n ∈ N. It follows from here that {θn} ∈ CP and, moreover, {un} ∈ ΩP(θn), for each
n ∈ N. This shows that {un} is a T P -approximating sequence and, using definition (3.2) we
deduce that {un} ⊂ STP . It results from above that equality (3.7) holds, as claimed. We now
use the equivalence (3.3) to deduce that Problem P is T P -well-posed.

We proceed with several comments related to Examples 1–2.

Remark 1. It follows from Exemple 1 that a specific convergence result to the solution of
Problem P is equivalent with the well-posedness of P with a specific Tykhonov triple. Never-
theless, in practice we construct Tykhonov triples T = (I,Ω, C) for which the approximating
sets Ω(θ) are large enough and, therefore, the set of approximating sequences ST is quite large.
Then, the well-posedness of Problem P with such a Tykhonov triple implicitly provides more
than one convergence result since, by definition, all the T -approximating sequences converge
to the solution u of P. We conclude that the well-posedness concept introduced in Definition
2 provides a framework which allows to unify various convergence results (usually obtained
by using different functional arguments) and, as already mentioned, this represents the main
interest in this concept.

Remark 2. We denote in what follows by (AP ,≤) the set of Tykhonov triples with whom
Problem P is well-posed, endowed with the relation of order in Definition 3 b). Then, it follows
from Example 2 that the Tyhonov triple T P is a maximal element of the set (AP ,≤). Next,
equivalence (3.3) and equality (3.7) show that among all the elements in AP , the Tyhonov triple
(3.4)–(3.6) is a triple which generates the largest set of approximating sequences, since all the
sequences which converge to the solution u of problem P are T P -approximating sequences. Even
if these properties could seem interesting, the choice of the Tykhonov triple T P is not convenient
to study the well-posedness for Problem P. Indeed, the definition (3.5) uses the solution u
of Problem P which is a priori unknown. A reasonable definition of the approximating sets
would use the problem itself, or some of its perturbation, not its solution. For this reason it is
important to introduce Tykhonov triples which are equivalent with T P , defined without mention
to the solution u and this is what we shall do in Section 5 of this manuscript, see Theorem 4
and Remark 3.

We now introduce three relevant Tykhonov triples associated to Problem P. To this end
we use equivalence (2.4) to see that an element u ∈ X is solution to Problem P if and only if

Au+ f ∈ K, (Au+ f − v, u)X ≤ 0 ∀ v ∈ K. (3.8)
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Relaxing this inequality suggests us to consider the approximating sets

Ω1(θ) =
{
ũ ∈ X : Aũ+ f ∈ K, (Aũ+ f − v, ũ)X ≤ θ ∀ v ∈ K

}
, (3.9)

Ω2(θ) =
{
ũ ∈ X : Aũ+ f ∈ K, (3.10)

(Aũ+ f − v, ũ)X ≤ θ
(
∥ũ∥X + 1

)
∀ v ∈ K

}
,

Ω3(θ) =
{
ũ ∈ X : Aũ+ f ∈ K, (3.11)

(Aũ+ f − v, ũ)X ≤ θ
(
∥Aũ+ f − v∥X + 1

)
∀ v ∈ K

}
,

for all θ ≥ 0. Moreover, we consider the sets I and C defined by

I = R+ = [0,+∞), (3.12)

C =
{
{θn} ⊂ I : θn → 0

}
. (3.13)

With these ingredients we introduce the triples T 1, T 2 and T 3 defined by

T 1 = (I,Ω1, C), T 2 = (I,Ω2, C), T 3 = (I,Ω3, C). (3.14)

Note that, since we assume (2.1)–(2.3), Theorem 1 guarantees that Problem P has a unique
solution u. Then, using (3.8) it is easy to see that u ∈ Ω1(θ), u ∈ Ω2(θ) and u ∈ Ω3(θ), for each
θ ∈ I. This implies that Ω1(θ) ̸= ∅, Ω2(θ) ̸= ∅ and Ω3(θ) ̸= ∅ for each θ ∈ I and, therefore,
T 1, T 2 and T 3 are Tykhonov triples in the sense of Definition 2.

The properties of these triples can be resumed as follows.

Proposition 4. Assume (2.1)–(2.3). Then, the following statement hold.
a) The Tykhonov triples T 1 and T 2 are equivalent, i.e., T 1 ≈ T 2.
b) The Tykhonov triples T 1 and T 2 are smaller than the Tykhonov triple T 3, i.e., T 1 ≤ T 3

and T 2 ≤ T 3. Moreover, unless additional assumptions, these inequalities are strict, i.e.,
T 1 < T 3 and T 2 < T 3.

c) If K ⊂ X is bounded, then the Tykhonov triples T 1, T 2 and T 3 are equivalent, i.e.,
T 1 ≈ T 2 ≈ T 3.

