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Abstract

Let S be a sum of irreducible fractions with distinct denominators. In this note we
give necessary and sufficient conditions for the sum S to be an integer. The method
can be a starting point for generalizations of some problems connected to Egyptian
fractions. In this direction we propose a generalization of two classical results of Erdős
and Oblath.
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1 Introduction

Egyptian fractions are finite sums of distinct fractions with the numerator 1. The first
proof that every positive rational number (in particular, every positive integer) can be
represented by Egyptian fractions was given by Fibonacci, in 1202. As a matter of fact, a
positive rational number has infinitely many representations by Egyptian fractions. If

a

b
=

n∑
i=1

1

xi
, (1.1)

with 1 < x1 < x2 < · · · < xn positive integers, is a representation of length n of the rational

number
a

b
, then, since

1

x
=

1

x+ 1
+

1

x(x+ 1)
, we can conclude that

a

b
has a representation

by Egyptian fractions of any length k ≥ n.
Several algorithms have been constructed to find Egyptian fraction representations for

rational numbers (see [3]) and different problems related to Egyptian fractions continue to
attract the interest of mathematicians, especially in the domain of number theory (see [5],
[7], [9]). Among these, we mention the problem of bounding the length or the maximum
denominator in Egyptian fraction representations, finding representations of certain special
forms or in which all the denominators are of some special type (see Graham [9]). For
example, in one of his earliest papers, Paul Erdős proved that it is not possible for a
harmonic progression to form an Egyptian fraction representation of an integer (see [6]). In
2015, Butler, Erdős and Graham, the authors of the latest publication of Erdős [4], which
was published almost twenty years after his death, show that any natural number can be
represented as a sum of Egyptian fractions, where each denominator is the product of three
distinct odd primes.
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In the present paper we study the following problem related to Egyptian fractions, but
in our case the numerators of the fractions are arbitrary integers.

Problem. Given a set of irreducible fractions
a1

b1
,
a2

b2
, . . . ,

an

bn
, where aj , bj , j = 1, 2, . . . , n

are nonzero integers and b1, b2, . . . , bn are distinct, denote a = (a1, . . . , an) and b =
(b1, . . . , bn). In what conditions the sum

S(a,b) =
a1
b1

+
a2
b2

+ · · ·+ an
bn

(1.2)

is an integer?
The outline of the paper is as follows. In Section 2 we introduce Theorem 1, the main

result of the paper, and then discuss some examples of how it can be applied in order to
decide if a sum of fractions is an integer or not. Next, we prove Theorem 1 in Section 3.
In Section 4 we state and prove Theorem 2, our second result on the particular Egyptian
fractions whose denominators are products of two distinct primes. Finally, in Section 5, we
conclude by presenting a generalization of two classical results of Erdős [6] and Oblath [11].

2 The main result

We say that a set of irreducible fractions,
a1

b1
,
a2

b2
, . . . ,

an

bn
is in standard form if aj , bj are

nonzero integers and the denominators bj are distinct for j = 1, 2, . . . , n.
Denote a = (a1, . . . , an), b = (b1, . . . , bn). Let Pb be the finite set of the prime num-

bers which divide the product b1b2 · · · bn and lcm(b) be the least common multiple of
b1, b2, . . . , bn. For each p ∈ Pb, we denote by k(p) the p-adic order of lcm(b), that is, the
highest exponent such that pk(p)| lcm(b). We say that pk(p) exactly divides lcm(b) and
denote pk(p)∥ lcm(b):

pk(p)| lcm(b) and pk(p)+1 - lcm(b).

