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Abstract

We find all solutions of the Diophantine equation in the title in positive integers
(x, y, z, p, n) where p > 3 is a prime.
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1 Introduction

Here we find all positive integer solutions (x, y, z, p, n) to the title equation with p > 3
prime.

Theorem 1. All positive integer solutions (p, n, x, y, z) of the title equation with p > 3
prime have (x, z) = (1, 2). Furthermore, y = 1 unless p = 5 case in which any value of y is
possible.

The above result was obtained in [4] under some restrictions on p and n (for example,
that p ≡ 3 (mod 4) and pn ≡ ±1 (mod 5)). Before indicating our method of attack, let
us mention a few other relevant papers on related Diophantine equations. There are many
papers dealing with the Diophantine equation

Ax +By = Cz, (1.1)

where (A,B,C) are integers belonging to some infinite families. Two relevant survey papers
are [6] and [7]. The study of the case of the triples (A,B,C) = (3pm2−1, p(p−3)m2+1, pm)
was initiated by Terai and Hibino in [8]. The more general family of triples (A,B,C) given
by

A = rℓm2 − 1, B = (ℓ− r)ℓm2 + 1, C = ℓm (1.2)

was considered in [5]. Here is their main theorem.

Theorem 2. Assume that ℓ > r is odd, that ℓm is not a multiple of 3, 3 | r and that
min{rℓm2 − 1, (ℓ − r)ℓm2 + 1} > 30. Then the equation (1.1) with A,B,C given at (1.2)
implies that (x, y, z) = (1, 1, 2).
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We note that all of the above results impose some sort of congruence restrictions on the
involved variables. Our argument bypasses such restrictions so our result is not covered by
the above papers. We do still however keep the condition that p > 3. Our method uses
elementary arguments to show that if (x, y, z) ̸= (1, 1, 2) and p > 5, then z ≥ 8. Reducing
both sides of the equation modulo (pn2)k for k = 1, 2, 3, 4 one gets various congruences
among x, y and p, n. The upshot of these congruences is that if X := max{x, y}, then
X > n2p. Then a linear form in p-adic logarithms gives a small bound on X (logarithmic
in the maximum of p and n), therefore on all the variables and the problem is reduced to
a finite albeit non-trivial computation. A similar analysis as ours can be done for the case
when p ∈ {2, 3} yielding n < 104 and X < 108 and one would need to reduce such bounds
in order to be able to finish the computations. We leave this analysis of the cases p ∈ {2, 3}
for a future project.

2 Bounds on p, n in terms of X

When p = 5 the equation becomes

(25n2 − 1)x + 1 = (5n)z.

If x > 1, then since 5n < 25n2 − 1, it follows that z > 1 so the above equation is an
instance of Catalan’s equation and its only solution is 23 + 1 = 32. Hence, we get that
(25n2 − 1, 5n, x, z) = (2, 3, 3, 2), which is impossible since it gives n = 3/5. So, x = 1,
which implies that z = 2. From now on we assume that p ̸= 5. We also assume that
(x, y, z) ̸= (1, 1, 2).

Recall that X := max{x, y}. The case X = 1 leads to z = 2, which we are assuming
not to hold. In particular, X ≥ 2. Observe that

5pn2 − 1 < (pn)2 and p(p− 5)n2 + 1 < (pn)2.

Thus,

2(pn)2X ≥ (5pn2 − 1)x + (p(p− 5)n2 + 1)y = (pn)z,

so z ≤ 2X. Next, 5pn2 − 1 > pn and p(p− 5)n2 + 1 > pn, so

(pn)z = (5pn2 − 1)x + (p(p− 5)n2 + 1)y > (pn)X ,

showing that z > X. We record these observations as follows.

Lemma 1. We have X < z ≤ 2X.

