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Abstract

Let K be an algebraically closed field of characteristic p > 0. The aim of the article
is to give a classification of simple parametrized space curve singularities over K. The
idea is to give explicitly a class of families of singularities which are not simple such that
almost all singularities deform to one of those and show that remaining singularities
are simple.

Key Words: Simple singularities, space curves, parametrized curves, charac-
teristic p ≥ 0.
2010 Mathematics Subject Classification: Primary 14H20; Secondary
14H50, 14B05.

1 Introduction

The study and classification of singularities have a long history. Very important contri-
butions go back to Zariski [21] and Arnold [2]. Most of the results were obtained over
the complex numbers. Greuel and his students started a classification for hypersurface
singularities in characteristic p > 0 ([3],[9],[10]). Bruce and Gaffney [5] classified the sim-
ple1 parameterized plane curve singularities over the complex numbers. Parametrization
of space curve singularities were studied by Gibson and Hobbs over the complex numbers
[8]. We recall their classification in Theorem 1. Their way of proving cannot be adapted
to positive characteristics. The reason is that in characteristic zero heavily the results of
Mather [16] are used. Mather uses so called complete transversals in the orbit space (of the
group associated to A- equivalence). There is no such theory for positive characteristic.
Mehmood and the second author [17] classified the simple plane curve parametrizations in
characteristic p. The aim of this paper is to give the classification of parametrized irreducible
curve singularities in 3-space in characteristic p > 0. The classification is given in Theorem
3. The classification depends very much on the characteristic. We found parametrizations
which do not occur in characteristic 0. On the other hand not all simple parametriza-
tions from characteristic 0 are simple in characteristic p > 0. To give an example, the
parametrizations (t4, t5, 0) and (t4, t5 + t6, 0) are A-equivalent in characteristic p ̸= 5 but
not in characteristic 5. The parametrization (t4, t6 + tk, 0) is simple in characteristic 0 for
all k but not simple in characteristic 17 if k > 9. In characteristic 0 the following holds.
Let (x(t), y(t)) define a plane curve and consider the space curve (x(t), y(t), z(t)). The
classification of Gibson and Hobbs in characteristic zero ([8], table 1 and table 2) shows

1See Definition 4.
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that (x(t), y(t), z(t)) being simple implies that (x(t), y(t)) is simple2. This is not true in
positive characteristic. In characteristic 2 the curve (t3, t10, 0) is not simple, but the curve
(t3, t10, t11) is simple (cf. Theorem 3).
Let K be an algebraically closed field of characteristic p > 0. This field is fixed now during
this paper. A parametrized space curve singularity is given by a map f : K[[x, y, z]] → K[[t]].
If f(x) = x(t), f(y) = y(t) and f(z) = z(t) then we write shortly f = (x(t), y(t), z(t)). The
image of f is the subalgebra K[[x(t), y(t), z(t)]] ⊆ K[[t]] and we will always assume that the
δ-invariant of the parametrization is finite

δ(f) := dimKK[[t]]/K[[x(t), y(t), z(t)]] <∞.

The finiteness condition implies that there exist a minimal c such that the conductor
ideal satisfies tcK[[t]] ⊆ K[[x(t), y(t), z(t)]]. Two parametrized space curve singularities f =

(x(t), y(t), z(t)) and g = ( ˆx(t), ˆy(t), ˆz(t)) are called A- equivalent, f ∼ g, if there exist
automorphisms,

ψ : K[[t]] → K[[t]]

φ : K[[x, y, z]] → K[[x, y, z]]

such that the following diagram commutes:

? ?
-

-

K[[x, y, z]] K[[x̂(t), ŷ(t), ẑ(t)]] ⊆ K[[t]]

K[[x, y, z]] K[[x(t), y(t), z(t)]] ⊆ K[[t]]

φ ψ

g

f

i.e.

(x(ψ(t)), y(ψ(t)), z(ψ(t))) = (φ1(x̂(t), ŷ(t), ẑ(t)), φ2(x̂(t), ŷ(t), ẑ(t)), φ3(x̂(t), ŷ(t), ẑ(t))).

Definition 1. Given a parametrization f = (x(t), y(t), z(t)), we define the semigroup as

Γ = Γf = {ordt(h)|h ∈ K[[x(t), y(t), z(t)]] \ {0}}.

If tcK[[t]] is the conductor ideal then c − 1 ̸∈ Γ and l ∈ Γ if l ≥ c. The integer c = c(Γ) is
called conductor of Γ. The cardinality of the set Z≥0\Γ is called δ = δ(Γ). The semigroup Γ
has a unique minimal system of generators {β1, . . . , βk} and we write Γ = ⟨β1, . . . , βk⟩. We
will always assume that the minimal generators of a semigroup are given in an increasing
way.

Definition 2. Given a parametrization f = (x(t), y(t), z(t)). A set {w1(t), . . . , wk(t)} ⊂
K[[x(t), y(t), z(t)]]\{0} is called sagbi basis of K[[x(t), y(t), z(t)]] if 3 ordt(w1), . . . , ordt(wk)
generate Γ.

2The other implication is always true by definition.
3In general the definition of sagbi bases (the analogon of Gröbner bases for subalgebras) is more involved.

There are efficient algorithms to compute sagbi bases. For more details see [12] or [13].
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Definition 3. Let f = (x(t), y(t), z(t)) ∈ tK[[t]]
3
define a parametrized space curve sin-

gularity. A deformation of f over the affine ring A = K[x1, . . . , xn]/I is a pair (F , m),
F ∈ tA[[t]]3 and m ⊆ A a maximal ideal , such that F mod mA[[t]]3 = f . Since the field K
is algebraically closed a closed point p ∈ V (I) ⊆ Kn corresponds to a maximal ideal mp ⊆ A

and we will write F (p, t) ∈ tK[[t]]
3
for F mod mpA[[t]]

3
. We will only consider closed points

in this paper. We will denote the point corresponding to m by o.

Definition 4. Let f = (x(t), y(t), z(t)) ∈ tK[[t]]
3
define a parametrized space curve sin-

gularity. f is called simple if for any deformation (F , m) of f , F ∈ tA[[t]]
3
, A =

K[x1, ..., xn]/I, there exsist a Zariski open subset U of V (I) ⊂ Kn containing o such that
the set {F (p, t) ∈ K[[t]]3|p ∈ U} contains only finitely many A-equivalence classes.

Remark 1. Let f = (x(t), y(t), z(t)) ∈ tK[[t]]
3
define a parametrized space curve singu-

larity and c the conductor of the semigroup. We will see in Corollary 1 that f is finitely
determined, i.e. f is determined by its coefficients up to degree c. Given a deformation
(F,m) of f = (x(t), y(t), z(t)) ∈ K[[t]]3, we will always choose an open set U ⊂ Specmax(A)
such that for mp ∈ U all monomials of f of degree ≤ c occur in F (p, t), i.e. we do not
allow cancellation of these terms in the family. Especially, if F = (X(t), Y (t), Z(t)) we
have ordt(x(t)) ≥ ordt(X(p, t)), ordt(y(t)) ≥ ordt(Y (p, t)) and ordt(z(t)) ≥ ordt(Z(p, t)).

Remark 2. Let f = (x(t), y(t), z(t)) ∈ tK[[t]]
3
define a parametrized space curve singularity

and (F , m) a deformation of f , F ∈ tA[[t]]
3
. Let U ⊂ Specmax(A) be a non-empty open

set such that o is in the closure of U and for all p ∈ U the parametrization F (p, t) is not
simple, then f is not simple.

We will give the idea of the classification in case of characteristic ≥ 17. The case
of smaller characteristic is similar. We first prove that parametrizations with semigroups
greater4 or equal to ⟨5, 6, 7⟩ or ⟨4, 9, 10⟩ are not simple. Parametrizations with smaller
semigroup are discussed case by case and turn out to be simple.

We now recall the results of the classification of Gibson and Hobbs over the complex
numbers [8].