Note that k(p) ≥ 1. We also introduce the following notation for each p ∈ Pb:

p̌b =
∏

q∈Pb\{p}

qk(q) =
lcm(b)

pk(p)
. (2.1)

For every p ∈ Pb and each denominator bj , j = 1, 2, . . . , n, we denote by kj(p) the p-adic
order of bj (that is, pkj(p)∥bj) and by bj(p) the quotient bj(p) = bj/p

kj(p). Thus,

bj = pkj(p)bj(p) and p - bj(p). (2.2)

Note that kj(p) ∈ {0, 1, . . . , k(p)}. For any p ∈ Pb and s = 0, 1, . . . , k(p), we denote by
Is(p) the subset of indices

Is(p) = {j ∈ {1, 2, . . . , n} : ps∥bj} (2.3)

and by Ns(p) the number

Ns(p) = p̌b
∑

j∈Is(p)

aj
bj(p)

. (2.4)

If Is(p) = ∅, we set Ns(p) = 0.
Assuming the above definitions, notations and hypotheses, we now state our main result.
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Theorem 1. Let
a1

b1
,
a2

b2
, . . . ,

an

bn
be a set of fractions in standard form. Then, the sum

S(a,b) =
a1

b1
+

a2

b2
+ · · ·+ an

bn
is an integer if and only if

s∑
j=0

Nk(p)−j(p)

ps−j
≡ 0 (mod p), (2.5)

for any p ∈ Pb and s = 0, 1, . . . , k(p)− 1.

If we take s = 0 in (2.5), we obtain that Nk(p)(p) ≡ 0 (mod p) is a necessary condition
for the sum S(a,b) to be an integer. If the set Ik(p) has only one element, say Ik(p) = {j′},
then Nk(p)(p) = p̌b

aj′

bj′(p)
cannot be divisible by p (because according to the assumption

made at the beginning the fraction is irreducible) and the next consequence follows.

Corollary 1. If there exists a prime number p ∈ Pb such that
∣∣Ik(p)∣∣ = 1, then the sum

S(a,b) is not an integer.

The next examples show how Theorem 1 and Corollary 1 can be applied in order to
decide whether a sum of irreducible fractions in standard form is an integer.

Example 1. The sums of the type S(a,b) with a = (1,±1, . . . ,±1) and b = (2, 3, . . . , n),

S± =
1

2
± 1

3
± · · · ± 1

n
, (2.6)

are not integers for any natural number n ≥ 2. In particular, the sum

S+ =
1

2
+

1

3
+ · · ·+ 1

n

is not an integer for any integer n ≥ 2 (see also [13]). Indeed, if 2h0 is the greatest power
of 2 in the denominators of S±, that is,

h0 = max
{
h ∈ N | 2h ≤ n

}
,

then 1/2h0 is the unique fraction in the sum S± whose denominator is a multiple of 2h0 .
By applying Corollary 1 for p = 2, we find that the sum in (2.6) is not an integer.

The same reasoning can be applied to prove that

Sodd =
1

3
± 1

5
± · · · ± 1

2n+ 1
, (2.7)

is not an integer for any integer n > 0. In that case we consider the greatest power of 3 in
the denominators of the sum and, because all of them are odd numbers, we find that 1/3h0

is the unique fraction in the sum (2.7) whose denominator is a multiple of 3h0 .

In connection with the results obtained in [4] we give the following example.

Example 2. We consider the sums of the form

S(a,b) =

n∑
k=1

1

p1,kp2,kp3,k
,
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where a = (1, 1, . . . , 1) and b = (p1,1p2,1p3,1, . . . , p1,np2,np3,n) and pi,k are prime numbers
for each k = 1, 2, . . . , n and i = 1, 2, 3. If there exists a prime number q which appears in
the denominator of only one fraction, then, by Corollary 1, the sum S(a,b) cannot be an
integer.

Example 3. Let {1/3, 1/4, 1/8, 1/10, 1/15, 1/24, 1/30, 1/40, 1/60, 1/120} be a set of ten
Egyptian fractions in standard form. Let

S(a,b) =
1

3
+

1

4
+

1

8
+

1

10
+

1

15
+

1

24
+

1

30
+

1

40
+

1

60
+

1

120
, (2.8)

where a = (1, . . . , 1) and b = (3, 4, 8, 10, 15, 24, 30, 40, 60, 120) A simple calculation shows
that S(a,b) = 1 ∈ Z, but we want to show, in this particular instructive case, how the
mechanism of Theorem 1 can be applied to find out whether or not S(a,b) is an integer.

