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Abstract

Using Reiner’s definition of Stirling numbers of the second kind for the group of
signed permutations, we provide a ’balls into urns’ approach for proving a generaliza-
tion of a well-known identity concerning the classical Stirling numbers S(n, k) of the
second kind:

xn =

n∑
k=0

S(n, k) · x(x− 1) · · · (x− k + 1).

We also present a combinatorial proof (based on Feller’s coupling) of the defining
identity for the Stirling numbers of the first kind in the group of signed permutations.

Our proofs are self-contained and accessible also for non-experts.
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1 Introduction

A partition of a set A is a set of non-empty pairwise disjoint subsets of A (called blocks)
whose union is A. The partitions of the set [n] = {1, . . . , n} having k blocks are enumerated

by the Stirling numbers of the second kind, denoted by S(n, k) or

{
n
k

}
(see [11, page 81]).

These numbers arise in a variety of problems in enumerative combinatorics (e.g. moments
of Poisson’s distribution); they have many combinatorial interpretations, and have been
generalized in various contexts and in many ways (see e.g. the survey of Boyadzhiev [4]).

One of the celebrated results concerning Stirling numbers of the second kind is the
following: Let x ∈ R and let n ∈ N. Then we have:

xn =

n∑
k=0

{
n
k

}
[x]k, (1)

where [x]k := x(x− 1) · · · (x− k + 1) is the falling factorial of degree k and [x]0 := 1.

There are some known proofs for this identity. A combinatorial one, realizing xn as the
number of functions from the set {1, . . . , n} to the set {1, . . . , x} (for x integer), is presented
by Stanley [11, Eqn. (1.94d); its proof is in page 83], and we quote it here (where #N = n
and #X = x):

∗ This research was supported by a grant from the Ministry of Science and Technology, Israel, and the
France’s Centre National pour la Recherche Scientifique (CNRS)



64 Signed partitions - A ‘balls into urns’ approach

“The left-hand side is the total number of functions f : N → X. Each such function
is surjective onto a unique subset Y = f(N) of X satisfying #Y ≤ n. If #Y = k,
then there are k!S(n, k) such functions, and there are

(
x
k

)
choices of subsets Y of X

with #Y = k. Hence:

xn =
n∑

k=0

k!S(n, k)
(
x
k

)
=

n∑
k=0

S(n, k)[x]k.”

Note that this equality is a polynomial identity, consisting of polynomials of degree n.
By the fundamental theorem of Algebra, the two sides of the equation will be identical if
the polynomials coincide on at least n + 1 values, and it was shown by Stanley for any
natural number x.

There is a nice generalization of Identity (1), which appears in Remmel and Wachs [9]
and Bala [2], see also [6]. In order to demonstrate this generalization combinatorially, we

use the Stirling numbers of type B of the second kind, denoted by SB(n, k) or

{
n
k

}
B

, which

are related to the group of signed permutations, denoted by Bn (see exact definitions in
Section 2). The generalization is:

Theorem 1.1. Let x ∈ R and let n ∈ N. Then we have:

xn =

n∑
k=0

{
n
k

}
B

[x]Bk , (2)

where [x]Bk := (x− 1)(x− 3) · · · (x− 2k + 1) and [x]B0 := 1.

Remmel and Wachs [9] proved this equality using their interpretation of SB(n, k) as
counting certain configurations in Rook theory (specifically, this is S0,2

n,k(1, 1) in their nota-
tion). Bala [2] proved this equality using a generating-functions technique (S(2,0,1) in his
notation).

In [1], a geometric way to prove Equation (2), interpreting xn as counting the number
of points in an n-dimensional cubical lattice, is presented.

The purpose of this note is to introduce a simple combinatorial proof of Equation (2),
which interprets its both sides using a ’balls into urns’ approach. Note that our proof is
actually a generalization of the proof for Identity (1), that we have quoted above from
Stanley, for the group of signed permutations.

2 Signed permutations and signed partitions

In this section, we introduce the group of signed permutations. Then, we define the objects
which the Stirling numbers of type B of the second kind count, introduced by Reiner [8].

2.1 The group of signed permutations

We start with a combinatorial motivation: assume that we have a pack of n cards numbered
by {1, . . . , n} such that each card is colored by two colors: red and black, one on each side
of the card. It is easy to observe that the number of ways to put these cards in a row is
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2n · n!. The set of such configurations carries a structure of a group, known as the group
of signed permutations, also known as the Coxeter group of type B or the hyperoctahedral
group.