Theorem 1. Let C be the field of complex numbers. Let f ∈ tC[[t]]3 be a simple parametrized
space curve singularity, then f is A- equivalent to a parametrized space curve singularity in
the following table:

4See Definition 6.
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Characteristic p = 0

Γ Normal Form

⟨1⟩ (t, 0, 0)

⟨2, k⟩ (t2, tk, 0), k > 2 odd

⟨3, k, r⟩ (t3, tk + tl, tr)

k · r ≡ 2 mod 3 or r = ∞ l = ∞ or k < l ≤ 2k − 6 and k · l ≡ 2 mod 3

r = ∞ or k < r < 2k − 2

⟨4, 5, 6⟩ (t4, t5, t6)

⟨4, 5, 7⟩ (t4, t5, t7)

⟨4, 5, 11⟩ (t4, t5, t11)

(t4, t5 + t7, t11)

⟨4, 5⟩ (t4, t5, 0)

(t4, t5 + t7, 0)

⟨4, 6, k + 6, r⟩ (t4, t6 + tk, tk−2), k ≥9

r ∈ {k − 2, k + 2, k + 4, k + 8,∞} (t4, t6 + tk, tk+2)

k ≥ 7 odd (t4, t6 + tk, tk+8)

(t4, t6 + tk, tk+4)

(t4, t6 + tk, 0)

⟨4, 6, k⟩ (t4, t6, tk), k ≥ 7, k odd

⟨4, 7, 9⟩ (t4, t7, t9),

(t4, t7, t9 + t10),

⟨4, 7, 10⟩ (t4, t7, t10),

(t4, t7 + t9, t10),

⟨4, 7, 13⟩ (t4, t7, t13),

(t4, t7 + t9, t13),

⟨4, 7, 17⟩ (t4, t7, t17),

(t4, t7 + t9, t17),

(t4, t7 + t13, t17),

⟨4, 7⟩ (t4, t7, 0),

(t4, t7 + t9, 0),

(t4, t7 + t13, 0),
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An important basis for the classification is the following theorem of Zariski ([21], Chapter
III, Proposition 1.2) generalized to space curves.

Theorem 2. Given a parametrization

(tl +Σi>lait
i, tm +Σi>mbit

i, tn +Σi>ncit
i)

2 < l < m < n, l - m and n /∈ ⟨l,m⟩ if n < ∞, with semigroup Γ and conductor c. Let
k ∈ Γ then there exists an A-equivalent parametrization

(tl +Σi>lâit
i, tm +Σi>mb̂it

i, tn +Σi>nĉit
i)

with ai = âi, bi = b̂i, ci = ĉi if i < k and âk = b̂k = ĉk = 0, âs = b̂s = ĉs = 0, for all s ≥ c.

Corollary 1. Given a parametrization

(x(t), y(t), z(t)) with semigroup Γ,

there exists an A-equivalent parametrization of the form

(tl +Σi>l,i/∈Γait
i, tm +Σi>m,i/∈Γbit

i, tn +Σi>n,i/∈Γcit
i),

l < m < n (n = ∞ included), l - m and n /∈ ⟨l,m⟩ if n <∞.

Definition 5. Let (x(t), y(t), z(t)) be a parametrization. A parametrization with the prop-
erties of Corollary 1 is called a weak normal form5 of (x(t), y(t), z(t)).

The main result of this paper is the following theorem:

Theorem 3. Let (x(t), y(t), z(t)) be a parametrization of a simple space curve6 then it is
A-equivalent to a parametrization in the following table:

5also called short parametrization cf. [21].
6The classification includes also the classification of simple plane curves (last component 0).
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Characteristic p > 2

Γ Normal Form

⟨1⟩ (t, 0, 0)

⟨2, k⟩ (t2, tk, 0), k > 2 odd

⟨3, k, r⟩, p ̸= 3 (t3, tk + tl, tr)

k · r ≡ 2 mod 3 or r = ∞ l = ∞ or k < l ≤ 2k − 6 and k · l ≡ 2 mod 3

r = ∞ or k < r < 2k − 2

k < p+ 9 or 2p+ 9 > k ≥ p+ 9 and l < k + p or r ≤ k + p.

⟨3, k, r⟩, p = 3 (t3, t5, 0)

(t3 + t4, t5, 0)

(t3, t5, t7)

(t3 + t4, t5, t7)

(t3, t7, t8)

(t3 + t4, t7, t8)

(t3 + t5, t7, t8)

⟨4, 5⟩ (t4, t5, 0)

(t4, t5 + t7, 0)

and additionally if p =5

(t4, t5 + t6, 0)

⟨4, 5, 6⟩ (t4, t5, t6)

and additionally if p =3

(t4, t5, t6 + t7)

⟨4, 5, 7⟩ (t4, t5, t7)

and additionally if p =5

(t4, t5 + t6, t7)

⟨4, 5, 11⟩ (t4, t5, t11)

(t4, t5 + t7, t11)

and additionally if p =5,

(t4, t5 + t6, t11)

⟨4, 6, k + 6, r⟩ (t4, t6 + tk, tk−2) k ≥9

r ∈ {k − 2, k + 2, k + 4, k + 8,∞} (t4, t6 + tk, tk+2) if p - k + 2.

k odd (t4, t6 + tk, tk+8)

p ̸= 3,13 (t4, t6 + tk, tk+4)

(t4, t6 + tk, 0)

7 ≤ k ≤ p− 8 if p ≥ 17,

7 ≤ k ≤ 8 if p =11,

7 ≤ k ≤ 13 if p =7,

k =7 if p =5
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⟨4, 6, r⟩ (t4, t6, tr)

r odd, p ̸= 3, 13 (t4, t6, tr + tr+2) if p|r
7 ≤ r ≤ p+ 8 if p ≥17,

7 ≤ r ≤ 29 if p =11,

7 ≤ r ≤ 15 if p =7,

7 ≤ r ≤ 11 if p =5

if p =3

(t4, t6, t7)

(t4, t6 + t9, t7)

if p =13

(t4, t6, t7)

(t4, t6, t9)

(t4, t6 + t7, t9)

Assume that p ̸= 3, 7.

⟨4, 7⟩ (t4, t7, 0),
(t4, t7 + t9, 0),
(t4, t7 + t13, 0),

⟨4, 7, 9⟩ (t4, t7, t9),
(t4, t7, t9 + t10),

let p = 5
(t4, t7, t9)
let p =13
(t4, t7, t9)

(t4, t7, t9 + t10).
⟨4, 7, 10⟩ (t4, t7, t10),

(t4, t7 + t9, t10),
⟨4, 7, 13⟩ (t4, t7, t13),

(t4, t7 + t9, t13),
⟨4, 7, 17⟩ (t4, t7, t17),

(t4, t7 + t9, t17),
(t4, t7 + t13, t17),
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Characteristic p = 2

⟨1⟩ (t, 0, 0)

⟨2, k⟩ (t2, tk, 0), k ≥ 3 odd

(t2 + tm, tk, 0), 0 < m < k, k, m odd

⟨3, 4⟩ (t3, t4, 0)

(t3, t4 + t5, 0)

⟨3, 4, 5⟩ (t3, t4, t5)

⟨3, 5⟩ (t3, t5, 0)

⟨3, 5, 7⟩ (t3, t5, t7)

⟨3, 7⟩ (t3, t7, 0)

(t3, t7 + t8, 0)

⟨3, 7, 8⟩ (t3, t7, t8)

⟨3, 7, 11⟩ (t3, t7, t11)

(t3, t7 + t8, t11)

⟨3, 8, 10⟩ (t3, t8, t10)

⟨3, 8, 13⟩ (t3, t8, t13)

(t3, t8 + t10, t13)

⟨3, 10, 11⟩ (t3, t10, t11)

⟨3, 10, 14⟩ (t3, t10, t14)

(t3, t10 + t11, t14).

Remark 3. The list does not include all normal forms of Gibson and Hobbs since some of
them depend on the characteristic of the field. If the characteristic is tending to infinity we
obtain in the limit the list of Gibson and Hobbs. Especially our methods for the classification
would give the corresponding classification over algebraically closed fields of characteristic
0 with the same normal forms obtained by Gibson and Hobbs over the complex numbers.

2 Semigroups and deformations

We start by collecting some useful properties of numerical semigroups.

Lemma 1. Let Γ = ⟨g1, ..., gm⟩ be a semigroup given by a minimal set of generators. Then

1. m ≤ g1,

2. if m = g1 then a+ b− g1 ∈ Γ for a, b ∈ Γ, a, b ̸= 0,

3. gi ≤ c(Γ) + g1 − 1,

4. δ(Γ) ≤ c(Γ) ≤ 2δ(Γ).
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Proof. A proof of these properties can be found in [6] (pages 234 and 235) and [19] (page
316).

For the classification of parametrizations we need the following results about semigroups.

Definition 6. Let Γ = ⟨a1, ..., al⟩ , Γ̄ = ⟨b1, ..., bs⟩ be semigroups given by minimal sets of
generators. If l < s (resp. l > s) then we extend the set of generators a1, ..., al to a1, ..., al,
∞, ...,∞ (resp. b1, ..., bs to b1, ..., bs,∞, ...,∞). We define Γ < Γ̄ if Γ ̸= Γ̄ and there exist i
such that aj = bj for j < i and ai < bi.

Example 1. ⟨g1, g2⟩ > ⟨g1, g2, g3⟩ if g3 ̸= ∞.

Lemma 2. Let f̄ = (x̄(t), ȳ(t), z̄(t)) and f = (x(t), y(t), z(t)) be parametrizations with
semigroup Γ̄ resp. Γ. If Γ ⊆ Γ̄ then Γ̄ ≤ Γ.