We have: lcm(b) = 120 = 23 · 3 · 5, so that Pb = {2, 3, 5}.
Next, leaving out for simplicity the subscript b in the notation of the complementary

parts of the primes in the prime factorization of lcm(b), we have 2̌ = 15, 3̌ = 40, 5̌ = 24,
and k(2) = 3, k(3) = k(5) = 1.

Further, we gather in the Table 1 the quotients bj(p) introduced by relation (2.2).
Afterwards, we use these numbers to check out the congruences (2.5) to see whether S(a,b)
is an integer.

Table 1: The values of bj and the quotients bj(p) for p = 2, 3, 5 and j = 1, . . . , 10 in Example 3.

j 1 2 3 4 5 6 7 8 9 10

bj 3 4 8 10 15 24 30 40 60 120

bj(2) 3 1 1 5 15 3 15 5 15 15
bj(3) 1 4 8 10 5 8 10 40 20 40
bj(5) 3 4 8 2 3 24 6 8 12 24

If p = 2, the partition of the set of indices is

I0(2) = {j ∈ {1, 2, . . . , 10} : 2 - bj} = {1, 5}
I1(2) = {j ∈ {1, 2, . . . , 10} : 2∥bj} = {4, 7}
I2(2) =

{
j ∈ {1, 2, . . . , 10} : 22∥bj

}
= {2, 9}

I3(2) =
{
j ∈ {1, 2, . . . , 10} : 23∥bj

}
= {3, 6, 8, 10}

Now we calculate the numerators of the fractions on the left-hand side of (2.5). We have:

N3(2) = 2̌

(
1

b3(2)
+

1

b6(2)
+

1

b8(2)
+

1

b10(2)

)
= 15

(
1 +

1

3
+

1

5
+

1

15

)
= 24;

N2(2) = 2̌

(
1

b2(2)
+

1

b9(2)

)
= 15

(
1

1
+

1

15

)
= 16;

N1(2) = 2̌

(
1

b4(2)
+

1

b7(2)

)
= 15

(
1

5
+

1

15

)
= 4.
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These numbers verify relations (2.5) for s = 0, 1, 2, respectively. Indeed, k(2) = 3 and we
have:

N3(2) = 24 ≡ 0 (mod 2);

N3(2)

2
+N2(2) = 12 + 16 ≡ 0 (mod 2);

N3(2)

22
+

N2(2)

2
+N1(2) = 6 + 8 + 4 ≡ 0 (mod 2).

(2.9)

If p = 3, then

I1(3) = {j ∈ {1, 2, . . . , 10} : 3∥bj} = {1, 5, 6, 7, 9, 10},

and since k(3) = 1, we have to check the validity of (2.5) only for s = 0, which holds true,
since

N1(3) = 3̌

(
1

b1(3)
+

1

b5(3)
+

1

b6(3)
+

1

b7(3)
+

1

b9(3)
+

1

b10(3)

)
= 40

(
1 +

1

5
+

1

8
+

1

10
+

1

20
+

1

40

)
= 60 ≡ 0 (mod 3).

(2.10)

Finally, similarly, if p = 5, then k(5) = 1, and relation (2.5) is also satisfied:

I1(5) = {j ∈ {1, 2, . . . , 10} : 5∥bj} = {4, 5, 7, 8, 9, 10},

and

N1(5) = 5̌

(
1

b4(5)
+

1

b5(5)
+

1

b7(5)
+

1

b8(5)
+

1

b9(5)
+

1

b10(5)

)
= 24

(
1

2
+

1

3
+

1

6
+

1

8
+

1

12
+

1

24

)
= 30 ≡ 0 (mod 5).

(2.11)

Together, relations (2.9), (2.10) and (2.11) complete the verification of the conditions
required for integrity by Theorem 1, and consequently, the sum S(a,b) in (2.8) must be an
integer.