Proof. a) Let {un} be a T 2-approximating sequence, i.e. {un} ⊂ ST2
. Then there exists a

sequence {θn} ⊂ R+ such that θn → 0 and, moreover,

Aun + f ∈ K, (Aun + f − v, un)X ≤ θn
(
∥un∥X + 1

)
∀ v ∈ K, (3.15)

for each n ∈ N. We fix n ∈ N and v ∈ K. Then, using (2.2)(a) and (3.15) we find that

mA∥un∥2X ≤ (Aun −A0X , un)X = (Aunun)X − (A0X , un)X

≤ θn
(
∥un∥X + 1

)
+ (v − f, un)X − (A0X , un)X

≤
(
θn + ∥v − f∥X + ∥A0X∥X

)
∥un∥X + θn.
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This implies that there exists D > 0, which does not depend on n, such that

∥un∥ ≤ D. (3.16)

We now use (3.15) and (3.16) to see that un ∈ Ω1(θ̃n) with θ̃n = θn(D+1) and, since θn → 0,
we deduce that {un} ⊂ ST1

. It follows from here that ST2
⊂ ST1

. On the other hand, it is
easy to see that Ω1(θ) ⊂ Ω2(θ) for each θ ∈ I which implies that ST1

⊂ ST2
. We deduce from

above that ST1
= ST1

and, therefore, T 1 ≈ T 2.

b) Note that Ω1(θ) ⊂ Ω3(θ) for each θ ∈ I which shows that ST1 ⊂ ST3 . We deduce from
here that T 1 ≤ T 3 and, since T 1 ≈ T 2 we obtain that T 2 ≤ T 3, too.

In order to prove that these inequalities are strict we consider the following counter-example.
Let K = X, A = IX , f = 0X , u0 ∈ X, u0 ̸= 0X and let un = 1

n u0, θn = 1
n ∥u0∥X , for each

n ∈ N. Then, using the inequality

(un − v, un)X ≤ ∥un − v∥X∥un∥X =
1

n
∥u0∥X∥un − v∥X ∀ v ∈ K, n ∈ N,

we deduce that un ∈ Ω3(θn) for each n ∈ N, which shows that {un} is a T 3-approximating
sequence.

Assume now that {un} is a T 1-approximating sequence. Then Definition 2 b) guarantees

that there exists a sequence {θ̃n} ∈ C such that (un − v, un)X ≤ θ̃n for each v ∈ X and n ∈ N
or, equivalently,

1

n2
∥u0∥2X − 1

n
(v, u0)X ≤ θ̃n ∀ v ∈ X, n ∈ N. (3.17)

We now that choose n ∈ N arbitrary and take v = −nu0 in inequality (3.17) to deduce that

θ̃n ≥
(
1 + 1

n2

)
∥u0∥2X for each n ∈ N. This shows that the sequence {θ̃n} does not converge to

zero which is in contradiction with the inclusion {θ̃n} ∈ C.
We conclude from above that there exists T 3-approximating sequences which are not T 1-

approximating sequences and, therefore, T 1 < T 3. Moreover, since T 1 ≈ T 2 we deduce that
T 2 < T 3, too.

c) Assume now that set K is bounded. Let {un} be a T 3-approximating sequence. Then
there exists a sequence {θn} ⊂ R+ such that θn → 0 and, moreover,

Aun + f ∈ K, (Aun + f − v, un)X ≤ θn
(
∥Aun + f − v∥X + 1

)
∀ v ∈ K, n ∈ N. (3.18)

Now, since K is a bounded set, the inclusions Aun + f ∈ K, v ∈ K in (3.18) show that there
exists a constant E > 0 such that

∥Aun + f − v∥X ≤ E ∀ v ∈ K, n ∈ N. (3.19)

We now combine (3.18) and (3.19) to see that

Aun + f ∈ K, (Aun + fn − v, un)X ≤ θn(E + 1) ∀ v ∈ K, n ∈ N,

which shows that {un} is a T 1-approximating sequence. We conclude from here that ST3
⊂ ST1

and, since we already proved that ST1
= ST2

⊂ ST3
, we deduce that ST1

= ST2
= ST3

which
completes the proof. 2

We now state and prove the following well-posedness result.
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Theorem 2. Assume (2.1)–(2.3). Then Problem P is T 1-, T 2- and T 3-well posed.

Proof. Let {un} be a T 3-approximating sequence. Then there exists a sequence {θn} ⊂ R+

such that θn → 0 and, moreover, (3.18) holds. We fix n ∈ N and then we take v = Aun + f in
(3.8) and v = Au+ f in (3.18). Adding the resulting inequalities we find that

(Aun −Au, un − u)X ≤ θn
(
∥Aun −Au∥X + 1

)
.

Next, we use the properties (2.2) of the operator A to find that

∥un − u∥2X ≤ θnLA

mA
∥un − u∥X +

θn
mA

.

