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Abstract

A graded ideal I of a polynomial ring over a field is componentwise linear if for
every nonnegative integer j, the ideal generated by all homogeneous polynomials of
degree j belonging to I admits a linear resolution. In this paper, we show that the
componentwise linearity of monomial ideals is preserved by the polarization. As an
application, we give a condition to guarantee that none of the powers of a monomial
ideal is componentwise linear.
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1 Introduction

Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra
in various combinatorial contexts and vice versa. One of the fastest developing branches of
algebraic combinatorics is combinatorial commutative algebra. It has evolved into one of the
most active and vibrant branches of mathematical research during the past several decades.
In this paper, we deal with a topic related to the minimal free resolutions of monomial
ideals, which is one of the widely studied topics in combinatorial commutative algebra.
In this direction, one important question is to figure out whether a monomial ideal or its
powers have a linear resolution. Fröberg [4] has given a combinatorial characterization
of squarefree monomial ideals of degree two, namely edge ideals, which admit a linear
resolution. A generalization of this result to general monomial ideals of degree two is given
afterward by Herzog et al. [7]. Nevo and Peeva [9] have given a criterion for when some of
powers of edge ideals of graphs admit a linear resolution, and after then, Altafi et al. [1]
have generalized this latter result to general monomial ideals.

In 1999, Herzog and Hibi [5] introduced a notion which is related to admitting a linear
resolution. This notion is the componentwise linearity, which we deal with here. It is known
that there exist notions of the subject which are or are not preserved by the polarization. For
example, the Cohen–Macaulayness is preserved by the polarization, whereas the normality
of ideals is not. In this paper, we prove that the componentwise linearity of monomial ideals
is preserved by the polarization. As an application, we give a condition to guarantee that
none of the powers of a monomial ideal is componentwise linear.



392 Conditions preserved by the polarization

2 Preliminaries

In this section, we recall some preliminaries which are needed later on. We refer the reader
to the book by Herzog and Hibi [6] for any undefined terms in combinatorial commutative
algebra. Other important references on the subject are the books by Bruns and Herzog [2],
Stanley [11], and Villarreal [12].

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring over K. For a finitely
generated graded S-module M , a minimal graded free resolution of M is an exact sequence

0 → Fp → Fp−1 → · · · → F0 → M → 0,

where p ≤ n, every Fi is a graded free S-module of the form

Fi =
⊕
j∈Z

S(−j)βi,j(M)

with the minimal number of basis elements, and every map is graded. Here, S(−j) denotes
the S-module obtained by shifting the degrees of S by j, and the value βi,j(M) is called the
ith graded Betti number of M of degree j. Note that the minimal graded free resolution of
M is unique up to isomorphism, which implies that the graded Betti numbers are uniquely
determined.

Let I be a monomial ideal of S and let G(I) denote the set of minimal monomial
generators of I. One says that I has a linear resolution if for some integer d, βi,i+t(S/I) = 0
for all i > 0 and all t ̸= d. It is easy to see that if I has a linear resolution, then all the
minimal generators of I have the same degree. Herzog and Hibi [5] have generalized the
notion of admitting a linear resolution for the case where I is not generated in a single
degree. The Castelnuovo–Mumford regularity (or the regularity for short) of S/I and I are
also as follows:

reg(S/I) = max
{
j − i | βi,j(S/I) ̸= 0

}
,

reg(I) = reg(S/I) + 1.

2.1 The componentwise linearity

For a monomial ideal I of S, the truncation of I in degree j, denoted by I≥j , is the ideal
generated by all monomials of degree ≥ j in I, that is, I≥j = ⊕i≥jIi. The following
notations are also used throughout this paper: I≤j and I⟨j⟩. The first one refers to the
ideal generated by all monomials of degree ≤ j in I and the second one refers to the ideal
generated by all monomials of degree j in I. For example, if I = (x2, xz2, y2z2, z5) is an
ideal of K[x, y, z], then

I≥3 = (x3, x2y, x2z, xz2, y2z2, z5),

I≤3 = (x2, xz2),

I⟨3⟩ = (x3, x2y, x2z, xz2).