To conclude, bounding from above the terms of the sum by dyadic fractions, we find
that

0 < S(a,b) <
1

2
+

1

4
+

1

8
+

1

8
+

1

8
+

1

16
+

1

16
+

1

32
+

1

32
+

1

64
=

85

64
< 2,

therefore, the sum in (2.8) is the only possible integer, so that S(a,b) = 1.

3 Proof of Theorem 1

Proof. Let p ∈ Pb be a prime factor of the least common denominator lcm(b). We rearrange
the terms of the sum S(a,b) in the following form:

S(a,b) =

k(p)∑
i=0

 1

pk(p)−i

∑
j∈Ik(p)−i

aj
bj(p)

 (3.1)
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“=⇒” Let us assume that S(a,b) is an integer. In order to prove (2.5) for s =
0, 1, . . . , k(p) − 1 we multiply both sides of the equality (3.1) by p̌bp

k(p)−s−1. Thus, we
obtain:

S(a,b) · p̌bpk(p)−s−1 =

k(p)∑
i=0

1

ps−i+1
Nk(p)−i(p)

=
1

p

s∑
i=0

1

ps−i
Nk(p)−i(p) +

k(p)∑
i=s+1

pi−s−1Nk(p)−i(p).

(3.2)

Since the last sum in (3.2) is an integer, we obtain that
1

p

s∑
i=0

1

ps−i
Nk(p)−i(p) is also an

integer and hence (2.5) follows.
“⇐=” Suppose that the condition (2.5) is verified for all p ∈ Pb and the sum S(a,b)

from (1.2) equals the irreducible fraction S(a,b) =
a

b
. If b > 1, then there exists p a prime

divisor of b. Let k be the p-adic order of b: b = pkb(p) and p - b(p). Obviously, p ∈ Pb,

1 ≤ k ≤ k(p) and S(a,b) =
a

pkb(p)
. Then, we multiply both sides of (3.1) by p̌bp

k−1 and

obtain:

ap̌b
pb(p)

=

k(p)∑
i=0

1

pk(p)−k−i+1
Nk(p)−i(p)

=
1

p

k(p)−k∑
i=0

1

pk(p)−k−i
Nk(p)−i(p) +

k∑
j=1

pj−1Nk−j(p).

(3.3)

Since (2.5) is verified for s = k(p)− k, it follows that
ap̌b
pb(p)

pb(p) is an integer, so p should

be a divisor of a, which contradicts the irreducibility of the fraction
a

b
. Hence b = 1 and

the proof is complete.

4 Egyptian fractions with each denominator having two
distinct prime divisors

Let P = {2, 3, 5, . . . } be the set of prime numbers.

Definition 1. Let A be a finite set of distinct integers containing at least 3 elements. We
say that A is a circular set if its elements can be put on a circle such that each one is
a divisor of the sum of its neighbors. This means that we can order the elements of A,
a1, a2, . . . , an such that

ai | (ai−1 + ai+1), ∀ i = 1, 2, . . . , n,

where a0 = an and an+1 = a1.

Lemma 1. The set of prime numbers contains no circular subsets.
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Proof. Suppose that such a circular subset Q = {q1, q2, . . . , qn} ⊂ P does exist. We assume
that the elements of Q are indexed such that

qi | (qi−1 + qi+1), ∀ i = 1, 2, . . . , n,

(where q0 = qn and qn+1 = q1) and qn is the largest number in Q. Since qn−1 + q1 < 2qn
and qn | (qn−1 + q1), we get that qn−1 + q1 = qn, so one of the prime numbers qn−1 or
q1 equals 2; suppose that q1 = 2 (the case qn−1 = 2 can be discussed in a similar way).
Thus, qn−1 = qn − 2, and (qn − 2) | (qn−2 + qn). We can see that qn ≥ 7 (if qn = 5, then
Q = {2, 3, 5}, which is not a circular set), so we have:

qn − 2 < qn−2 + qn < 2qn < 3(qn − 2).