We now use the elementary inequality

x2 ≤ ax+ b =⇒ x ≤ a+
√
b ∀x, a, b ≥ 0 (3.20)

to see that

∥un − u∥X ≤ θnLA

mA
+

√
θn
mA

and, therefore, the convergence θn → 0 implies that un → u in X. It follows from here that
ST3

⊂ SP . We now use the equivalence (3.3) to deduce that Problem P is T 3-well-posed.
On the other hand, using Proposition 4 it follows that ST1

= ST2
⊂ ST3

and, therefore,
ST1

= ST2
⊂ SP . This implies the T 1- and T 2-well-posedness of Problem P and concludes

the proof. 2

We now wonder if the Tykhonov triples T 1, T 2 and T 3 can be used to prove the convergence
of the solution of the perturbed inclusion (2.11) to the solution of the original inclusion (2.6).
To this end we start with the following consequence of Theorem 2.

Corollary 1. Assume (2.1)–(2.3). For each n ∈ N, let fn ∈ X, denote by un the solution of
the inclusion (2.6) with f = fn and assume that Aun + f ∈ K. Then, the convergence fn → f
in X implies the convergence (2.10).

Proof. Let n ∈ N be fixed. We have −un ∈ NK(Aun + fn) and, using (3.8), we deduce that

(Aun + fn − v, un)X ≤ 0 ∀ v ∈ K. (3.21)

Therefore
(Aun + f − v, un)X ≤ (f − fn, un)X ∀ v ∈ K. (3.22)

We now prove that the sequence {un} is bounded in X. To this end we fix an element
v ∈ K and, using (3.21) we write

(Aun + fn − v, un)X = (Aun −A0X , un)X + (A0X + fn − v, un)X ≤ 0.

Therefore, using assumption (2.2)(b) it follows that

mA∥un∥2X ≤ (Aun −A0X , un)X ≤ (v −A0X − fn, un)X

≤ ∥A0X + fn − v∥X∥un∥X .
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This shows that there exists D > 0, which does not depend on n, such that (3.16) holds. Next,
we use (3.16) and (3.22) to see that

(Aun + f − v, un)X ≤ D∥fn − f∥X ∀ v ∈ K. (3.23)

Inequality (3.23), the convergence fn → f in X and the regularity Aun+f ∈ K guarantee that
{un} is a T 1− approximating sequence for Problem P. We now use Theorem 2 and Definition
2(c) to deduce the convergence (2.10), which concludes the proof. 2

Note that Corollary 1 provides the convergence of the solution un of the inclusion Pn with
Kn = K and An = A to the solution u of the inclusion P, under the very restrictive condition
Aun + f ∈ K, for each n ∈ N. This condition is satisfied in Exemple 3 but fails to be satisfied
in the Example 4 we present below.

Example 3. Assume (2.1), A = IX and f ∈ int(K) where int(K) represents the interior of
K in the strong topology of X. We claim that if fn → f in X, then the regularity condition
Aun+ f ∈ K is satisfied. Indeed, since f ∈ int(K), the convergence fn → f in X implies that,
for n large enough, we have fn ∈ K. Therefore, Proposition 3 implies that un = PKfn − fn =
0X , hence Aun + f = un + f = f ∈ int(K) ⊂ K.

Example 4. Assume that K is the ball of radious 1 centred on 0X , A = IX and f ∈ X,
∥f∥X = 2. Then using (2.14) we obtain that the solution of the inclusion (2.6) is u = − f

2 .
Next, for each n ≥ 2 let fn =

(
1 − 1

n

)
f . Using again (2.14) it is easy to see that the solution

of the inclusion (2.11) is un =
(
1
n − 1

2

)
f . This implies that un + f =

(
1
n + 1

2

)
f and, therefore

∥un+f∥X = 1+ 2
n > 1. We conclude from here that un+f ̸∈ K which shows that the regularity

condition Aun + f ∈ K is not satisfied in this case, as claimed.

It follows from Exemple 4 that the well-posedness of Problem P with the Tykhonov triples
T 1, T 2, T 3 cannot be used in order to prove the convergence of the solution of Problem P with
respect to the data. For this reason, in the next section we consider an additional Tykhonov
triple, T M , such that the sequence {un} in Exemple 4 is a T M -approximating sequence.
Moreover, this will allow us to extend the convergence result in Corollary 1 by describing the
convergence of the solution with respect to the set of all the data K, A and f .

4 A well-posedness result

In this section we use the Tykhonov triple T M = (IM ,ΩM , CM ) defined as follows:

IM = { θ = (K̃, ε) : K̃ is closed nonempty convex subset of X, ε ≥ 0 }, (4.1)

ΩM (θ) =
{
ũ ∈ X : Aũ+ f ∈ K̃, (Aũ+ f − v, ũ)X ≤ ε ∀ v ∈ K̃

}
(4.2)

∀ θ = (K̃, ε) ∈ IM ,

CM =
{
{θn} ⊂ IM : Kn

M−→ K in X, εn → 0
}
. (4.3)

Our main result, based on pseudomonotonicity and Mosco convergence ingredients, is the
following.
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Theorem 3. Assume (2.1)–(2.3). Then Problem P is T M -well posed.