A monomial ideal I of S is called componentwise linear if for every nonnegative integer
j, the ideal I⟨j⟩ has a linear resolution.
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2.2 The gcd condition

Monomial ideals which satisfy the gcd condition are defined by Jöllenbeck [8]. He has
given a special acyclic matching on the Taylor resolution for this type of ideals, which are
in connection with the Golod property of monomial rings. For a monomial ideal I of S,
one says that I satisfies the gcd condition if for every two monomials u, v ∈ G(I) with
gcd(u, v) = 1, there exists a monomial w ̸= u, v in G(I) such that w|uv. As an example, the
monomial ideal I = (x1x2, x2x3, x3x4, x4x5, x1x5) of K[x1, x2, x3, x4, x5] satisfies the gcd
condition.

2.3 The polarization

There is a process, called polarization, which is used to reduce the monomial ideals to the
squarefree ones. The advantage of reducing the squarefree monomials is that one can use
the Stanley–Reisner correspondence. This provides a nice correlation between squarefree
monomial ideals and simplicial complexes. Let us introduce this process according to Peeva
[10]. For this, we need new variables, which are tj,i’s. Consider the polynomial ring S =

K[x1, . . . , xn] and let qj = x
aj

j , 1 ≤ j ≤ n. The polarization of qj , denoted by q
pol

j , is defined
as follows:

q
pol

j =


1 if aj = 0,

xj

aj−1∏
i=1

tj,i if aj ̸= 0.

Note that by convention the product of the empty set of terms is equal to one. Now, let u be
a monomial in S and set u = q1 . . . qn, where for every 1 ≤ j ≤ n, qj = x

aj

j . The polarization

of u, denoted by u
pol

, is defined as u
pol

= q
pol

1 . . . q
pol

n . If we consider A = {1 ≤ j ≤ n | aj ̸= 0},
then the latter expression can be written as

u
pol

=
∏
j∈A

(
xj

aj−1∏
i=1

tj,i

)
.

Finally, if I = (u1, . . . , ur) is a monomial ideal of S, its polarization I
pol

is defined as

I
pol

= (u
pol

1 , . . . , u
pol

r ). Note that

S
pol

= S[t1,1, . . . , t1,p1
, t2,1, . . . , t2,p2

, . . . , tn,1, . . . , tn,pn
]

is the polynomial ring in which the monomial ideal I
pol

lives. Here, pj ’s are as follows:

pj = max
{
a | xa+1

j divides some monomials among u1, . . . , ur

}
.

The following isomorphism explains the relation between the ideal I and its polarized ideal
I
pol

, where α =
{
tj,i − xj | 1 ≤ j ≤ n, 1 ≤ i ≤ pj

}
:

S
pol

/(I
pol

+ (α)) ∼= S/I.

Let us conclude this section with an example. Let I = (x3
1, x2x

2
3x4, x

3
3, x1x4) be an

ideal of K[x1, x2, x3, x4]. The polarization of x3
1 is x1t1,1t1,2. The polarization of x2x

2
3x4 is
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x2x3t3,1x4. The polarization of x3
3 is x3t3,1t3,2. The polarization of x1x4 is x1x4. Hence,

the polarization of I is I
pol

= (x1t1,1t1,2, x2x3t3,1x4, x3t3,1t3,2, x1x4), which is an ideal of
K[x1, t1,1, t1,2, x2, x3, t3,1, t3,2, x4].

3 Preserving by the polarization

In this section, we state and prove our results. In the sequel, S = K[x1, . . . , xn] is the
polynomial ring over a field K. Let us start by the componentwise linearity.

3.1 Polarization and the componentwise linearity

In the following proposition, we prove that polarization preserves the componentwise lin-
earity. For this, we need the following two lemmas.

Lemma 1. Let I = (u1, . . . , ur) be a monomial ideal of S, where for every 1 ≤ ℓ ≤ r,
deg(uℓ) = dℓ. Then I is componentwise linear if and only if for every 1 ≤ ℓ ≤ r, I⟨dℓ⟩ has
a linear resolution.