Here is its formal definition:

Definition 2.1. Denote [±n] := {±1, . . . ,±n}. A signed permutation is a bijective func-
tion:

π : [±n] → [±n],

satisfying: π(−i) = −π(i) for all 1 ≤ i ≤ n. The group of signed permutations of the set
[±n] (with respect to composition of functions) is denoted by Bn.

Example 2.2. Here is an example of a signed permutation:

π =

(
−5 −4 −3 −2 −1 1 2 3 4 5
4 −5 1 −2 3 −3 2 −1 5 −4

)
∈ B5.

Note that it is sufficient to know the values of π(1), . . . , π(n), so that the above permutation
π can also be written (in window notation) as:

π = [−3, 2,−1, 5,−4].

Considering Bn as a subgroup of the symmetric group on 2n elements, S2n, in the
natural way, we can also write every signed permutation as a product of disjoint cycles.
We consider the pairs of cycles C and −C = {−x | x ∈ C} (if −C ̸= C) as one unit, i.e.
although C and −C are two disjoint cycles, we consider them as two parts of the same cycle
(since they act on the same set of absolute values).

Moreover, we distinguish between two types of cycles: a cycle C will be called a non-split
cycle (or an odd cycle) if the following condition holds: “i ∈ C if and only if−i ∈ C”, and will
be called a split cycle (or an even cycle) otherwise. The names odd (and even, respectively)
are coined according to the number of negative elements in the image of {1, . . . , n} under
that cycle.

We say that a permutation written as a sequence of disjoint cycles is presented in
standard form, if its cycles are ordered in such a way that the sequence composed by the
smallest positive elements of each cycle increases.

Example 2.3. The permutation π in Example 2.2 can be written as a product of disjoint
cycles as follows:

π = (1,−3)(3,−1)(2)(−2)(4, 5,−4,−5).

Note that this permutation is indeed presented in standard form, as the sequence composed
by the smallest positive elements of each cycle (marked) is 1, 2, 4, which indeed increases.

Its even cycles are (1,−3)(3,−1) and (2)(−2), as the images of {1, . . . , n} under the
cycles (1,−3)(3,−1) and (2)(−2) are {−1,−3} and {2}, respectively, so the number of
negative images in each cycle is even.

On the other hand, its odd cycle is (4, 5,−4,−5), and the image of {1, . . . , n} by this
cycle has one negative element {−4}.
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2.2 Signed partitions

Following Reiner [8], we define:

Definition 2.4. A signed partition is a set partition of [±n] into blocks, which satisfies the
following conditions:

• There exists at most one block satisfying −B = B, called the zero-block. It is a subset
of [±n] of the form {±i | i ∈ S} for some S ⊆ [n].

• If B appears as a block in the partition, then −B also appears in that partition.

Example 2.5. The following partitions

P1 = {{3,−3}, {−2, 1}, {2,−1}, {−4, 5}, {4,−5}},

P2 = {{3}, {−3}, {−2, 1}, {2,−1}, {−4, 5}, {4,−5}},

are respectively a signed partition of [±5] with a zero block {3,−3} and a signed partition
of [±5] without a zero-block.

We denote by SB(n, k) or

{
n
k

}
B

the number of signed partitions of [±n] having exactly

k pairs of nonzero blocks. These numbers are called Stirling numbers of type B of the second
kind. They form the sequence A039755 in OEIS [10]. Table 1 records these numbers for
small values of n and k.

n/k 0 1 2 3 4 5 6

0 1
1 1 1
2 1 4 1
3 1 13 9 1
4 1 40 58 16 1
5 1 121 330 170 25 1
6 1 364 1771 1520 395 36 1

Table 1: Stirling numbers of type B of the second kind SB(n, k)

3 The combinatorial proof

In this section, we present a direct combinatorial proof for Theorem 1.1, where xn is inter-
preted as the number of assignments of n numbered balls into x distinguishable urns.

Note that Equation (2) is a polynomial identity of degree n. As mentioned above, it is
sufficient to prove it for at least n+1 values. We prove it for any odd natural number, and
then the equality follows.
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Direct combinatorial proof. Let m ∈ N be an odd number. We will show:

mn =

n∑
k=0

{
n
k

}
B

[m]Bk . (3)

The left-hand side of Equation (3) is the number of assignments of n numbered balls into
m distinguishable urns. In the right-hand side, we associate for each k, 0 ≤ k ≤ n,

[m]Bk = (m− 1)(m− 3) · · · (m− 2k + 1)

assignments to each one of the signed partitions enumerated by

{
n
k

}
B

as will be presented

in the squeul, and then we sum them up to get the total number of assignments, thus
proving the identity.