Proof. Consider a T M -approximating sequence of Problem P, denoted by {un}. Then, Def-
inition 2 a) and (4.2) show that there exists a sequence {θn} ∈ CM with θn = (Kn, εn) such
that

Aun + f ∈ Kn, (Aun + f − v, un)X ≤ εn ∀ v ∈ Kn, (4.4)

for each n ∈ N. Recall also that inclusion {θn} ∈ CM implies the folowing convergences:

εn → 0, (4.5)

Kn
M−→ K in X. (4.6)

We shall prove that un → u in X and, to this end, we divide the proof in three steps, described
below.

Step i) The sequences {un} and {Aun} are bounded in X.
Let v ∈ K be a given element. Then, (4.6) implies that there exists a sequence {vn} ⊂ X

such that vn ∈ Kn for all n ∈ N and vn → v in X. Let n ∈ N. We write

(Aun + f − vn, un) = (Aun −Avn, un − vn)

+(Avn + f − vn, un − vn) + (Aun + f − vn, vn),

then we use (4.4) with v = vn to see that

(Aun −Avn, un − vn) + (Avn + f − vn, un − vn) + (Aun + f − vn, vn) ≤ εn.

Therefore, assumption (2.2)(b) yields

mA∥un − vn∥2X ≤ ∥Avn + f − vn∥X∥un − vn∥X

+∥Aun + f − vn∥X∥vn∥X + εn

and, using assumption (2.2)(a), we find that

mA∥un − vn∥2X ≤ ∥Avn + f − vn∥X∥un − vn∥X

+LA∥un − vn∥X∥vn∥X + ∥Avn + f − vn∥X∥vn∥X + εn.

Now, since the sequence {vn} is bounded in X and A is a bounded operator, the convergence
(4.5) and the previous inequality imply that there exists two positive constants C1 and C2

which do not depend on n such that

∥un − vn∥2X ≤ C1∥un − vn∥X + C2.

This inequality combined with (3.20) show that the sequence {un − vn} is bounded in X and,
therefore, {un} is a bounded sequence in X, too. We conclude this step by using the property
(2.2) (a) of the operator A.

Step ii) The sequence {un} converges weakly to the solution u of Problem P.
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Using the step i) and the reflexivity of the spaceX we deduce that, passing to a subsequence,
if necessary, we have

un ⇀ ũ in X, as n → ∞, (4.7)

Aun ⇀ z in X, as n → ∞, (4.8)

with some ũ, z ∈ X. Our aim in what follows is to prove that ũ is a solution of Problem P. To
this end, we remark that the regularity Aun + f ∈ Kn combined with the convergences (4.6)
and (4.8) imply that

z + f ∈ K. (4.9)

Next, we use (4.4) to see that

(Aun + f − vn, un)X ≤ εn ∀n ∈ N.

Then, passing to the upper limit and using the convergence (4.5), we find that

lim sup (Aun + f − vn, un)X ≤ 0. (4.10)

We now use the convergences (4.7), vn → v in X and inequality (4.10) to deduce that

lim sup (Aun, un)X ≤ (v − f, ũ)X ∀ v ∈ K. (4.11)

On the other hand, (4.9) allows us to take v = z + f in (4.11) in order to find that

lim sup (Aun, un)X ≤ (z, ũ)X . (4.12)

Inequality (4.12) and the convergence (4.8) yield

lim sup (Aun, un − ũ)X ≤ 0

and, therefore, Proposition 2 implies that

(Aũ, ũ− v)X ≤ lim inf (Aun, un − v)X ∀ v ∈ X. (4.13)

Moreover, the convergence (4.8) implies that

lim sup (Aun, un − v)X = lim sup (Aun, un)X − (z, v)X ,

hence inequality (4.12) shows that

lim sup (Aun, un − v)X ≤ (z, ũ− v)X ∀ v ∈ X. (4.14)

We now combine inequalities (4.13) and (4.14) to find that

(Aũ, ũ− v)X ≤ (z, ũ− v)X ∀ v ∈ X (4.15)

which implies that
Aũ = z. (4.16)



M. Sofonea 87

Next, we use (4.8), (4.16) to see that

lim sup (Aun, un − v)X = lim sup (Aun, un)X − (Aũ, v)X

and, therefore, (4.11) yields

lim sup (Aun, un − v)X ≤ (v − f, ũ)X − (Aũ, v)X ∀ v ∈ K. (4.17)

We now combine (4.13) and (4.17) to see that

(Aũ, ũ− v)X ≤ (v − f, ũ)X − (Aũ, v)X ∀ v ∈ K

or, equivalently,

(Aũ+ f − v, ũ)X ≤ 0 ∀ v ∈ K. (4.18)

Next, from (4.9), (4.16) and (4.18) we obtain that ũ is a solution to Problem P, as claimed.
Thus, by the uniqueness of the solution of P, we find that ũ = u.