Since X ≥ 2, we have z ≥ 3. Reducing the equation modulo pn2, we get

(−1)x + 1 ≡ 0 (mod pn2),

showing that x is odd. Let us show that 5pn2 − 1 and p(p− 5)n2 + 1 are coprime. If they
are not, then let q be a common prime factor of them. Then q divides their sum which is
(pn)2, so q = p or q | n and both instances are false since the given numbers are congruent
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to ±1 (mod pn). We put d := gcd(x, y). We show that d = 1. Assume for a contradiction
that d > 1. Write x =: dx1, y =: dy1. Since x is odd, it follows that d, x1 are both odd. So,

(pn)z = (5pn2 − 1)x + (p(p− 5)n2 + 1)y

= ((5pn2 − 1)x1 + (p(p− 5)n2 + 1)y1)

× (5pn2 − 1)dx1 + (p(p− 5)n2 + 1)dy1

(5pn2 − 1)x1 + ((p(p− 5)n2 − 1)y1
(2.1)

Take (α, β) := ((5pn2 − 1)x1 ,−(p(p − 5)n2 + 1)y1). The integers α, β are coprime by a
previous argument. Thus, α + β and αβ are coprime. The right–hand side in (2.1) above
is the dth term of the Lucas sequence (um)m≥0 of general term

um :=
αm − βm

α− β
for all m ≥ 0.

Its discriminant is

(α− β)2 = ((5pn2 − 1)x1 + (p(p− 5)n2 + 1)y1)2.

Since x1 is odd, the expression on the right is divisible by pn. Equation (2.1) shows that
ud is divisible only by primes which are either p or divide n, and all such primes divide
the discriminant of the Lucas sequence (um)m≥0. In particular, ud does not have primitive
divisors. It follows, from the Primitive Divisor Theorem (see [1] and [3]), that the only
possibility is d = 3 which gives

ud = (5pn2 − 1)2x1 − (5pn2 − 1)x1(p(p− 5)n2 + 1)y1 + (p(p− 5)n2 + 1)2y1

≡ 3 (mod pn).

Thus, pn | 3, which is false.
In particular, x ̸= y. Assume z ≤ 3. Then {x, y} = {1, 2} and x is odd, so (x, y) = (1, 2).

Thus, the equation is

−5n2p+ 2n2p2 + 25n4p2 − 10n4p3 + n4p4 = p3n3,

so p2n2 | 5pn2, showing that p = 5, a contradiction. Thus, z ≥ 4. We now reduce our
equation modulo p2n4 and get

x(5pn2)− 1 + yp(p− 5)n2 + 1 ≡ 0 (mod p2n4),

which can be rewritten as

5pn2(x− y) + yp2n2 ≡ 0 (mod p2n4).

This gives p | 5(x − y). Since p ̸= 5, we get p | x − y. Further, we also have that
5(x − y)/p + y ≡ 0 (mod n2). The left–hand side is 5x/p + y(1 − 5/p) which is a convex
combination of x and y, in particular positive. Thus, we get

X ≥ 5x

p
+ y

(
1− 5

p

)
≥ n2.
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But we need to do better. We put

x− y =: Ap, y + 5(x− y)/p = y + 5A =: Bn2. (2.2)

As noted above, B is positive. If z ≤ 5, then X < 5. Thus, |x− y| ∈ {1, 2, 3}, so we cannot
have that |x− y| is a multiple of p. Hence, z ≥ 6. We reduce our equation modulo p3n6 to
get

−
(
x

2

)
(5pn2)2 +

(
y

2

)
(p(p− 5)n2)2 + x(5pn2) + yp(p− 5)n2 ≡ 0 (mod p3n6).

The above congruence is

p2n4

(
−
(
x

2

)
52 +

(
y

2

)
(p− 5)2 +B

)
≡ 0 (mod p3n6).

Simplifying p2n4, we get

−
(
x

2

)
52 +

(
y

2

)
(p− 5)2 +B ≡ 0 (mod pn2).

The left–hand side above is therefore of the form

Cpn2 where C :=
1

pn2

(
−25Ap(x+ y − 1)

2
+ p(p− 10)

(
y

2

)
+B

)
is an integer. We thus get that p | B since p > 2. Hence, B =: pB0 and so

X > y + 5(x− y)/p = Bn2 = B0pn
2.