Proof. Let Γ̄ = ⟨β̄1, ..., β̄s⟩ resp. Γ = ⟨β1, ..., βt⟩ be given by their minimal system of
generators. Consider β1 ∈ Γ ⊆ Γ̄. It implies β1 =

∑
ciβ̄i with ci ∈ Z, ci ≥ 0. This implies

β1 ≥ β̄1. If β1 > β̄1 then Γ̄ < Γ. Assume we have found i such that β1 = β̄1, ..., βi−1 = β̄i−1.
Since βi ∈ Γ ⊆ Γ̄ and βi ̸∈ ⟨β1, ..., βi−1⟩ = ⟨β̄1, ..., β̄i−1⟩. We have βi =

∑
ciβ̄i , ci ≥ 0 and

ck ̸= 0 for some k ≥ i. This implies that βi ≥ β̄i. If βi > β̄i then Γ̄ < Γ. Using induction
we obtain Γ̄ ≤ Γ.

Lemma 3. Assume that the characteristic p ̸= 2. Let (x(t), y(t), z(t)) be a parametrization
in weak normal form such that ordt(x(t)) = 4, ordt(y(t)) = 6 and the semigroup Γ is
minimally generated by 4 elements. Then (x(t), y(t)) defines a plane curve with semigroup
Γ0 = ⟨4, 6, k⟩ and Γ = ⟨4, 6, s, k⟩ with s ∈ {k − 8, k − 4, k − 2} or Γ = ⟨4, 6, k, k + 2⟩.

Proof. Wemay assume that x(t) = t4 since p ̸= 2. If y(t) ∈ K[[t2]] then Γ = ⟨4, 6, ordt(z(t))⟩.
This is a contradiction to our assumption. This implies that (x(t), y(t)) defines a plane curve
with semigroup Γ0 = ⟨4, 6, k⟩ for a suitable odd7 k. The conductor of this semigroup is
k+3. Since the curve (x(t), y(t), z(t)) is in weak normal form we have s := ordt(z(t)) ̸∈ Γ0.
If s ≤ k − 10 or s = k − 6 then k − 6 ∈ ⟨4, 6, s⟩ this is a contradiction to the assump-
tion that (x(t), y(t), z(t)) is in weak normal form. The remaining possibilities for s are
k − 8, k − 4, k − 2 and k + 2.

Proposition 1. Let Γ be the semigroup of the parametrization (x(t), y(t), z(t)) and assume
that Γ ≤ ⟨4, 7⟩. If the parametrization has multiplicity 4 assume additionally that the char-
acteristic p > 2. Let (X(t), Y (t), Z(t)) ∈ A[[t]]3 be a deformation and for m ∈ Specmax(A)
let Γm be the corresponding semigroup. Then there exists an open neighborhood U of o such
that for all m ∈ U we have Γm ≤ Γ.

7k is minimal such that tk−6 occurs as a monomial in y(t).
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Proof. We may assume that (x(t), y(t), z(t)) is in weak normal form. If z(t) = 0 then
the result follows from the corresponding proposition for plane curves ([17], Lemma 14).
We choose an open neighborhood U of o such that ordtX(u, t) ≤ ordtx(t), ordtY (u, t) ≤
ordty(t) and ordtZ(u, t) ≤ ordtz(t). If z(t) ̸= 0 and Γ has as minimal generators 3 elements
then {x(t), y(t), z(t)} form a sagbi basis of the algebra K[[x(t), y(t), z(t)]] ([12], Proposition
3.1.), Γ = ⟨ordtx(t), ordty(t), ordtz(t)⟩ and we are in one of the following cases

1. Γ = ⟨3, k, s⟩

2. Γ = ⟨4, 5, s⟩

3. Γ = ⟨4, 6, s⟩

4. Γ = ⟨4, 7, s⟩

If the deformation decreases the order we have Γu < Γ. If the order is constant then
we may assume that X(u, t) = x(t) mod tordtx(t)+1 and ordtY (u, t) > ordtX(u, t) and
ordtZ(u, t) > ordtX(u, t) and both orders are not divisible by ordtX(u, t). If one of the two
orders is smaller than ordty(t) then Γu < Γ. Now we may assume additionally that Y (u, t) =
y(t) mod tordty(t)+1 and ordtZ(u, t) > ordtY (u, t) and ordtZ(u, t) /∈ ⟨ordtx(t), ordty(t)⟩.
If ordtZ(u, t) < ordtz(t) we have Γu < Γ. If ordtZ(u, t) = ordtz(t) it is possible that
the deformation is no more a sagbi basis. But this would enlarge the set of generators
ordtx(t), ordty(t), ordtz(t) and again by definition we have Γu ≤ Γ.
Finally we have to consider the case that Γ is generated by 4 elements. We may assume that
the parametrization is in weak normal form. We apply Lemma 3 and obtain that (x(t), y(t))
defines a plane curve with semigroup Γ0 = ⟨4, 6, k⟩. Again we apply the corresponding
Proposition for the plane curve to (x(t), y(t)). Let Γ0,u be the semigroup corresponding to
(X(u, t), Y (u, t)). Then Γ0,u ≤ Γ0. If Γ0,u < Γ0, we are done. If Γ0,u = Γ0 = ⟨4, 6, k⟩. We
obtain Γu ≤ Γ since ordtZ(u, t) ≤ ordtz(t).

Lemma 4. Given a parametrization f = (x(t), y(t), z(t)) with the semigroup
⟨4, 6, k, s⟩, k > 6 odd (s = ∞ included ), and F (u, t) a deformation of f with multiplicity 3
and semigroup Γu for u ̸= 0. Then Γu ≤ ⟨3, 7⟩.

Proof. Let f = (x(t), y(t), z(t)) be a parametrization with semigroup ⟨4, 6, k, s⟩. We may
assume that

f = (t4, t6 + tk−6, ts) or f = (t4, t6, ts).

We give the proof for the first case. Consider any deformation for this parametrization

F = (
∑
i≥3

αit
i,
∑
i≥3

βit
i,
∑
i≥3

γit
i),

by definition of deformation we have the following conditions αi(0) = 0, i ̸= 4, α4(0) = 1,
βi(0) = 0, i ̸= 6, k − 6, β6(0) = 1, βk−6(0) = 1, γi(0) = 0, i ̸= s, γs(0) = 1.
If α3 = 0, we obtain Γu = ⟨3, 4⟩ or ⟨3, 4, 5⟩.
Now assume α3 ̸= 0, consider β3

∑
i≥3 αit

i − α3

∑
i≥3 βit

i

= (β3α4 − α3β4)t
4 + (β3α5 − α3β5)t

5 + (β3α6 − α3β6)t
6 + (β3α7 − α3β7)t

7 + ....
If (β3α4 − α3β4) ̸= 0, we obtain Γu = ⟨3, 4⟩ or ⟨3, 4, 5⟩.
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If (β3α4 − α3β4) = 0, and (β3α5 − α3β5) ̸= 0 then 3, 5 ∈ Γ. This implies that Γu ≤ ⟨3, 5⟩.
If (β3α4 − α3β4) = 0, and (β3α5 − α3β5) = 0, and (β3α6 − α3β6) ̸= 0.
then α2

3(β3
∑

i≥3αit
i − α3

∑
i≥3βit

i)− (β3α6 − α3β6)(
∑

i≥3αit
i)2

= [α2
3(β3α7 − α3β7)− 2(β3α6 − α3β6)α3α4]t

7 + ...
= α2

3[(β3α7 − α3β7)− 2(β4α6 − α4β6)]t
7 + ...

Since β6(0)α4(0) = 1, we obtain that the coefficient of t7 is different from zero. If β3α6 −
α3β6 = 0, we obtain multiplying with α4 and using β3α4 = α3β4 that α3(β4α6−α4β6) = 0.
But α3 ̸= 0 and α4β6 is a unit. This implies β4α6−α4β6 ̸= 0. This is a contradiction. This
implies that 7 ∈ Γu and therefore Γu ≤ ⟨3, 7⟩ in this case.

3 Minimal non-simple curves

The idea is to prove the Theorem 3 for almost all characteristics is the following: We prove
for a given parameterized space curve singularities f = (x(t), y(t), z(t)) with ordtx(t) = 5
or ordtx(t) = 4 and ordty(t) ≥ 9 and ordtz(t) ≥ 10 that f is not simple. For the other
cases, we give normal forms not depending on parameters. The property ordtx(t) ≤ 4,
ordty(t) ≤ 7 is kept under deformation.

Lemma 5. The following parametrizations are not simple:

1. (t5, t6, 0) and (t5, t6, t7).

2. (t4, t9, 0) and (t4, t9, t10).