A careful analysis of the results presented above indicates that every subsequence of {un}
which converges weakly in X has the same weak limit u. On the other hand, Step i) guarantees
that {un} is bounded in X. Therefore, we deduce that the whole sequence {un} converges
weakly to u in X, as n → ∞, which concludes the proof of this step.

Step iii) The sequence {un} converges strongly to the solution u of Problem P.

We take v = ũ in (4.13) and (4.14), then we use equality ũ = u to obtain

0 ≤ lim inf (Aun, un − u)X ≤ lim sup (Aun, un − u)X ≤ 0,

which shows that (Aun, un − u)X → 0, as n → ∞. Therefore, using the strong monotonicity
of the operator A and the convergence un ⇀ u in X, we have

mA∥un − u∥2X ≤ (Aun −Au, un − u)X = (Aun, un − u)X − (Au, un − u)X → 0,

as n → ∞. Hence, it follows that un → u in X, which concludes the proof of this step.

To resume, we proved that any T M -approximating sequence converges to the solution of
Problem P. Therefore, using Definition 2 c) it follows that Problem P is T M -well-posed, which
concludes the proof of the theorem. 2

We end this section with a corollary of Theorem 3 which extends Corollary 1, since it
represents a continuous dependence result of the solution of Problem P with respect to the
data K, A and f . So, consider three sequences {Kn}, {An} and {fn} such that, for each n ∈ N,
the following hold.

Kn is a nonempty closed convex subset of K. (4.19)

An : X → X satisfies condition (2.2) with some constants mn and Ln. (4.20)

fn ∈ X. (4.21)
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Then, using Theorem 1 it follows that for each n ∈ N the exists a unique solution to the
inclusion problem Pn. Consider now the following additional assumptions.

For each n ∈ N there exists an ≥ 0 such that

(a) ∥Anv −Av∥X ≤ an(∥v∥X + 1) for all v ∈ X.

(b) an → 0 as n → ∞.

(4.22)

{
There exist m0 > 0 and L0 > 0 such that

m0 ≤ mn ≤ Ln ≤ L0 ∀n ∈ N.
(4.23)

Kn
M−→ K in X. (4.24)

fn → f in X. (4.25)

We have the following result.

Corollary 2. Assume (2.1)–(2.3), (4.19)–(4.25). Then the solution un of Problem Pn con-
verges to the solution u of Problem P, that is un → u in X.

Proof. Let n ∈ N and note that inclusion (2.11) implies that

Anun + fn ∈ Kn, (Anun + fn − v, un)X ≤ 0 ∀ v ∈ Kn. (4.26)

We first prove that the sequence {un} is bounded in X. To this end we denote

wn = Aun −Anun + f − fn, (4.27)

which implies that
Aun + f = Anun + fn + wn. (4.28)

Moreover, using assumptions (4.22) we have

∥wn∥X ≤ ∥Aun −Anun∥X + ∥fn − f∥X ≤ an
(
∥un∥X + 1

)
+ ∥fn − f∥X

and, using notation
ãn = an + ∥fn − f∥X , (4.29)

we find that
∥wn∥X ≤ ãn

(
∥un∥X + 1

)
. (4.30)

We now fix an element v ∈ K and, using (4.24) we know that there exists a sequence {vn}
such that

vn ∈ Kn ∀n ∈ N, vn → v in X. (4.31)

Moreover, (4.26) implies that

(Anun + fn − vn, un)X ≤ 0 (4.32)

or, equivalently,
(Anun −An0X , un)X ≤ (vn − fn −An0X , un)X .
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Therefore, using assumption (4.20) and (4.23) it follows that

m0∥un∥2X ≤ mn∥un∥2X ≤ (Anun −An0X , un)X ≤ (vn − fn −An0X , un)X ,

which implies that
m0∥un∥X ≤ ∥An0X + fn − vn∥X . (4.33)

We now use assumption (4.22) to see that An0X → A0X in X which, combined with condition
(4.21) shows that the sequence {An0X +fn− v} is bounded in X. Therefore, the bound (4.33)
implies that there exists D > 0, which does not depend on n, such that (3.16) holds.