But we need to do better. If z ≤ 7, then X ≤ 6. Thus, |x− y| ∈ {1, 2, 3, 4, 5} and it is not
possible for |x− y| to be multiple of p. Thus, z ≥ 8. We reduce our equation modulo p4n8

getting (
x

3

)
(5pn2)3 +

(
y

3

)
(p(p− 5)n2)3 + Cp3n6 ≡ 0 (mod p4n8).

The left–hand side can be rearranged as in

p3n6

(
C + 53

((
x

3

)
−
(
y

3

))
+

(
y

3

)(
(p− 5)3 + 53

))
≡ 0 (mod p4n8).

Since

p | x− y, so p |
(
x

3

)
−

(
y

3

)
, and p | (p− 5)3 + 53,

we get that p | C. Using y ≡ −5A (mod p) and x ≡ y (mod p) (both from (2.2) together
with the fact that p | B), we get that

Cn2 ≡ −25A(2y − 1)

2
− 10

(
−5A

2

)
+B0 (mod p)

≡ −25A(−10A− 1)

2
− 10

(
−5A(−5A− 1)

2

)
+B0 (mod p)

≡ B0 −
25A

2
(mod p).
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Thus, we get that p | B0 − 25A/2. It might be that this expression is 0. In this case
B0 = 25A/2 and so A/2 is a positive integer. Since A/2 divides B, it divides y and x by
(2.2). Since x and y are coprime, we get (A,B0) = (2, 25), so

(x, y) = (25pn2 + 2p− 10, 25pn2 − 10).

The above pair is obtained by solving system (2.2) for x, y when A = 2, B = B0p = 25p.
Otherwise, that is if B0−25A/2 ̸= 0, we then get that 2B0−25A is a nonzero integer which
is a multiple of p, so

p ≤ |2B0 − 25A|.
Working out 2B0 − 25A, we get

2B0 − 25A =
2B

p
− 25A

=
1

p

(
10x

pn2
+ 2

(
1− 5

p

)
y

n2

)
− 25

p
(x− y)

=

(
2

pn2

(
1− 5

p

)
+

25

p

)
y −

(
25

p
− 10

p2n2

)
x.

The above calculation shows that 2B0 − 25A is a linear combination of x and y with
coefficients of opposite signs and absolute values at most 27/p. Thus,

p ≤ |2B0 − 25A| < 27X/p, therefore p <
√
27X.

We record this as a lemma.

Lemma 2. The following hold:

(i) X > pn2.

(ii) Either (x, y) is
(25pn2 + 2p− 10, 25pn2 − 10),

or p <
√
27X.

3 Bounding all the variables

Let us put some bound on X. In our equation, we look at the exponent of p in both sides.
In the right–hand side it is at least z ≥ X. On the left–hand side, putting

a := 5pn2 − 1, b := p(p− 5)n2 + 1,

we have that a and b are multiplicatively independent (otherwise, they will be powers of the
same integer in particular not coprime, which is false by a previous argument). Further,

min{log a, log b} ≥ log(pn) and max{log a, log b} < 2 log(pn).

In addition, letting g be the minimal positive integer such that ag ≡ bg ≡ 1 (mod p), we
have g = 2. We put

b′ :=
x

log b
+

y

log a
≤ 2X

log(pn)
. (3.1)
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With Theorem 3 in [2], we get

z ≤ ordp(a
x + by) = ordp(b

y − (−a)x) (3.2)

<
48p

(p− 1)(log p)4
max {10 log p, log b′ + log log p+ 0.4}2 (2 log(pn))2.

Assume first that the maximum in the right–hand side of (3.2) is in the term involving
10 log p. We then get

X < z <
19200p(log pn)2

(p− 1)(log p)2
. (3.3)

If n2 < p, then Lemma 2 (i) and inequality (3.3) imply

pn2 < X < z <
19200(3/2)2p

p− 1
,

so (p− 1)n2 < 43200. Since n2 ≤ p− 1, we get n < 432001/4. Thus,

n ≤ 14 and n2 ≤ p− 1 <
43200

n2
. (3.4)

If n2 > p, then Lemma 2 (i) and inequality (3.3) again imply

n2p < X < z < 19200(3 log n)2
(

p

(p− 1)(log p)2

)
=

172800p(log n)2

(p− 1)(log p)2
.