It follows that qn−2 + qn = 2(qn − 2), hence qn−2 = qn − 4. Since qn−2, qn−1, qn form an
arithmetic progression with common difference 2, one of them must be divisible by 3, so
qn−1 = 3 or qn−2 = 3. But qn ≥ 7, hence qn−2 = 3 and Q = {2, 3, 5, 7}, which is not a
circular set and the proof is complete.

Butler et al. [4] (Theorem 1) state that any positive integer can be written as a sum of
unit fractions where each denominator is the product of three distinct primes. The authors
note that the result can be extended by similar arguments to prove that any positive integer
can be written as a sum of unit fractions where each denominator is the product of ω ≥ 4
distinct primes and conjecture that a similar result holds for ω = 2.

The next theorem establishes that a sum of unit fractions where each denominator is
the product of two distinct primes and each prime factor appears exactly in two fractions
is not an integer.

Theorem 2. Let Q = {q1, . . . , qn} ⊂ P and let

SQ :=
1

q1q2
+

1

q2q3
+ · · ·+ 1

qn−1qn
+

1

qnq1
. (4.1)

Then SQ is not an integer.

Proof. The statement is obvious for n = 2. Let us assume that SQ is an integer for some n ≥
3. We apply Theorem 1 for SQ = S(a,b) with a = (1, 1, . . . , 1) and b = (q1q2, . . . , qnq1).
The set of primes is Pb = Q and k(qj) = 1 for j = 1, 2, . . . , n. Then,

N1(qi) = q̌i

(
1

qi−1
+

1

qi+1

)
= (qi−1 + qi+1)

n∏
j=1

j ̸=i,i±1

qj ≡ 0 (mod qi).

It follows that qi | (qi−1+qi+1), for every i = 1, 2, . . . , n, which is not possible, by Lemma 1.
Hence SQ is not an integer.
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5 A generalization of two results of Oblath and Erdős

Egyptian fractions whose denominators form an arithmetic progression is a subject inves-
tigated by many mathematicians. The first result in this domain was obtained by The-

isinger [13], who proved that the sum

n∑
k=2

1

k
is never an integer, for any natural number

n > 1 (see Example 1). Kürschák [10] established that

n∑
k=m

1

k
(5.1)

is not an integer, for any natural numbers n > m > 1. This result was generalized in 1932
by Erdős [6], who proved that the sum

n−1∑
k=0

1

a+ kb
(5.2)

is never an integer, for any choice of the natural numbers a, b, n > 0. Recently, Belbachir
and Khelladi [2] have shown that any sum of the form

n−1∑
k=0

1

(a+ kb)αk
, (5.3)

where αk ≥ 1 are natural numbers, is not an integer. As can be noticed, all these results
concern sums of unit fractions. Oblath [11] investigated sums with arbitrary numerators
and proved that a sum of the form

n∑
k=m

ak
k
, (5.4)

where n > m > 1 and (ak, k) = 1 for each k = m, . . . , n, is never an integer.
In this section we generalize the results of Erdős and Oblath by applying Bertrand-

Chebyshev theorem, a theorem of Shorey and Tijdeman [12], and Corollary 1.
Bertrand-Chebyshev theorem (also known as Bertrands postulate) states that, for every

integer n > 1, there exists at least one prime number p such that n < p < 2n. It was
conjectured and verified for n < 3 · 106 by Joseph Bertrand in 1845. The first proof was
given by Pafnuty Chebyshev in 1850. In 1932, in his first published paper, Paul Erdős
presented a beautiful elementary proof of this theorem (see [1], Chapter 2).