Proof. We will prove that

(t5, t6 + t8 + at9, t7) ∼ (t5, t6 + t8 + bt9, t7)

implies a = b or a = −b.
This will prove the lemma since for different a modulo sign, the parametrizations are in
different classes. This gives infinitely many different classes since the field is algebraically
closed.
The case (t4, t9 + t11, t10 + at11) can be treated similarly.
Set

ψ(t) = a1t+Σi>1ait
i

with a1 ̸= 0, and let

φ(x, y, z) = (φ1, φ2, φ3) ; φj = Σbjk,l,mx
kylzm

be an automorphism of K[[x, y, z]]. Assume that

ψ5 = φ1(t
5, t6 + t8 + at9, t7)

ψ6 + ψ8 + bψ9 = φ2(t
5, t6 + t8 + at9, t7)

ψ7 = φ3(t
5, t6 + t8 + at9, t7).
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This is the condition for (t5, t6 + t8 + at9, t7) ∼ (t5, t6 + t8 + bt9, t7) according to the
definition of A-equivalence. Writing down this explicitly we see if p ̸= 5 and p ̸= 7 then
a2 = ... = a5 = 0, a21 = 1 and

ψ5 = φ1(t
5, t6 + t8 + at9, t7) mod t10

ψ6 + ψ8 + bψ9 = φ2(t
5, t6 + t8 + at9, t7) + (b− a)t9 mod t10 (*)

ψ7 = φ3(t
5, t6 + t8 + at9, t7) mod t10

This implies a = a21b.
The computation can be done using Singular. The computations of all possible cases took
less than a minute per case. The corresponding code for (t5, t6 + t8 + at9, t7) is as follows:
We define the ring

R = Q(a1, . . . , a10, u1, . . . , u10, v1, . . . , v10, w1, . . . , w10, a, b)[[x, y, z, t]]

and the map ψ as above. The map ϕ is given by

ϕ(x) = ϕ1 = Hx = u1x+ u2y + u3z + . . ., ϕ(y) = ϕ2 = Hy = v1x+ v2y + v3z + . . ., and
ϕ(z) = ϕ3 = Hz = w1x+ w2y + w3z + . . ..

The relations (*) are given by the polynomials W,X, Y . Their coefficients are collected in
the ideal I. We compute a Gröbner basis of I with respect to the lexicographical ordering
to obtain the relations between a, b, a1.

ring R=(0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,u1,u2,u3,u4,u5,u6,u7,u8,u9,

u10,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,a,b)

,(x,y,z,t) ,ds;

poly psi=a1*t+a2*t2+a3*t3+a4*t4+a5*t5+a6*t6+a7*t7+a8*t8+a9*t9+a10*t10;

poly Hx=u1*x+u2*y+u3*z+u4*x2+u5*xy+u6*xz+u7*y2+u8*yz+u9*z2+u10*x3;

poly Hy=v1*x+v2*y+v3*z+v4*x2+v5*xy+v6*xz+v7*y2+v8*yz+v9*z2+v10*x3;

poly Hz=w1*x+w2*y+w3*z+w4*x2+w5*xy+w6*xz+w7*y2+w8*yz+w9*z2+w10*x3;

poly W=jet(psi^5-subst(Hx,x,t5,y,t^6+t8+b*t9,z,t7) ,9);

poly X=jet(psi^6+phi^8+a*phi^9-subst(Hy,x,t5,y,t^6+t8+b*t9,z,t7) ,9);

poly Y=jet(psi^7-subst(Hz,x,t5,y,t^6+t8+b*t9,z,t7) ,9);

matrix M1=coef(W,t);matrix M2=coef(X,t);matrix M3=coef(Y,t);

ideal I;int ii;

for(ii=1;ii<=ncols(M1);ii++){I[size(I)+1]=M1[2,ii];}

for(ii=1;ii<=ncols(M2);ii++){I[size(I)+1]=M2[2,ii];}

for(ii=1;ii<=ncols(M3);ii++){I[size(I)+1]=M3[2,ii];}

ring S=integer,(a2,a3,a4,a5,a6,a7,a8,a9,a10,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,

v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,

a,b,a1),lp;

ideal I=imap(R,I);std(I);

//==The first 2 polynomials of the standard basis of I are

_[1]=7*a1^10-7*a1^8

_[2]=35*a*a1^8-35*b*a1^9
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Since a1 is not zero and the characteristic is different from 5 and 7 we obtain a21 = 1 and
a = a1b. This proves our assertion.
It remains to discuss the cases p = 5 and p = 7. Let us start with p = 5. We will show that
the family (t5 + t8 + at9, t6, t7) contains infinitely many different equivalence classes. The
computation can be done using Singular as follows:

int ch=5;

ring R=(ch,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,u1,u2,u3,u4,u5,u6,u7,u8,u9,

u10,v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,a,b)

,(x,y,z,t) ,ds;

poly psi=a1*t+a2*t2+a3*t3+a4*t4+a5*t5+a6*t6+a7*t7+a8*t8+a9*t9+a10*t10;

poly Hx=u1*x+u2*y+u3*z+u4*x2+u5*xy+u6*xz+u7*y2+u8*yz+u9*z2+u10*x3;

poly Hy=v1*x+v2*y+v3*z+v4*x2+v5*xy+v6*xz+v7*y2+v8*yz+v9*z2+v10*x3;

poly Hz=w1*x+w2*y+w3*z+w4*x2+w5*xy+w6*xz+w7*y2+w8*yz+w9*z2+w10*x3;

poly W=jet(psi^5+psi^8+a*psi^9-subst(Hx,x,t5+t8+b*t9,y,t^6,z,t7) ,9);

poly X=jet(psi^6-subst(Hy,x,t5+t8+b*t9,y,t^6,z,t7) ,9);

poly Y=jet(psi^7-subst(Hz,x,t5+t8+b*t9,y,t^6,z,t7) ,9);

matrix M1=coef(W,t);matrix M2=coef(X,t);matrix M3=coef(Y,t);

ideal I;int ii;

for(ii=1;ii<=ncols(M1);ii++){I[size(I)+1]=M1[2,ii];}

for(ii=1;ii<=ncols(M2);ii++){I[size(I)+1]=M2[2,ii];}

for(ii=1;ii<=ncols(M3);ii++){I[size(I)+1]=M3[2,ii];}

ring S=ch,(a2,a3,a4,a5,a6,a7,a8,a9,a10,u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,

v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,

a,b,a1),lp;

ideal I=imap(R,I);std(I);

//==The first 2 polynomials in the standard basis are

_[1]=a1^8-a1^5

_[2]=a*a1^5-b*a1^7

Since a1 is not zero we obtain a31 = 1 and a = a21b.
Now we consider the case p = 7. We will show that the family (t5, t6, t7+ t8+ at9) contains
infinitely many different equivalence classes. The computation can be done using Singular
as follows:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

int ch=7;

poly W=jet(psi^5-subst(Hx,x,t5,y,t^6,z,t7+t8+b*t9) ,9);

poly X=jet(psi^6-subst(Hy,x,t5,y,t^6,z,t7+t8+b*t9) ,9);

poly Y=jet(psi^7+psi^8+a*psi^9-subst(Hz,x,t5,y,t^6,z,t7+t8+b*t9) ,9);

//==The first 2 polynomials in the standard basis are

_[1]=a1^8-a1^7

_[2]=a^2*a1^7+a*b*a1^9-a*b*a1^7-2*a*a1^9-b^2*a1^7+2*b*a1^7

Since a1 is not zero we obtain a1 = 1 and a = b or a = 2− b.
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Lemma 6. Let K be a field of characteristic 3 then the parametrizations with the semigroup
⟨3, 7, 11⟩ are not simple.

Proof. To prove this we just need to show that

(t3 +
∑

i≥4
αit

i, t7 +
∑

i≥8
γit

i, t11) ∼ (t3 +
∑

i≥4
βit

i, t7 +
∑

i≥8
δit

i, t11).

with α4 = β4 = 1 implies8 α5 = β5.
The computation can be done using Singular:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

int ch=3;

poly W=jet(psi^3+psi^4+a*psi^5-subst(Hx,x,t3+t4+b*t5,y,t7,z,t11) ,11);

poly X=jet(psi^7-subst(Hy,x,t3+t4+b*t5,y,t7,z,t11) ,11);

poly Y=jet(psi^11-subst(Hz,x,t3+t4+b*t5,y,t7,z,t11) ,11);

//==The first 2 polynomials in the standard basis are

_[1]=a1^4-a1^3

_[2]=a*a1^3-b*a1^3

Since a1 is not zero we obtain a1 = 1 and a = b.

Corollary 2. Let K be a field of characteristic 3 then the parametrizations with the semi-
group ⟨4, 7, 9⟩ and ⟨4, 6, k, s⟩, k ≥ 13, s ≥ 9 (the case k = ∞ included), are not simple.