Proof. The “only if ” part is trivial by the definition of componentwise linearity. For the “
if ” part, let j be a nonnegative integer. If j < dℓ for every 1 ≤ ℓ ≤ r, then I⟨j⟩ = 0, and
so, I⟨j⟩ has a linear resolution. If j = dℓ for some 1 ≤ ℓ ≤ r, then I⟨j⟩ = I⟨dℓ⟩, and so, by
the assumption, I⟨j⟩ has again a linear resolution. Otherwise, there exists 1 ≤ ℓ ≤ r such
that I has no generator of degree bigger than dℓ and smaller than j. This means that I⟨j⟩
is equal to the truncation of I⟨dℓ⟩ in degree j. Since the truncation of an ideal in a degree
preserves having a linear resolution and, by the assumption, I⟨dℓ⟩ has a linear resolution,
I⟨j⟩ also has a linear resolution. All in all, I⟨j⟩ has a linear resolution, which means that I
is componentwise linear, as required.

Lemma 2. Let I = (u1, . . . , ur) be a monomial ideal of S, where for every 1 ≤ ℓ ≤
r, deg(uℓ) = dℓ. Then I is componentwise linear if and only if for every 1 ≤ ℓ ≤ r,
reg
(
I≤dℓ

)
≤ dℓ.

Proof. It is known that the regularity of a monomial ideal is upper bounded by d exactly
whenever the truncation of the ideal in degree d has a linear resolution (see [3, Proposition
1.1]). Also, note that for a given j, the ideal I⟨j⟩ is equal to the truncation of I≤j in degree

j, that is, I⟨j⟩ =
(
I≤j

)
≥j

. Based on these observations and applying Lemma 1,

I is componentwise linear ⇐⇒ for every 1 ≤ ℓ ≤ r, I⟨dℓ⟩ has a linear resolution

⇐⇒ for every 1 ≤ ℓ ≤ r,
(
I≤dℓ

)
≥dℓ

has a linear resolution

⇐⇒ for every 1 ≤ ℓ ≤ r, reg
(
I≤dℓ

)
≤ dℓ,

which completes the proof.

We are now in the position to prove our first main result.
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Proposition 1. Let I be a monomial ideal of S. Then I is componentwise linear if and
only if I

pol

is componentwise linear.

Proof. Let I = (u1, . . . , ur), where for every 1 ≤ ℓ ≤ r, deg(uℓ) = dℓ. Firstly, note that
the polarization preserves the set of degrees of monomial generators of an ideal, and so,
{d1, . . . , dr} is a set of degrees of monomial generators of the polarized ideal I

pol

. Thus, by

Lemma 2, I
pol

is componentwise linear if and only if for every 1 ≤ ℓ ≤ r, reg
((
Ipol

)
≤dℓ

)
≤ dℓ.

Secondly, note that for a given j, defining I≤j is based on choosing generators of I associated

with some specific degrees, which means that
(
I≤j

)pol
=
(
I
pol)

≤j
. Finally, it is known that

the polarization preserves Betti numbers. Based on these observations and again applying
Lemma 2,

I is componentwise linear ⇐⇒ for every 1 ≤ ℓ ≤ r, reg
(
I≤dℓ

)
≤ dℓ

⇐⇒ for every 1 ≤ ℓ ≤ r, reg
((
I≤dℓ

)
pol
)
≤ dℓ

⇐⇒ for every 1 ≤ ℓ ≤ r, reg
((
Ipol

)
≤dℓ

)
≤ dℓ

⇐⇒ Ipol is componentwise linear,

which completes the proof.

3.2 Polarization and the gcd condition

In the next proposition, we prove that the polarization preserves the gcd condition. For
this, we need the following two lemmas.

Lemma 3. Let u and v be two monomials in S. Then gcd(u, v) = 1 if and only if

gcd(u
pol

, v
pol

) = 1.

Proof. If gcd(u, v) = 1, then the variables appearing in u and v are different, and thus, all

the new variables tj,i’s appearing in u
pol

and v
pol

are so. This means that gcd(u
pol

, v
pol

) = 1.
The same argument works for the other direction.