This gives (
n

log n

)2

(p− 1)(log p)2 < 172800.

Since n2 > p and the function t 7→ t/ log t is increasing for t > e, it follows that for p ≥ 11
we have n >

√
p > e so ( √

p

log
√
p

)2

(p− 1)(log p)2 < 172800.

This gives

p(p− 1) <
172800

4
= 43200,

so p ≤ 203. Thus,

p ≤ 203 and

(
n

log n

)2

<
172800

(p− 1)(log p)2
. (3.5)

Assume next that the maximum in the right–hand side of (3.2) is in the term involving b′.
We then get using also (3.1) that

z <
192p(log pn)2

(p− 1)(log p)4

(
log

(
2X

log(pn)

)
+ log log p+ 0.4

)2

.
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We have

log

(
2X

log(pn)

)
+ log log p+ 0.4 < log

(
3X log p

log(pn)

)
.

Thus,

X <
192p(log pn)2

(p− 1)(log p)4

(
log

(
3X log p

log(pn)

))2

. (3.6)

If n < p, then 1 ≤ (log pn)/(log p) < 2. Hence, (3.6) implies

X <
768p(log 3X)2

(p− 1)(log p)2
.

The above gives
3X

(log 3X)2
<

2304p

(p− 1)(log p)2
. (3.7)

The function t 7→ t/(log t)2 is increasing for t > e2. Since we have 3X > 3p ≥ 21 > e2, it
follows that the above inequality implies

3p

(log 3p)2
<

2304p

(p− 1)(log p)2
,

so

p− 1 < 768

(
log 3p

log p

)2

,

so p < 1040. In addition, the right–hand side of (3.7) is smaller than 710, so (3.7) implies

3X

(log 3X)2
< 710,

which gives X < 40000. Thus,

log b′ + log log p+ 0.4 < log

(
2e0.4X log p

log pn

)
< log(3X) < 10 log 7 ≤ 10 log p,

so in fact the maximum did not occur in the term involving X in the right–hand side of
(3.2).

Assuming now that n ≥ p, we have log p/ log(pn) ≤ 1/2. Now (3.6) implies

1.5X

(log 1.5X)2
<

288p

(p− 1)(log p)2

(
log(pn)

log p

)2

≤ 288× 4

(
p

(p− 1)(log p)4

)
(log n)2

< 94(log n)2. (3.8)

Since 1.5X ≥ 1.5pn2 ≥ 10.5n2 > e2, we get

10.5n2

(log 10.5n2)2
< 94(log n)2,
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giving n ≤ 208. Further, p < n. So,

n ≤ 208 and p < n. (3.9)

Going back to (3.6), we get

X < 192(log(2082))2
(

p

(p− 1)(log p)4

)
(log 3X)2 < 1781 log(3X)2,

which gives X < 342000. Again

log b′ + log log p+ 0.4 < log(3X) < 10 log p,

so in fact the maximum did not occur in the term involving b′ in the right–hand side of (3.2).
Thus, only the situations when the maximum in the right–hand side of (3.2) appeared in
the term not involving b′ are possible. To summarise, we have proved the following result.

Lemma 3. If (x, y, z) ̸= (1, 1, 2) and p ≥ 7, then one of the following holds:

(i)

n ≤ 14 and n2 ≤ p− 1 <
43200

n2
.

(ii)

p ≤ 203 and n2 <
172800p(log n)2

(p− 1)(log p)2
.