Proof. These parametrizations deform into parametrizations with the semigroup ⟨3, 7, 11⟩
which are not simple.
To see this let us consider the case s = 9. Using Corollary 1 (Zariski’s Theorem) we obtain
that the corresponding parametrization is equivalent to (t4, t6 + at7 + bt11, t9 + ct11). As a
deformation we consider (αt3 + t4, t6 + at7 + bt11, t9 + ct11). For α ̸= 0 and we obtain that
this parametrization is equivalent to

(αt3 + t4, (α2a− 2α)t7 − t8 + α2bt11, α3ct11 − t12)

having semigroup ⟨3, 7, 11⟩.
In case of the semigroup ⟨4, 7, 9⟩, we consider the parametrization (t4, t7 + at10, t9 + bt10)
obtained from the generic one using Corollary 1 (Zariski’s Theorem). As a deformation we
consider (αt3 + t4, t7 + at10, t9 + bt10) ∼ (αt3 + t4, t7, 0) having semigroup ⟨3, 7⟩ > ⟨3, 7, 11⟩.

Lemma 7. Let K be a field of characteristic 5 then the parametrizations with the semigroup
⟨4, 7, 10⟩ are not simple.

Proof. We will show that the family (t4, t7+t9, 110+at13) contains infinitely many different
equivalence classes. The computation can be done using Singular as follows:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

8If α4 and β4 are different from 0 we can always obtain after applying a suitable automorphism of K[[t]]
that they are 1.



N. Javed, G. Pfister 49

int ch=5;

poly W=jet(psi^4-subst(Hx,x,t4,y,t7+t9,z,t10+b*t13) ,13);

poly X=jet(psi^7+psi^9-subst(Hy,x,t4,y,t7+t9,z,t10+b*t13) ,13);

poly Y=jet(psi^10+a*psi^13-subst(Hz,x,t4,y,t7+t9,z,t10+b*t13) ,13);

We obtain a21 = 1 and a = a1b.

Lemma 8. Let K be a field of characteristic 7 then the parametrizations with the semigroup
⟨4, 7, 13⟩ are not simple.

Proof. We will show that the family (t4, t7+ t9+at10, t13) contains infinitely many different
equivalence classes. The computation can be done using Singular as follows:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

int ch=7;

poly W=jet(psi^4-subst(Hx,x,t4,y,t7+t9+b*t10,z,t13) ,13);

poly X=jet(psi^7+psi^9+a*psi^10-subst(Hy,x,t4,y,t7+t9+b*t10,z,t13) ,13);

poly Y=jet(psi^11-subst(Hz,x,t4,y,t7+t9+b*t10,z,t13) ,13);

//==The first 2 polynomials in the standard basis are

_[1]=a1^9-a1^7

_[2]=a*a1^7-b*a1^8

Since a1 is different from zero we obtain a21 = 1 and a = a1b.

Lemma 9. Let K be a field of characteristic 13 then a parametrization with the semigroup
⟨4, 6, 11, 13⟩ is not simple.

Proof. We will show that the family (t4, t6 + t7 + at9, t11) whose semigroup is ⟨4, 6, 11, 13⟩
contains infinitely many different equivalence classes. The computation can be done using
Singular as follows:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

int ch=13;

poly W=jet(psi^4-subst(Hx,x,t4,y,t6+t7+b*t9,z,t11) ,10);

poly X=jet(psi^6+psi^7+a*psi^9-subst(Hy,x,t4,y,t6+t7+b*t9,z,t11) ,10);

poly Y=jet(psi^11-subst(Hz,x,t4,y,t6+t7+b*t9,z,t11) ,10);

//==The first 2 polynomials in the standard basis are

_[1]=a1^7-a1^6

_[2]=a*a1^6-b*a1^7

Since a1 is different from zero we obtain a1 = 1 and a = b.

Corollary 3. Let K be a field of characteristic 13 then a parametrization with the semigroup
⟨4, 7, 10⟩ are not simple.
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Proof. The parametrization (t4, t7, t10) can be deformed to (t4, αt6 + t7, t10) ∼ (t4, αt6 +
t7, t11) with semigroup ⟨4, 6, 11, 13⟩ which is not simple.

Proposition 2. Let K be a field of characteristic 2 Let f = (x(t), y(t), z(t)) be a space
curve singularity with the semigroup ⟨4, 5, 6⟩, ⟨3, 10, 17⟩ or ⟨3, 8⟩. Then f is not simple.

Proof. We will first show that the family (t4 + at7, t5, t6 + t7) contains infinitely many
different equivalence classes. The computation can be done using Singular as follows:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

int ch=2;

poly W=jet(psi^4+a*psi^7-subst(Hx,x,t4+b*t7,y,t5,z,t6+t7) ,7);

poly X=jet(psi^5-subst(Hy,x,t4+b*t7,y,t5,z,t6+t7) ,7);

poly Y=jet(psi^6+psi^7-subst(Hz,x,t4+b*t7,y,t5,z,t6+t7) ,7);

//==The first 2 polynomials in the standard basis are

_[1]=a1^7+a1^6

_[2]=a*a1^5+b*a1^4

Since a1 is different from zero and p = 2 we obtain a1 = 1 and a = b.
Now we will show that the family (t3, t10+ t11+ at14, t17) contains infinitely many different
equivalence classes. The computation can be done using Singular as follows:
Since the code is the same as above and only the definition of the integer ch and the
polynomials W,X, Y change we will only give those data and the result.

int ch=2;

poly W=jet(psi^3-subst(Hx,x,t3,y,t10+t11+b*t14,z,t17) ,14);

poly X

=jet(psi^10+ psi^11+a*psi^14-subst(Hy,x,t3,y,t10+t11+b*t14,z,t17) ,14);

poly Y=jet(psi^17-subst(Hz,x,t3,y,t10+t11+b*t14,z,t17) ,14);

//==The first 2 polynomials in the standard basis are

_[1]=a1^11+a1^10

_[2]=a^3*a1^10+a^2*b*a1^10+a*b^2*a1^10+b^3*a1^10

Since a1 is different from zero and p = 2 we obtain a3a101 + a2ba101 + ab2a101 + b3a101 =
a101 (a+ b)3 and therefore a1 = 1 and a = b.
The case of the semigroup ⟨3, 8⟩ is proved in [17].

4 Curves of multiplicity 2

In this section we assume that the characteristic p > 2.

Proposition 3. Let (x(t), y(t), z(t)) be a parametrized space curve singularity and ord
x(t) = 2. Then for a suitable odd k, (x(t), y(t), z(t))∼(t2, tk, 0).
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Proof. Since the characteristic p > 2, we may assume that x(t) = t2. If y(t) ∈ K[[t2]] then
(x(t), y(t), z(t)) is equivalent to (t2, z(t), 0).
If y(t) ̸∈ K[[t2]]. We may assume y =

∑
i≥k bit

i, k odd, bk ̸= 0. We obtain

(t2, y(t), z(t)) ∼ (t2,
∑
i≥k

bit
i,
∑
i>k

cit
i).

Since the conductor of the semigroup is equal to k − 1, we obtain using Zariski’s Theorem
(Corollary 1) that (t2,

∑
i≥k bit

i,
∑

i>k cit
i) ∼ (t2, tk, 0).

5 Curves of multiplicity 3

In this section we assume that the characteristic p > 2. First we recall the results of Lemma
4,5,6 and 7 of [17] and join them to the following Proposition.

Proposition 4. Consider the plane curve f = (t3, tk + tl +
∑

i>l ait
i) with 9 k < l and

k · l ≡ 2 mod 3.

1. If l ≥ 2k − 2 then f ∼ (t3, tk).

2. If l ≥ 2k − 8 and p ̸= 3 then f ∼ (t3, tk + tl).

3. If p - l − k then f ∼ (t3, tk + tl).

4. If p|l − k and l ≤ 2k − 9 then f is not simple10.

Proposition 5. Let (x(t), y(t), z(t)) be a parametrization of a simple space curve singularity
of multiplicity 3.
If p ̸= 3 then (x(t), y(t), z(t)) ∼ (t3, tk + tl, tr) and

1. 3 - k

2. l = ∞ or k < l ≤ 2k − 6 and k · l ≡ 2 mod 3.

3. r = ∞ or k < r < 2k − 2 and k · r ≡ 2 mod 3.

4. k < p+ 9 or 2p+ 9 > k ≥ p+ 9 and l < k + p or r ≤ k + p.

5. Γ = ⟨3, k, r⟩ with the conductor11 min{r − 2, 2k − 2}.

If p = 3 then (x(t), y(t), z(t)) is equivalent to one of the following parametrizations:

6. (t3, t5, 0)

7. (t3 + t4, t5, 0)

8. (t3, t5, t7)

9Note that k · l ≡ 2 mod 3 and 2k − 9 < l < 2k − 2 implies l = 2a− 3 or l = 2a− 6.
10Note that p|l− k and l ≤ 2k− 9 implies k ≥ p+9. Especially the curve (t3, tp+9 + t2p+9) is not simple.
11If r < ∞ then the conductor is r − 2.
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9. (t3 + t4, t5, t7)

10. (t3, t7, t8)

11. (t3 + t4, t7, t8)

12. (t3 + t5, t7, t8).