Let
δn = ãn(D + 1), (4.34)

denote by Bn the closed ball of center 0X and radius δn and let K̃n be the subset of X given
by

K̃n = Kn +Bn. (4.35)

We use (4.30), (3.16) and notation (4.34) to see that wn ∈ Bn and, since (4.26) shows that
Anun + fn ∈ Kn, (4.28) and (4.35) yield

Aun + f ∈ K̃n. (4.36)

Let ṽ ∈ K̃n. Using (4.35) we can write ṽ = v + z where v ∈ Kn and z ∈ Bn. Then, using
(4.28), (4.26) and inequalities ∥wn∥X ≤ δn, ∥z∥X ≤ δn, we find that

(Aun + f − ṽ, un)X = (Anun + fn + wn − v − z, un)X

= (Anun + fn − v, un)X + (wn − z, un)X ≤ (wn − z, un)X

≤
(
∥wn∥X + ∥z∥X

)
∥un∥X ≤ 2δn∥un∥X .

Now, using the bound (3.16) it follows that

(Aun + f − ṽ, un)X ≤ 2δnD. (4.37)

We now gather relations (4.36) and (4.37) to conclude that

un ∈ Ω(θn) with θn = (K̃n, 2δnD). (4.38)

On the other hand, assumptions (4.22)(b), (4.25) and (4.29) show that ãn → 0 and, there-
fore, (4.34) implies that δn → 0. In addition, using this convergence, definition (4.35) and

assumption (4.24), it is easy to see that K̃n
M−→ K. It follows from here that

θn ∈ CM . (4.39)

We now use (4.38) and (4.39) to see that {un} is a T M - approximating sequence for inclusion
P. Therefore, the T M -well-posedness of P, guaranteed by Theorem 3, implies that un → u in
X, which concludes the proof. 2

We end this section with the remark that Corollary 2 can be used to provide the convergence
of the sequence {un} in Example 4 to the solution of the corresponding Problem P. This arises
from the fact that, in the framework of Example 4, the sequence {un} is a T M -approximating
sequence. Recall that the Tykhonov triples T 1, T 3 and T 3 cannot be use in order to prove this
convergence. This illustrates the importance of the choice of the Tykhonov triple in employing
the stategy presented in Section 2.
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5 A convergence criterion

In this section we construct two Tykhonov triples which are equivalent with the Tykhonov triple
T P introduced in Section 2 that, recall, is a maximal element of the set (AP ,≤) introduced
in Remark 2. This will allow us to formulate a critetion of convergence to the solution of the
inclusion (2.6). To introduce these triples we need some preliminaries.

First, eveywhere in this section we assume (2.1)–(2.3) and use the short hand notation Λ for

the opertor Λρ defined in (2.9) with any ρ arbitrary fixed in the interval
(
0, m′

L′2

)
. Moreover,

we introduce the approximating sets

Ωa(θ) =
{
ũ ∈ X : ∥Aũ+ f − Λ(Aũ+ f)∥X ≤ θ

}
, (5.1)

Ωb(θ) =
{
ũ ∈ X : ∥Aũ+ f − Λ(Aũ+ f)∥X ≤ θ

(
∥Aũ+ f∥X + 1

)}
, (5.2)

for all θ ≥ 0. In addition, with the notation (3.12) and (3.13) for I and C, respectively, we
introduce the triples T a and T b defined by

T a = (I,Ωa, C), T b = (I,Ωb, C). (5.3)

Note that Theorem 1 guarantees that Problem P has a unique solution u. Then, using (2.8)
it is easy to see that u ∈ Ωa(θ) and u ∈ Ωb(θ), for each θ ∈ I. This implies that Ωa(θ) ̸= ∅
and Ωb(θ) ̸= ∅ for each θ ∈ I and, therefore, T a and T b are Tykhonov triples in the sense of
Definition 2.

Our first result in this section is the following.

Theorem 4. Assume (2.1)–(2.3). Then the Tykhonov triples T a, T b and T P are equivalent.

Proof. We use notation (3.1) and (3.2). We start by proving the inclusion

SP ⊂ STa . (5.4)

Assume that {un} is a sequence with converge to u in X, that is {un} ∈ SP . Denote by σ
and σn the elements of X given by

σ = Au+ f, (5.5)

σn = Aun + f ∀n ∈ N. (5.6)

Then, using (2.7) it follows that

u = A−1(σ − f), (5.7)

un = A−1(σn − f) ∀n ∈ N (5.8)

and, moreover,
σn → σ in X. (5.9)

Fix n ∈ N. Using (2.9) it follows that there exists k ∈ [0, 1) such that

∥Λτ − Λω∥X ≤ k ∥τ − ω∥X ∀ τ, ω ∈ X (5.10)
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and, using (2.8) we deduce that
Λσ = σ. (5.11)

We now write
∥σn − Λσn∥X ≤ ∥σn − σ∥X + ∥σ − Λσn∥X ,

then we use (5.11) and (5.10) to deduce that

∥σn − Λσn∥X ≤ (1 + k)∥σn − σ∥X .