Lemma 4. Let u, v and w be three monomials in S with gcd(u, v) = 1. Then w|uv if and

only if w
pol |upol

v
pol

.

Proof. Let u = xa1
1 . . . xan

n , v = xb1
1 . . . xbn

n and w = xc1
1 . . . xcn

n . For the “only if ” part,
note that w|uv implies that for every 1 ≤ j ≤ n, cj ≤ aj + bj . But gcd(u, v) = 1 means
that for every 1 ≤ j ≤ n, ajbj = 0, and so, aj + bj is equal to either aj or bj . Therefore,
we obtain that for every 1 ≤ j ≤ n, cj is less than or equal to either aj or bj . Hence, for

every 1 ≤ j ≤ n, all the new variables tj,i’s appearing in w
pol

also appear in either u
pol

or

v
pol

, and thus, w
pol |upol

v
pol

. For the “ if ” part, note that w
pol |upol

v
pol

implies that for every

1 ≤ j ≤ n, the new variables tj,i’s appearing in w
pol

, appear in u
pol

v
pol

, and since, by Lemma

3, gcd(u
pol

, v
pol

) = 1, they should appear in either u
pol

or v
pol

. This means that for every
1 ≤ j ≤ n, cj is less than or equal to either aj or bj , and so, w|uv.
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We are now in the position to prove our second main result.

Proposition 2. Let I be a monomial ideal of S. Then I satisfies the gcd condition if and
only if I

pol

satisfies the gcd condition.

Proof. For the “only if ” part, let u
pol

, v
pol ∈ G(I

pol

) with gcd(u
pol

, v
pol

) = 1. Thus, u, v ∈
G(I), and by Lemma 3, gcd(u, v) = 1. Therefore, by the assumption, there exists w ̸= u, v in

G(I) for which w|uv, and so, by Lemma 4, w
pol |upol

v
pol

. Since w
pol ̸= u

pol

, v
pol

is a monomial

in G(I
pol

), I
pol

satisfies the gcd condition. The “ if ” part can be derived similarly as above.

3.3 An application of the results

Finally, we conclude the paper by generalizing a known result which states that if I is a
squarefree monomial ideal of S which contains no variable and it does not satisfy the gcd
condition, then none of the powers of I is componentwise linear (see [1, Corollary 2.3]). As
an application of our two main propositions, we show that the above-mentioned result is
valid too for general monomial ideals. For this, we need the following two lemmas.

Lemma 5. Let u and v be two monomials in S. Then
(
u

pol

v
)pol

=
(
uv
)pol

.

Proof. Let u = xa1
1 . . . xan

n and v = xb1
1 . . . xbn

n . Let also A = {1 ≤ j ≤ n | aj ̸= 0} and

B = {1 ≤ j ≤ n | bj ̸= 0}. Since u
pol

=
∏

j∈A(xj

∏aj−1
i=1 tj,i) and v =

∏
j∈B x

bj
j , we obtain

that

u
pol

v =
∏
j∈A

(
xj

aj−1∏
i=1

tj,i

)∏
j∈B

x
bj
j

=
∏

j∈A\(A∩B)

(
xj

aj−1∏
i=1

tj,i

) ∏
j∈A∩B

(
xj

aj−1∏
i=1

tj,i

) ∏
j∈A∩B

x
bj
j

∏
j∈B\(A∩B)

x
bj
j

=
∏

j∈A\(A∩B)

(
xj

aj−1∏
i=1

tj,i

) ∏
j∈A∩B

(
x
bj+1
j

aj−1∏
i=1

tj,i

) ∏
j∈B\(A∩B)

x
bj
j .

This implies that

(
u

pol

v
)pol

=
∏

j∈A\(A∩B)

(
xj

aj−1∏
i=1

tj,i

) ∏
j∈A∩B

(
xj

bj∏
i=1

Tj,i

aj−1∏
i=1

tj,i

) ∏
j∈B\(A∩B)

(
xj

bj−1∏
i=1

tj,i

)
.