Proof. If p = 3, then the simple plane parametrizations with multiplicity 3 are equivalent
to (t3, t5) or (t3 + t4, t5). Since the conductor of ⟨3, 5⟩ is 8 we obtain the curves (6), (7), (8)
or (9).
Lemma 6 implies that the parametrization (t3, t7, t11) is not simple. It remains to prove
that parametrizations with semigroup ⟨3, 7, 8⟩ are simple. Corollary 1 (Zariski’s Theorem)
implies that such a parametrization is equivalent to (t3 + at4 + bt5, t7, t8). If a = 0 (respec-
tively b = 0 we obtain using the K∗− action (t3 + t5, t7, t8) respectively (t3 + t4, t7, t8). If
a = b = 0, we obtain (t3, t7, t8).
If a ̸= 0, we use the K[[t]]− automorphism defined by t → t − b

a t
2 and the K∗- action to

obtain (t3 + t4, t7, t8). Since in a deformation of a parametrization with semigroup ⟨3, 7, 8⟩
we may only have the semigroups Γ ≤ ⟨3, 7, 8⟩, we obtain the cases (6)− (12) or the curves
of multiplicity 2. This implies that parametrizations with semigroup ⟨3, 7, 8⟩ are simple.
Now assume that p > 3 and our parametrization is in weak normal form, i.e. x(t) = t3,
y(t) = tk +

∑
i>k,i̸∈Γait

i, z(t) = 0 or z(t) = tr +
∑

i>r,i̸∈Γbit
i and 3 - k, r ̸∈ ⟨3, k⟩.

We apply Proposition 4 and obtain that the plane curve (x(t), y(t)) is simple if and only if

(x(t), y(t)) ∼ (t3, tk + tl)

with the following properties:

1. 3 - k

2. l = ∞ or k < l ≤ 2k − 6 and k · l ≡ 2 mod 3.

3. k < p+ 9 or 2p+ 9 > k ≥ p+ 9 and l < k + p or r ≤ k + p.

Now assume that z(t) ̸= 0. Since the conductor of the semigroup ⟨3, k⟩ is 2k − 2, we know
that k < r < 2k − 2 and k · r ≡ 2 mod 3. The conductor of the semigroup ⟨3, k, r⟩ is r − 2.
This implies that

(x(t), y(t), z(t)) ∼ (t3, tk + tl, tr).

If l ∈ ⟨3, k, r⟩ then
(x(t), y(t), z(t)) ∼ (t3, tk, tr).

(t3, tk + tl, tr) is simple if k < p + 9 or 2p + 9 > k ≥ p + 9 and l < p + k since the plane
curve (t3, tk + tl) is simple and r can only decrease12 in a deformation.
If 2p + 9 > k ≥ p + 9 and l ≥ p + k but r ≤ k + p we can add a suitable multiple of tr to
tk + tl to obtain a simple parametrization.

12In a deformation the term tr survives.
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6 Curves of multiplicity 4

In this section we assume that the characteristic p > 2.

Proposition 6. Assume that the characteristic p > 3 and p ̸= 13. Let (x(t), y(t), z(t)) be a
parametrized simple space curve singularity of multiplicity 4 with the semigroup Γ. Assume
5 ̸∈ Γ and 6 ∈ Γ. Then (x(t), y(t), z(t)) is equivalent to one of the following parametrization.
Let k be odd and 7 ≤ k ≤ p− 8 if p ≥ 17, 7 ≤ k ≤ 8 if p = 11, 7 ≤ k ≤ 13 if p = 7, k = 7 if
p = 5.

1. (t4, t6 + tk, tk−2) , k ≥ 9.

2. (t4, t6 + tk, tk+2) if p - k + 2.

3. (t4, t6 + tk, tk+4)

4. (t4, t6 + tk, tk+8)

5. (t4, t6 + tk, 0)

Let r be odd and 7 ≤ r ≤ p + 8 if p ≥ 17, 7 ≤ r ≤ 29 if p = 11, 7 ≤ r ≤ 15 if p = 7 and
7 ≤ r ≤ 11 if p = 5.

6. (t4, t6, tr)

7. (t4, t6, tr + tr+2) if p|r.

Proof. We may assume that the parametrization is in weak normal form, i.e. x(t) = t4,
y(t) = t6 +

∑
i>6,i̸∈Γait

i and z(t) = 0 or z(t) = tr +
∑

i>r,i̸∈Γbit
i, r > 6 and odd.

If y(t) ∈ K[[t2]] then the weak normal form implies y(t) = t6. In this case the conductor
of the semigroup of (x(t), y(t), z(t)) is r + 3 and we have as weak normal form (t4, t6, tr +
br+2t

r+2).
If p - r then (t4, t6, tr+br+2t

r+2) ∼ (t4, t6, tr). If p|r and br+2 ̸= 0 then (t4, t6, tr+br+2t
r+2) ∼

(t4, t6, tr + tr+2). This are the cases (6) and (7) of the proposition.
Now assume that y(t) ̸∈ K[[t2]]. Then we apply the plane curve classification (cf.[17]) to
(x(t), y(t)) and obtain

(x(t), y(t)) ∼ (t4, t6 + tk) , k ≥ 7, odd.

This parametrization is simple if p ̸= 13, k ≤ p − 8 if p ≥ 17, k ≤ 25, if p = 11, k ≤ 13, if
p = 7 and k = 7, if p = 3 or p = 5. If z(t) = 0, we obtain (5).
If z(t) ̸= 0 then r ̸∈ ⟨4, 6, k+6⟩. Since k ̸∈ Γ, we have r > k or r = k−2 since the semigroup
⟨4, 6, r⟩ has r + 3 as conductor. On the other hand r < k + 9 since k + 9 is the conductor
of ⟨4, 6, k + 6⟩. This implies r ∈ {k − 2, k + 2, k + 4, k + 8} and the conductor of Γ is k + 5
if r = k + 8 or k + 2, k + 3 if r = k + 4 and k + 1 if r = k − 2. We obtain the cases (1) to
(4) of the proposition and it remains to prove that they are simple.
Let (X(u, t), Y (u, t), Z(u, t)) be a deformation of (t4, t6+αtk, βtr+γtr+2) , α, β, γ ∈ {0, 1}.
If the deformation has constant multiplicity 4 then k and r can only decrease, i.e. for a
given fixed u

(X(u, t), Y (u, t), Z(u, t)) ∼ (t4, t6 + ᾱtk̄, β̄tr̄ + γ̄tr̄+2)
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with k̄ ≤ k and r̄ ≤ r. This is an immediate consequence of proposition 3.2.3. This implies
that there are only finitely many different equivalence classes in this deformation.
If (X(u, t), Y (u, t), Z(u, t)) is a deformation with multiplicity 3. Lemma 4 implies that
the associated semigroup Γu satisfies Γu ≤ ⟨3, 7⟩. This implies that for fixed u ̸= 0,
the parametrization (X(u, t), Y (u, t), Z(u, t)) is simple since the characteristic p > 3. If
(X(u, t), Y (u, t), Z(u, t)) is a deformation with multiplicity 2 then Γu ≤ ⟨2,min{r, k}⟩.
This implies that there are again finitely many different equivalence classes. All together
we obtain that the parametrization in the proposition are simple.

Proposition 7. Assume that the characteristic p = 3. Let (x(t), y(t), z(t)) be a parametrized
simple space curve singularity of multiplicity 4 with the semigroup Γ. Assume 5 ̸∈ Γ and
6 ∈ Γ. Then (x(t), y(t), z(t)) is equivalent to one of the following parametrizations.

1. (t4, t6, t7)

2. (t4, t6 + t9, t7).

Proof. We know that parametrizations with semigroup ⟨4, 6, k, s⟩ are not simple if s ≥ 9,
k ≥ 13 (Corollary 2). This implies that the parametrizations with semigroup ⟨4, 6, 7⟩ are
the only candidates for simple singularities. It is not difficult to see that a parametrization

(t4, t6 +
∑
i>6

ait
i, t7 +

∑
i>7

bit
i)

is equivalent to (1) or (2).
In a deformation with multiplicity ≤ 3 only semigroups Γ with Γ ≤ ⟨3, 7, 8⟩ are possible.
These parametrizations are simple.

Proposition 8. Assume that the characteristic p = 13. Let (x(t), y(t), z(t)) be a parametrized
simple space curve singularity of multiplicity 4 with the semigroup Γ. Assume 5 ̸∈ Γ and
6 ∈ Γ. Then (x(t), y(t), z(t)) is equivalent to one of the following parametrizations.