This implies that un ∈ Ωa(θn) with θn = (1 + k)∥σn − σ∥X and, since (5.9) guarantees that
θn → 0 we deduce that {un} is a T a-approximating sequence, that is {un} ⊂ STa

. It follows
from above that the inclusion (5.4) holds.

Next, we prove the inclusion
STb

⊂ SP . (5.12)

To this end we consider an approximating sequence {un} ∈ STb
. We keep the notation (5.5),

(5.6) and use (5.2) to see that that there exists a sequence {θn} ⊂ R+ such that θn → 0 and,
moreover,

∥σn − Λσn∥X ≤ θn
(
∥σn∥X + 1

)
∀n ∈ N. (5.13)

We now write
∥σn − σ∥X ≤ ∥σn − Λσn∥X + ∥Λσn − σ∥X

then use (5.13), (5.11) and (5.10) to deduce that

∥σn − σ∥X ≤ θn
(
∥σn∥X + 1

)
+ k ∥σn − σ∥X

or, equivalently,
(1− k)∥σn − σ∥X ≤ θn

(
∥σn∥X + 1

)
. (5.14)

On the other hand, writing

∥σn∥X ≤ ∥σn − Λσn∥X + ∥Λσn − Λ0X∥X + ∥Λ0X∥X

and using (5.13), (5.10) yields

∥σn∥X ≤ θn
(
∥σn∥X + 1

)
+ k ∥σn∥X + ∥Λ0X∥X

or, equivalently,
(1− k − θn)∥σn∥X ≤ θn + ∥Λ0X∥X . (5.15)

Now, since θn → 0 and k ∈ [0, 1), for n large enough we may assume that θn ≤ 1−k
2 which

implies that 1− k − θn ≥ 1−k
2 and θn ≤ 1

2 . So, inequality (5.15) shows that

∥σn∥X ≤ 1

1− k
(1 + 2∥Λ0X∥X). (5.16)

We now combine inequalities (5.14) and (5.16), then use the convergence θn → 0 to deduce
that σn → σ in X. This convergence, (5.8), (5.7) and (2.7) imply that un → u in X and,
therefore, {un} ∈ SP . We conclude from above that inclusion (5.12) holds.
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On the other hand, it is easy to see that Ωa(θ) ⊂ Ωb(θ), for each θ ∈ I which implies that

STa
⊂ STb

. (5.17)

We now gather the inclusions (5.4), (5.17) and (5.12) to see that STa
= STa

= SP which
concludes the proof. 2

We now use Theorem 4 in order to provide a different proof of Corollary 2 and, to this end,
we assume in what follows that (2.1)–(2.3), (4.19)–(4.25) hold.

Proof of Corollary 2. The proof is structured in theree steps, as follows.

Step i) Preliminaries.
We use assumptions (2.2), (4.20) and (4.23), denote m = min {mA,m0}, L = max {LA, L0}

and deduce that the operators A and An are stongly monotone Lipschitz continuous operators

with the same constants m and L, respectively, for each n ∈ N. We now take ρ0 = m3

L2 and use
(2.9) to see that the operators

Λnξ = PKn

(
ξ − ρ0A

−1
n (ξ − fn)

)
, Λξ = PK

(
ξ − ρ0A

−1(ξ − η)
)

∀ ξ ∈ X (5.18)

satisfy the inequalities

∥Λnξ − Λnη∥X ≤ k0∥ξ − η∥X , (5.19)

∥Λξ − Λη∥X ≤ k0∥ξ − η∥X , (5.20)

for all ξ, η ∈ X, n ∈ N, where k0 ∈ [0, 1) depends only on m and L.
Let n ∈ N be fixed and let

σn = Anun + fn, (5.21)

which implies that
un = A−1(σn − fn). (5.22)

Moreover, following (2.8) and (2.9), we deduce that Λnσn = σn and Λσ = σ.

ii) Proof of the convergence

σn → σ in X, as n → ∞. (5.23)

Let n ∈ N. We use equalities Λnσn = σn, Λσ = σ and (5.19) to write

∥σn − σ∥X = ∥Λnσn − Λσ∥X ≤ ∥Λnσn − Λnσ∥X + ∥Λnσ − Λσ∥X

≤ k0∥σn − σ∥X + ∥Λnσ − Λσ∥X

which implies that

∥σn − σ∥X ≤ 1

1− k0
∥Λnσ − Λσ∥X (5.24)

On the other hand, using the definition (5.18) of the operators Λn and Λ we have

Λnσ = PKn

(
σ − ρ0A

−1
n (σ − fn)

)
, Λσ = PK

(
σ − ρ0A

−1(σ − f)
)
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where, here and below, PKn represents the projection operator on Kn. This implies that

∥Λnσ − Λσ∥X = ∥PKn

(
σ − ρ0A

−1
n (σ − fn)

)
− PK

(
σ − ρ0A

−1(σ − f)
)
∥X

≤ ∥PKn

(
σ − ρ0A

−1
n (σ − fn)