Let B = {B0, B1,−B1, . . . , Bk,−Bk} be a signed partition, where B0 is the zero-block
(which might not exist). Note that by the definition of [x]Bk which appeared in Theorem
1.1, we have [m]Bk = 0 for m < 2k (since m is odd, one of the factors in [m]Bk is 0), so we
may assume that k < m

2 .

For the proof, we impose an order satisfying the following rules on each signed partition
B:

• The zero-block B0, if exists, is located as the first block.

• The blocks B and −B are adjacent, and the internal order between B and −B is
chosen in such a way that the block which contains the minimal positive element of
B ∪ −B is located first.

• Every two pairs of blocks are ordered in such a way that the pair having a smaller
minimal positive element precede.

For example, the following signed partition is properly ordered:

{{5,−5}, {1,−3}, {−1, 3}, {2, 4}, {−2,−4}}.

For convenience, we consider an assignment of n balls into m urns as a function
f : [n] → [m], and associate with a signed partition B the set of ball assignments according
to the following procedure:

• For any positive i ∈ B0 (the zero-block), define: f(i) = 1, i.e. insert ball number i in
urn number 1.

• Choose an urn p out of the m−1 remaining urns (2 ≤ p ≤ m), and insert the positive
elements of the block B1 to p. The absolute values of the negative elements of B1 (i.e.
the positive elements of −B1, if they exist) will be inserted to the next urn in cyclical
order excluding the urn number 1 (which might have already been occupied by the
positive elements of the zero-block). The choice of p can be done in m − 1 different
ways.
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• Pass to the pair of blocks B2 and −B2. Similarly, choose a new urn p′ out of the m−3
remaining urns (the urn number 1 might have been occupied by the positive elements
of the zero-block, and two additional urns are already occupied by the elements of the
pair of blocks B1 and −B1), and insert the positive elements of B2 to the urn p′. For
each negative i ∈ B2, the absolute value of i will be inserted to the next unoccupied
urn in cyclical order. The choice of p′ may be done in m− 3 different ways.

• Proceeding this way, associate a set of [m]Bk functions from [n] to [m] to each signed
partition having k pairs of nonzero blocks.

Conversely, we now recover the signed partition B from a given function f : [n] → [m].
Define:

B0 = {±i | f(i) = 1}.

Mark the number 1 as used. Let k ∈ [n] be the minimal positive number such that f(k) ̸= 1.
Denote a := f(k). Let b ∈ [m]− {1} be the next unused number in cyclical order. Define:

B1 = {i ∈ [n] | f(i) = a} ∪ {−i | f(i) = b},

and add the pair of blocks B1 and −B1 to the signed partition B. Now mark the numbers
a, b as used. Proceeding along these lines, we arrive at the signed partition B which induces
the function f .

Example 3.1. Let n = 6 and m = 7. Consider the signed partition (which is properly
ordered):

B = {{±1}, {2,−3, 5}, {−2, 3,−5}, {4,−6}, {−4, 6}}

of [±6]. Every function f : [6] → [7] which is induced by the signed partition B inserts 1
(which is the unique positive element of the zero-block) to urn number 1 (see Figure 1).

1 2 3 4 5 6 7

1 2

5

3 46

Figure 1: An assignment of 6 balls into 7 urns

Now we pass to the first block B1 = {2,−3, 5} (together with its negative block
−B1 = {−2, 3,−5}): we have to choose a value for the images of 2 and 5 out of 6 possi-
bilities (or choose an urn out of urns {2, . . . , 7} to the balls numbered 2 and 5). Take for
example f(2) = f(5) = 4. Then we have to assign f(3) = 5, which is the next free value in
cyclical order.

The next block is B2 = {4,−6} (together with its negative block −B2 = {−4, 6}). For
this block, we are left with 4 possibilities for assigning values. Choose for instance f(4) = 7
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and so we must assign f(6) = 2, which is the next free value in cyclical order. The resulting
‘balls into urns’ assignment is depicted in Figure 1.

Conversely, given the ‘balls into urns’ assignment obtained above:

f(1) = 1, f(2) = 4, f(3) = 5, f(4) = 7, f(5) = 4, f(6) = 2,

we recover the signed partition B, which induced this assignment, as follows:

• Only 1 is sent to 1, so we have the zero-block B0 = {±1}.