1. (t4, t6, t7)

2. (t4, t6, t9)

3. (t4, t6 + t7, t9).

Proof. Lemma 3.3.6 implies that parametrizations with semigroup ⟨4, 6, 11, 13⟩ are not sim-
ple. This implies that simple parametrizations with semigroup Γ with 4, 6 ∈ Γ must sat-
isfy Γ < ⟨4, 6, 11, 13⟩. We obtain the following semigroups with this property ⟨4, 6, 7⟩ and
⟨4, 6, 9⟩. We only prove the case with the semigroup ⟨4, 6, 9⟩, the other case is similiar. It is
clear that a parametrization with the semigroup ⟨4, 6, 9⟩ = {0, 4, 6, 8, 9, 10, 12, ...} is of the
form

(t4 +
∑

i≥5
αit

i, t6 + at7 +
∑

i≥9
α̂it

i, t9 +
∑

i≥10
β̄it

i).

By Corollary 1 (Zariski’s Theorem) it is equivalent to (t4, t6 + a7t
7 + a11t

11, t9 + b11t
11).

We map t to t− b11
9 t

3, we obtain that our parametrization is equivalent to (t4, t6 + ā7t
7 +
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ā11t
11, t9). We map t to t − ā11

6 t6, we obtain that our parametrization is equivalent to
(t4, t6 + ¯̄a7t

7, t9). If ¯̄a7 = 0 then we have (t4, t6, t9). If ¯̄a7 ̸= 0 then using the K∗− action,
we obtain (t4, t6 + t7, t9).
A parametrization with semigroup ⟨4, 6, 9⟩ is simple since in a deformation the semigroup
cannot increase. For parametrizations with multiplicity 4 we have only the possibilities
⟨4, 6, 7⟩ and ⟨4, 6, 9⟩. As in the proof of proposition 3.5.2, it follows that semigroup Γu

corresponding to a parametrization of multiplicity 3 in a deformation must satisfy Γu ≤
⟨3, 7⟩ and the parametrization is simple.
The same holds for parametrizations of multiplicity 2 in a deformation, since in this case
Γu ≤ ⟨2, 9⟩.

Proposition 9. Let (x(t), y(t), z(t)) be a parametrization of a simple space curve singularity
of multiplicity 4 with semigroup Γ. Assume that 5 ∈ Γ. Then (x(t), y(t), z(t)) is equivalent
to one of the following parametrizations:

1. (t4 , t5, 0)

2. (t4, t5 + t7, 0)

3. (t4, t5, t6)

4. (t4, t5, t7)

5. (t4, t5, t11)

6. (t4, t5 + t7, t11)

If p = 5, then we have additionally

7. (t4, t5 + t6, 0)

8. (t4, t5 + t6, t7)

9. (t4, t5 + t6, t11)

If p = 3 then we have additionally

10. (t4, t5, t6 + t7).

Proof. We may assume that the parametrization is in weak normal form, i.e. x(t) =
t4, y(t) = t5 +

∑
i>5,i̸∈Γ ait

i and z(t) = 0 or z(t) = tr +
∑

i>r,i̸∈Γ dit
i, r ̸∈ ⟨4, 5⟩, i.e.

r ∈ {6, 7, 11}.
We apply the plane curve classification (cf.[17]) to (x(t), y(t)) and obtain that (x(t), y(t))
is equivalent to one of the following parametrization:

(i) (t4, t5)

(ii) (t4, t5 + t7)

(iii) additionally (t4, t5 + t6) if p = 5.
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If z(t) = 0, we obtain (1),(2) or (7). If z(t) ̸= 0 then the conductor of the semigroup
⟨4, 5, r⟩ is smaller or equal to 8.
If p ̸= 5 then (t4, t5+ t6) ∼ (t4, t5+ t7). This implies that we obtain one of the cases (3)-(6).
The cases p = 3 and p = 5 can be treated similarly.
It remains to prove that the parametrizations above are simple. Obviously deformation with
the multiplicity 4 leads again to one of the cases (1)-(10), i.e. finitely many equivalence
classes.
A deformation with multiplicity 2 has a semigroup smaller or equal to ⟨2, 7⟩, i.e. again
finitely many equivalence classes. A deformation of multiplicity 3 leads to a semigroup
smaller or equal to ⟨3, 5⟩ belonging to simple singularities.

Proposition 10. Assume p > 7 . Let (x(t), y(t), z(t)) be a parametrization of a simple
space curve singularity of multiplicity 4 with semigroup Γ. Assume that 5 ̸∈ Γ and 7 ∈ Γ.
If p ̸= 13 then (x(t), y(t), z(t)) is equivalent to one of the following parametrizations:

1. (t4 , t7, 0)

2. (t4, t7 + t9, 0)

3. (t4, t7 + t13, 0)

4. (t4, t7, t9)

5. (t4, t7, t9 + t10)

6. (t4, t7, t10)

7. (t4, t7 + t9, t10)

8. (t4 , t7, t13)

9. (t4, t7 + t9, t13)

10. (t4, t7, t17)

11. (t4, t7 + t9, t17)

12. (t4, t7 + t13, t17)

If p = 13, then (x(t), y(t), z(t)) is equivalent to one of the following parametrizations:

13. (t4, t7, t9)

14. (t4, t7, t9 + t10)

Proof. We first consider the case p ̸= 13. We may assume that the parametrization is
in weak normal form, i.e. x(t) = t4, y(t) = t7 +

∑
i>7,i̸∈Γ ait

i and z(t) = 0 or z(t) =

tr +
∑

i>r,i̸∈Γ bit
i, r ̸∈ ⟨4, 7⟩, i.e. r ∈ {9, 10, 13, 17}. We apply the plane curve classification

(cf.[17]) to (x(t), y(t)) and obtain that (x(t), y(t)) is equivalent to one of the following
parametrization:

(i) (t4, t7)
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(ii) (t4, t7 + t9)

(iii) (t4, t7 + t13).

If z(t) = 0, we obtain (1),(2) or (3).
If z(t) ̸= 0 then the conductor of the semigroup ⟨4, 7, r⟩ is smaller or equal to 14. This
implies that (x(t), y(t), z(t)) is equivalent to (8)-(12) if r ≥ 13.
If r = 10 we obtain that (x(t), y(t), z(t)) is equivalent to (t4, t7, t10 + b13t

13) or (t4, t7 +
t9, t10 + b13t

13).
We prove the second case, the first case is similar. If b13 ̸= 0, we use the automorphism
defined by t→ t− 1

10b13t
4 to obtain

(t4 +
∑

i≥7,i̸=9
αit

i, t7 + t9 +
∑

i≥10
βit

i, t10 +
∑

i≥16
γit

i).

For suitable αi, βi, γi. This is equivalent to (t4 + ᾱ13t
13, t7 + t9 + β̄13t

13, t10). For suitable
ᾱ13 and β̄13.
Using the transformation t → t − 1

10 β̄13t
7, we obtain similarly an equivalence to (t4 +

¯̄α13t
13, t7 + t9, t10). Using the transformation t→ t− 1

4
¯̄α13t

10, we obtain the equivalence to
(t4, t7 + t9, t10).
If r = 9 then (x(t), y(t), z(t)) is equivalent to (t4, t7, t9 + α10t

10). and we obtain the cases
(4) and (5).
Now it remains to prove that the parametrizations (1)-(12) are simple.
Obviously a deformation with multiplicity 4 leads either to the cases (1)-(12) or to a case
with the semigroup, containing 5 or 6. If 5 is in the semigroup , we have finitely many
equivalence classes in the deformation. If we obtain a semigroup ⟨4, 6, k, s⟩ then s = ∞ and
k = 7 or s ≤ 7. We have finitely many equivalence classes.
Now assume that we have a deformation with multiplicity 3. If 4 is in the semigroup
we obtain a semigroup Γ ≤ ⟨3, 4⟩ with obviously finitely many equivalence classes. We
may assume that we have a deformation X(u, t) = αt3 + t4 + ..., Y (u, t), Z(u, t).The
corresponding semigroup Γ ≤ ⟨3, 7⟩. This implies that for fixed u ̸= 0, the parametrization
(X(u, t), Y (u, t), Z(u, t)) is simple since p > 3. If (X(u, t), Y (u, t), Z(u, t)) is a deformation
with multiplicity 2 then the semigroup is Γ ≤ ⟨2, 7⟩. This implies that there are again only
finitely many different equivalence classes. All together we obtain that the parametrizations
in the proposition are simple.
If p = 13 then Corollary 9 implies that (t4, t7, t10) is not simple. We obtain as the only
possible candidates for simple parametrizations the cases (13) and (14). Arguments as
above show that they are simple.

Proposition 11. Let (x(t), y(t), z(t)) be a parametrization of a space curve singularity of
multiplicity 4 with semigroup Γ. Assume that 5 ̸∈ Γ and 7 ∈ Γ.