In both cases,

pn2 < X <
19200p(log pn)2

(p− 1)(log p)2
. (3.10)

4 The computational part

We wrote a Mathematica code which went though all possibilities of (i) and (ii) of Lemma 3
and generated quadruples (p, n,Xlow, Xup), where (p, n) are like in (i) or (ii) and Xlow, Xup

are the left and the integer part of the right–hand sides of (3.10) and kept those quadruples
for which Xlow < Xup. There are 236 such pairs (p, n). By Lemma 2, either

(x, y) = (25pn2 + 2p− 10, 25pn2 − 10), (4.1)

or
p <

√
27Xup. (4.2)

Let again
(a, b, c) := (5pn2 − 1, p(p− 5)n2 + 1, pn).

Assume first that we are in instance (4.1). Since x is odd, it follows that n is odd. There are
127 pairs (p, n) with n odd. A computer program went in a few minutes through the 127
pairs (p, n) with n odd and checked whether the pair (x, y) indicated in (4.1) together with
z := ⌊log(ax + by)/ log c⌋ is a solution to ax + by = cz modulo T , where T is the product of
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the first 20 primes. The PowerMod feature of Mathematica to compute ax, by, cz modulo
T was used. No solution was found. Thus, inequality (4.2) must hold. There are only 224
pairs (p, n) which satisfy the additional inequality (4.2). For these ones, we note that since
a+ b = (pn)2, we have that

ax + ((pn)2 − a)y = (pn)z,

which reduced modulo a gives (pn)2y−z ≡ 1 (mod a). The case 2y = z leads to z ≤ 12.
Indeed, in this case

ax = (pn)2y − by = ((pn)2 − b)

(
(pn)2y − by

(pn)2 − b

)
.

The factor in parenthesis on the right is the yth term the Lucas sequences with roots
(α, β) = ((pn)2, b), which does not have primitive divisors since its discriminant is given by
(α − β)2 = ((pn)2 − b)2 = a2. This shows that y ≤ 6, so z = 2y ≤ 12, therefore X ≤ 11.
Thus, pn2 < X ≤ 11, giving p = 7, n = 1, (a, b, c) = (34, 15, 7), (α, β) = (49, 15) and one
checks that the Lucas sequence of general term uk = (49k − 15k)/(49 − 15) has primitive
divisors for all k ∈ {3, 4, 5, 6} but not for k = 2 for which u2 = α+β = 64 = 26 and 2 divides
(α − β)2. This leaves the possibility y = 2, so z = 2y = 4 > X, a contradiction. A similar
argument shows that (pn)2x−z ≡ 1 (mod b) and 2x − z is not 0. Hence, orda(pn) | 2y − z
and ordb(pn) | 2x− z, where ordNk is the multiplicative order of k modulo N for coprime
integers k, N . Since

ax + by = cz,

it follows that either ax ∈ (cz/2, cz) or by ∈ (cz/2, cz). Thus,

cz/ax ∈ (1, 2) or cz/by ∈ (1, 2).

Thus, one of

z log c− x log a or z log c− y log b is in (0, log 2).

Hence,

z = uα+ ζ, (u, α) ∈
{(

x,
log a

log c

)
,

(
y,

log b

log c

)}
, ζ ∈

(
0,

log 2

log p

)
⊂

(
0,

1

2

)
.

It thus follows that

z = ⌊uα⌋. (4.3)

AMathematica code went through the remaining 224 quadruples of the form (p, n,Xlow, Xup)
by fixing (p, n) and, assuming α := log a/ log c, it looped over x ∈ [1, Xup], computed z using
the formula (4.3), then y using the formula y := ⌊log(cz − ax)/ log b⌋ (assuming cz > ax).
With these numbers it tested whether x is odd, gcd(x, y) = 1, p | x − y and if putting
A := (x − y)/p, then y + 5A ≡ 0 (mod pn2). It further checked if orda(pn) | 2y − z and
ordb(pn) | 2x− z. If all these tests passed it checked the congruence ax + by ≡ cz (mod T )
using again the PowerMod feature. Assuming on the other hand that α := log b/ log c,
the similar computation with the roles of (x, a) and (y, b) interchanged was carried on.
This code ran for about 30 minutes on the second author’s personal laptop until it finished
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without finding any instance (p, n, x, y, z) passing all the above tests. This finishes the
proof.
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