In order to obtain a closed form of the above expression, we define t̂j,i’s as follows. For
j ∈ A \ (A ∩B), if 1 ≤ i ≤ aj − 1, we define t̂j,i = tj,i, and otherwise we set t̂j,i = 0. Also,
for j ∈ A ∩ B, if 1 ≤ i ≤ bj , we define t̂j,i = Tj,i, whereas if bj + 1 ≤ i ≤ aj + bj − 1, we
set t̂j,i = tj,i−bj . Finally, for j ∈ B \ (A ∩ B), if 1 ≤ i ≤ bj − 1, we define t̂j,i = tj,i, and
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otherwise we set t̂j,i = 0. By this setting and noting that C = {1 ≤ j ≤ n | aj + bj ̸= 0} is
equal to A ∪B, the latter expression can be written as

(
u

pol

v
)pol

=
∏

j∈A\(A∩B)

(
xj

aj+bj−1∏
i=1

t̂j,i

) ∏
j∈A∩B

(
xj

aj+bj−1∏
i=1

t̂j,i

) ∏
j∈B\(A∩B)

(
xj

aj+bj−1∏
i=1

t̂j,i

)

=
∏
j∈C

(
xj

aj+bj−1∏
i=1

t̂j,i

)

=
(
uv
)pol

.

Lemma 6. Let I be a monomial ideal of S and ℓ ≥ 1 be an integer. Then
(
Iℓ
)pol

=((
I
pol)ℓ)pol

.

Proof. It is suffices to prove that for ℓ monomials u1, . . . , uℓ,(
u1 . . . uℓ

)pol
=
(
u

pol

1 . . . u
pol

ℓ

)pol
.

This is easily done inductively by using Lemma 5 as follows:(
u

pol

1 . . . u
pol

ℓ

)pol
=
(
u1u

pol

2 . . . u
pol

ℓ

)pol
=
(
u1u2u

pol

3 . . . u
pol

ℓ

)pol
...

=
(
u1 . . . uℓ

)pol
.

Proposition 3. Let I be a monomial ideal of S which contains no variable. If I does not
satisfy the gcd condition, then none of the powers of I is componentwise linear.

Proof. Suppose, on the contrary, that Iℓ is componentwise linear for some integer ℓ ≥
1. Thus, by Proposition 1,

(
Iℓ
)pol

is also componentwise linear. Hence, by Lemma 6,((
I
pol)ℓ)pol

is componentwise linear. Again, applying Proposition 1 implies that
(
I
pol)ℓ

is componentwise linear. Since I
pol

is squarefree, by [1, Corollary 2.3], it satisfies the gcd
condition. Now, Proposition 2 implies that I also satisfies the gcd condition, a contradiction.



398 Conditions preserved by the polarization

Let us close the paper by a remark. It is known that the lexsegment ideals, the strongly
stable ideals, the stable ideals and the a-stable ideals (a is an n-tuple) are all componentwise
linear. Based on this point, Proposition 3 implies that if a monomial ideal does not satisfy
the gcd condition, then none of its powers is lexsegment, strongly stable, stable or a-stable.
Thus, if, for example, we let I = (x3y2, x2y3, z2) be an ideal in K[x, y, z], then none of the
powers of I is lexsegment, strongly stable, stable, a-stable or componentwise linear, since
I does not satisfy the gcd condition. However it is not easy to achieve these observations
by using the definitions, we believe that the importance of Proposition 3 is something else.
Indeed, Proposition 3 expresses that failing the gcd condition is not a good sign rather than
to say that if the gcd condition occurs then it would be good.
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[4] R. Fröberg, On Stanley–Reisner rings, in: Topics in Algebra, Part 2 (Warsaw,
1988), 57–70, Banach Center Publ., 26, Part 2, PWN, Warsaw (1990).

[5] J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J., 153, 141–153
(1999).

[6] J. Herzog, T. Hibi, Monomial Ideals, Springer-Verlag London (2011).

[7] J. Herzog, T. Hibi, X. Zheng, Monomial ideals whose powers have a linear reso-
lution, Math. Scand., 95, 23–32 (2004).
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