• The minimal unassigned element is 2, which is sent by f to 4, so the positive part of
the next block will be f−1({4}) = {2, 5} and the negative part will be f−1({5}) = {3}
(since 5 is the next unused value after 4 in cyclical order). Hence, we get the pair of
blocks: B1 = {2, 5,−3} and −B1 = {−2,−5, 3}.

• Now, the current next unassigned element is 4, which is sent by f to 7, so the positive
part of the block will be f−1({7}) = {4} and the negative part will be f−1({2}) = {6}
(since 2 is the next unused value after 7 in cyclical order). Hence, we get the pair of
blocks: B2 = {4,−6} and −B2 = {6,−4}.

Hence, we get that the signed partition is:

B = {{±1}, {2, 5,−3}, {−2,−5, 3}, {4,−6}, {−4, 6}},

which indeed was our original signed partition.

4 Stirling number of the first kind

Recall that the (unsigned) Stirling number of the first kind

[
n
k

]
is defined by the following

identity:

t(t+ 1) · · · (t+ n− 1) =

n∑
k=1

[
n
k

]
tk. (4)

A known combinatorial interpretation for these numbers is given by considering them
as counting the number of permutations of the set [n] having k cycles.

Bala [2] presented a generalization of the Stirling numbers of the first kind

[
n
k

]
r

for

each r ≥ 0. In the case r = 2, they are defined by the following equation:

(t+ 1)(t+ 3) · · · (t+ 2n− 1) =

n∑
k=0

[
n
k

]
2

tk. (5)

We present now a combinatorial interpretation of

[
n
k

]
2

, based on the cycles of the group

of signed permutations Bn. The idea is based on Feller coupling [5, p. 815] (see also [3,
p. 96] and [7]), and is probably known among the experts. Since we have not found any
explicit reference for this argument, we present it here.
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Theorem 4.1. For each k ∈ {1, . . . , n}, the coefficient of tk in Equation (5) is the number
of signed permutations having exactly k non-split cycles.

Proof. After expanding the left hand side of Equation (5), we get an expression of the form
n∑

k=0

ckt
k. Note that the coefficient ck is a sum of products of the form 1 ·3 ·5 · · · (2n−1) such

that exactly k numbers from this product are missing. For a specific product of this form,
denote the missing numbers by a1, . . . , ak. Such a product counts the number of signed
permutations having ⌈ai

2 ⌉ as minimum elements (in absolute value) of the k non-split cycles
(see Example 4.2 below). For each summand of the coefficient of tk, one can construct
1·3·5···(2n−1)

a1·a2···ak
signed permutations having exactly k non-split cycles, and hence the equality

follows.

Here, we give an explicit example of presenting the possible signed permutations asso-
ciated with a specific product, based on the idea presented in the proof.

Example 4.2. Let n = 8. One of the summands contributing to the coefficient of t3

in the product (t + 1)(t + 3) · · · (t + 15) is: 1 · 3 · 7 · 9 · 15 (with three numbers missing:
a1 = 5, a2 = 11, a3 = 13). We construct all signed permutations having three non-split
cycles, such that 3, 6, 7 are the minima of these non-split cycles.

Now, we embed the other numbers:

• First, the number 1 must be the minimum of a split cycle.

• For the number 2, we have exactly 3 options: either put 2 or −2 right after 1, or start
a new split cycle with the number 2.

• For the number 3 = ⌈ 5
2⌉ = ⌈a1

2 ⌉, we have only one option, since it opens the next
non-split cycle.

• For the number 4, we have 7 options as follows: it can be placed right after 1 either
as 4 or as −4, it can be placed after 2 as 4 or as −4, it can be placed after 3 as 4 or
as −4, or it can be placed as the minimum element of a new split cycle.

• Continuing in this manner, one can see that 1 · 3 · 7 · 9 · 15 is the number of signed
permutations such that the numbers 3 = ⌈a1

2 ⌉ = ⌈ 5
2⌉, 6 = ⌈a2

2 ⌉ = ⌈ 11
2 ⌉, 7 = ⌈a3

2 ⌉ =
⌈ 13

2 ⌉ are the minimum elements of the three non-split cycles.

An example of a signed permutation constructed according to these restrictions is

(1,−2)(−1, 2)(3,4,−3,−4)(5,−8)(−5, 8)(6,−6)(7,−7),

where the non-split cycles are emphasized.
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