1. If the characteristic p = 3 or p = 7 then the parametrization is not simple.

2. If the characteristic p = 5 and the parametrization is simple then it is equivalent to
(t4, t7, t9).
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Proof. The proposition is a consequence of Lemma 7 (if p = 5), Corollary 2 (if p = 3), and
Lemma 8 (if p = 7).

7 Space curves in characteristic 2

Let K be an algebraically closed field of characteristic 2. In [17] the simple plane curve
singularities of multiplicity ≥ 2 are classified by the following proposition.

Proposition 12. The simple plane curve singularities of multiplicity ≥ 2 are given by the
following parametrizations.

1. (t2, tk) , k ≥ 3 odd.

2. (t2 + tm, tk) , 0 < m < k , k,m odd.

3. (t3, t4)

4. (t3, t4 + t5)

5. (t3, t5)

6. (t3, t7)

7. (t3, t7 + t8).

Proposition 13. The simple space curve singularities of multiplicity ≥ 2 are given by
(1)-(7) of Proposition 12 with third component 0 and additionally

1. (t3, t4, t5)

2. (t3, t5, t7)

3. (t3, t7, t8)

4. (t3, t7, t11)

5. (t3, t7 + t8, t11)

6. (t3, t8, t10)

7. (t3, t8, t13)

8. (t3, t8 + t10, t13)

9. (t3, t10, t11)

10. (t3, t10, t14)

11. (t3, t10 + t11, t14).
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Proof. We apply Proposition 2 and obtain that the semigroup of the parametrization
must be smaller than ⟨4, 5, 6⟩ and ⟨3, 10, 17⟩ and ⟨3, 8⟩ to be a candidate for a simple
parametrization. We obtain as possible cases (1) to (11). We will prove here only one
case. The other cases can be proved similarly. Consider a parametrization with semigroup
Γ = ⟨3, 8, 13⟩ = {0, 3, 6, 8, 9, 11, ...} and assume that we already know that the parametriza-
tions (1) to (6) are simple. We may assume that the parametrization is given as

(t3, t8 +
∑

i>8,i̸∈Γ

ait
i, t13 +

∑
i>13,i̸∈Γ

bit
i) = (t3, t8 + a10t

10, t13).

If a10 ̸= 0, we obtain using the K∗- action (t3, t8+ t10, t13). If a10 = 0, we obtain (t3, t8, t13).
A parametrization in a deformation has a semi-group smaller or equal to ⟨3, 8, 13⟩. The pos-
sibilities are ⟨2, k⟩, k odd, ⟨3, 4⟩, ⟨3, 4, 5⟩, ⟨3, 5⟩,⟨3, 5, 7⟩, ⟨3, 7⟩, ⟨3, 7, 8⟩, ⟨3, 7, 11⟩, ⟨3, 8, 10⟩,
⟨3, 8, 13⟩. We know by Proposition 12 and our assumption that the parametrizations with
the first nine semigroups are simple. We obtain that (t3, t8 + a10t

10, t13) is simple since it
is equivalent to (7) or (8).

8 Proof of the main theorem

Proof. The aim of this section is to give a proof of Theorem 3
We first assume that the characteristic p is different from 2, 3, 5, 7 and 13.
Lemma 5 gives two semigroups, ⟨5, 6, 7⟩ and ⟨4, 9, 10⟩, such that the corresponding parametriza-
tion is not simple. This implies that parametrizations with the semigroup Γ ≥ ⟨5, 6, 7⟩ or
Γ ≥ ⟨4, 9, 10⟩ are not simple. Proposition 3 (for multiplicity 2), Proposition 5 (for mul-
tiplicity 3), Proposition 6 (for multiplicity 4 and semigroup ⟨4, 6, ...⟩), Proposition 9 (for
multiplicity 4 and semigroup ⟨4, 5, ...⟩) and Proposition 10 (for multiplicity 4 and semi-
group ⟨4, 7, ...⟩) give all the simple parametrizations with semigroup Γ < ⟨4, 9, 10⟩ resp.
Γ < ⟨5, 6, 7⟩.
Now assume that p = 13. Lemma 9 and Corollary 3 imply that parametrizations with semi-
group ⟨4, 7, 10⟩ and ⟨4, 6, 11, 13⟩ are not simple. From Lemma 5 we know that parametriza-
tions with semigroup ⟨5, 6, 7⟩ are not simple. This implies that simple parametrizations
must have a semigroup Γ with Γ < ⟨5, 6, 7⟩ or Γ < ⟨4, 7, 10⟩ or Γ < ⟨4, 6, 11, 13⟩. We obtain
the classification similarly as above using Proposition 3 (for multiplicity 2), Proposition 5
(for multiplicity 3), Proposition 8 (for multiplicity 4 and semigroup ⟨4, 6, ...⟩), Proposition
9 (for multiplicity 4 and semigroup ⟨4, 5, ...⟩) and Proposition 10 (for multiplicity 4 and
semigroup ⟨4, 7, ...⟩).
Now assume that p = 7. Similarly to characteristic 13 we obtain additionally to ⟨5, 6, 7⟩
and ⟨4, 9, 10⟩ a third semigroup ⟨4, 7, 13⟩ such that the corresponding parametrization is
not simple (Lemma 8). The simple parametrizations of multiplicity 2, 3 and 4 (with semi-
group ⟨4, 5, ...⟩, ⟨4, 6, ...⟩) are classified as above. There are no simple parametrizations of
multiplicity 4 with semigroup ⟨4, 7, ...⟩ (Proposition 11).
Now assume that p = 5. Similarly to characteristic 13 we obtain additionally to ⟨5, 6, 7⟩
and ⟨4, 9, 10⟩ a third semigroup ⟨4, 7, 10⟩ such that the corresponding parametrization is
not simple (Lemma 7).
The simple parametrizations of multiplicity 2, 3 and 4 (with semigroup ⟨4, 5, ...⟩, ⟨4, 6, ...⟩)
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are classified as a above. The simple parametrizations of multiplicity 4 with semigroup
⟨4, 7, ...⟩ are classified using Proposition 11.
Now assume that p = 3. In this case we obtain additionally to ⟨5, 6, 7⟩, ⟨4, 9, 10⟩ the
semigroups ⟨3, 7, 11⟩, ⟨4, 7, 9⟩ and ⟨4, 6, k, s⟩, k ≥ 13, s ≥ 9 ( k = ∞ included) such that
the corresponding parametrizations are not simple (Lemma 6 and Corollary 2). The simple
parametrizations of multiplicity 2, 3 and 4 (with semigroup ⟨4, 5, ...⟩, ⟨4, 6, ...⟩) are classified
as above. There are no simple parametrizations of multiplicity 4 with semigroup ⟨4, 7, ...⟩
(Proposition 11).
Now assume that p = 2. Proposition 12 implies that parametrizations with semigroup
⟨4, 5, 6⟩ or ⟨3, 8⟩ or ⟨3, 10, 17⟩ are not simple. This implies that simple parametrizations
have multiplicity ≤ 3 and semigroup Γ ≤ ⟨3, 10, 14⟩. The simple parametrizations are clas-
sified using Proposition 13.

9 Classifier

In this section we want to give an example for a classifier of space curve singularities which
we implemented in the computer algebra system Singilar. The classifier is based on the
results of this paper. It computes first of all the semigroup and the weak normal form of
the given curve using the sagbi basis algorithm of Singilar. On this basis it is decided
whether the curve is simple and if this is the case the normal form is computed using the
classification of this paper. Let us consider an example.

LIB"classify_aeq.lib";

ring R=31,t,ds;

ideal I=t10-11t11-6t12-t13+12t14+4t15-14t16+15t17-12t18+5t19+t20,

t3+6t4+13t5-13t6+10t7+2t8-6t9-10t10-15t11-6t12+8t13-2t14+t15+8t16,

t7+15t8+7t9-11t10-15t11-6t12+8t13-2t14+t15+8t16;

ideal J=classSpaceCurve(I);

J;

J[1]=t3

J[2]=t7+t8

J[3]=t10

The procedure classSpaceCurve decides if the input is a simple curve and computes the
normal form in this case. In the example we consider the curve given by the parametrization
(x(t), y(t), z(t)) over the algebraic closure of Z/31 with

x(t) = t10 − 11t11 − 6t12 − t13 + 12t14 + 4t15 − 14t16 + 15t17 − 12t18 + 5t19 + t20.
y(t) = t3+6t4+13t5−13t6+10t7+2t8−6t9−10t10−15t11−6t12+8t13−2t14+ t15+8t16

z(t) = t7 + 15t8 + 7t9 − 11t10 − 15t11 − 6t12 + 8t13 − 2t14 + t15 + 8t16

The normal form of this curve is (t3, t7 + t8, t10).
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