Lemma 2. Let a ≥ 2 and s0, s1, . . . , sn−1, be positive integers, n ≥ 2. Let a0, a1, . . . , an−1 be
nonzero integers such that (ai, a+i) = 1 for i = 0, 1, . . . , n−1. Denote a = (a0, a1, . . . , an−1)
and b = (as0 , (a+ 1)s1 , . . . , (a+ n− 1)sn−1). Then, the sum:

S(a,b) =

n−1∑
i=0

ai
(a+ i)si

(5.5)

is not an integer.
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Proof. The idea of the proof is to find a prime divisor of the number

P = a(a+ 1) · · · (a+ n− 1)

such that it divides only one factor of this product. For n = 2, 3 it is easy to find such a
prime number, namely, it is sufficient to take any prime divisor p of a+ 1. This one is not
a divisor either of a or of a+ 2.

Assume that n ≥ 4. By Bertrand-Chebyshev theorem, there exists a prime number p
such that

⌊(a+ n− 1)/2⌋ < p < 2 ⌊(a+ n− 1)/2⌋ .

Thus, there is a j ∈ {0, 1, . . . , n− 1} with p = a+ j and

⌊(a+ n− 1)/2⌋+ 1 ≤ a+ j ≤ 2 ⌊(a+ n− 1)/2⌋ − 1.

If another denominator, say a + l, was divisible by p, then a + l should be at least 2p.
But 2p ≥ 2 ⌊(a+ n− 1)/2⌋ + 2 > a + n − 1, so it follows that l > n − 1, a contradiction.
Thus, this prime number p is a divisor of only one denominator and, by Corollary 1, we
can conclude that the sum S(a,b) in (5.5) is not an integer.

Note that for s0 = · · · = sn−1 = 1, we obtain the result of Oblath [11] regarding the
sum (5.4). If, in addition, all the numerators are 1, a0 = · · · = an−1 = 1, the sum obtained
is (5.1) and we find the main proposition of Kürschák [10].

The following result is a direct consequence of a theorem of Shorey and Tijdeman [12].

Lemma 3. Let a, b and n be positive integers such that a, b ≥ 2, (a, b) = 1 and n ≥ 4.
Then, the product

P = a(a+ b)(a+ 2b) · · · (a+ (n− 1)b)

has at least one prime divisor p which is greater than n.

Theorem 3. Let a, b, s0, s1, . . . , sn−1, be positive integers such that (a, b) = 1, and a, n ≥ 2.
Let a0, a1, . . . , an−1 be nonzero integers such that (ai, a + ib) = 1 for i = 0, 1, . . . , n − 1.
Then, the sum:

S(a,b) =

n−1∑
i=0

ai
(a+ ib)si

, (5.6)

where a = (a0, a − 1, . . . , an−1) and b = (as0 , (a + b)s1 , . . . , (a + (n − 1)b)sn−1), is not an
integer.

Proof. For b = 1, we get the statement of Lemma 2. Let us assume that b > 1 and consider
the product

P = a(a+ b)(a+ 2b) · · · (a+ (n− 1)b).

If n = 2, 3, we take a prime divisor p of a+ b, as in the proof of Lemma 2. Obviously, p is
not a divisor of a, nor of a + 2b, hence, by Corollary 1, we obtain that the sum S(a,b) is
not an integer.

If n ≥ 4, by Lemma 3 we know that there exists p a prime divisor of P that is greater
than n. We shall see that this prime number p cannot divide two distinct denominators
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in (5.6). Indeed, if i < j, i, j ∈ {0, 1, . . . , n − 1} are such that p | (a + ib) and p | (a + jb),
then p | (j − i)b. But p cannot divide b because (a, b) = 1, so p | (j − i), a contradiction,
because p > n ≥ j − i. Now we can apply Corollary 1 and find that the sum S(a,b) is not
an integer.

For a0 = · · · = an−1 = 1 we obtain the sum (5.3) from [2] which generalizes the result
of Erdős [6] regarding the sum (5.2).
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[4] S. Butler, P. Erdős, R. Graham, Egyptian fractions with each denominator
having three distinct prime divisors, Integers, 15, (2015).

[5] C. Elsholtz, T. Tao, Counting the number of solutions to the Erdős-Straus equa-
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