)
− PKn

(
σ − ρ0A

−1(σ − f)
)
∥X

+∥PKn

(
σ − ρ0A

−1(σ − f)
)
− PK

(
σ − ρ0A

−1(σ − f)
)
∥X

and, using the nonexpansivity of the operator PKn , we find that

∥Λnσ − Λσ∥X ≤ ρ0∥A−1
n (σ − fn)−A−1(σ − f)∥X

+∥PKn

(
σ − ρ0A

−1(σ − fn)
)
− PK

(
σ − ρ0A

−1(σ − f)
)
∥X

≤ ρ0∥A−1
n (σ − fn)−A−1(σ − fn)∥X + ρ0∥A−1(σ − fn)−A−1(σ − f)∥X

+∥PKn

(
σ − ρ0A

−1(σ − f)
)
− PK

(
σ − ρ0A

−1(σ − f)
)
∥X .

Next, the Lipschitz continuity of th operator A−1 yields

∥Λnσ − Λσ∥X ≤ ρ0∥A−1
n (σ − fn)−A−1(σ − fn)∥X + ρ0L

′∥fn − f∥X (5.25)

+∥PKn

(
σ − ρ0A

−1(σ − f)
)
− PK

(
σ − ρ0A

−1(σ − f)
)
∥X .

We shall prove in what follows that

∥A−1
n (σ − fn)−A−1(σ − fn)∥X → 0. (5.26)

To this end denote
vn = A−1

n (σ − fn), wn = A−1(σ − fn) (5.27)

which implies that Anvn = Awn. Using this equality and assumptions (4.23), (4.20), (4.22) we
have

m0∥vn − wn∥2X ≤ mn∥vn − wn∥2X ≤ (Anvn −Anwn, vn − wn)X

= (Awn −Anwn, vn − wn)X ≤ ∥Awn −Anwn∥X∥vn − wn∥X

≤ an(∥wn∥X + 1)∥vn − wn∥X ,

and, therefore,
m0∥vn − wn∥X ≤ an(∥wn∥X + 1).

Now, since the convergence (4.25) guarantees that the sequence {wn} is bounded in X, assump-
tion (4.22)(b) implies that ∥vn − wn∥X → 0 which, together with (5.27), shows that (5.26)
holds.

Next, we use assumption (4.24) and Proposition 1 to see that

∥PKn

(
σ − ρ0A

−1(σ − f)
)
− PK

(
σ − ρ0A

−1(σ − f)
)
∥X → 0. (5.28)

Finally, note that assumption (4.25) implies that

∥fn − f∥X → 0. (5.29)
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We now use inequalities (5.24), (5.25) and convergences (5.26), (5.28), (5.29) to deduce that
(5.23) holds.

iii) Proof of the convergence (2.10).
Let n ∈ N. Using (5.21), (5.5) and equality σ = Λσ we find that

∥Aun + f − Λ(Aun + f)∥X

≤ ∥Aun −Anun∥X + ∥σn + f − fn − σ∥X

+∥Λσ − Λ(Aun −Anun + σn + f − fn)∥X

≤ ∥Aun −Anun∥X + ∥σn − σ∥X + ∥fn − f∥X

+∥Λσ − Λ(Aun −Anun + σn + f − fn)∥X

and, since Λ is a contraction with constant k0, we deduce that

∥Aun + f − Λ(Aun + f)∥X ≤ θn (5.30)

where
θn = (1 + k0)

(
∥Aun −Anun∥X + ∥σn − σ∥X + ∥fn − f∥X

)
. (5.31)

Now, inequality (5.30) combined with definition (5.1) shows that un ∈ Ωa(θ). Moreover,
assumption (4.22), the bound (3.16) and the convergences (5.23), (4.25) guarantee that θn → 0,
i.e. {θn} ⊂ C where, recall, C is defined by (3.13). We conclude from here that {un} is a T a-
approximating sequence. The, using Theorem 4 we deduce that the convergence (2.10) holds,
which ends the proof. 2

We end this section with the following remark.

Remark 3. Note that Theorem 4 states that STa
= STb

= SP and, therefore, the definition
(3.1) shows that a sequence {un} converges to u in X if and only if {un} ∈ STa

= STb
or,

equivalently, if and only if there exists a sequence {θn} ⊂ R+ such that for any n ∈ N one of
the two inequalities below hold.

∥Aun + f − Λ(Aun + f)∥X ≤ θn,

∥Aun + f − Λ(Aun + f)∥X ≤ θn
(
∥Aun + f∥X + 1

)
.

We conclude from here that Theorem 4 provides necessary and sufficent conditions which guar-
antee the convergence (2.10), i.e., it represents a criterion of convergence. This criterion is
intrinsic, since no reference to the solution u of Problem P is made on the inequalities above.
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