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Abstract

We study the disconjugacy of the fourth order linear ordinary differential equation

u(4)(t) = p(t)u(t),

on the interval [a, b]. We find necessary and sufficient conditions for the disconjugacy
on [a, b], which have the comparison theorems character. Our results complete Kon-
drat’ev’s second comparison theorem for the case of the fourth order ODE. The above
mentioned conditions significantly improve Coppel’s well-known condition which guar-
antees the disconjugacy of our equation for not necessarily constant sign coefficient p,
and generalise some optimal disconjugacy results proved for constant-coefficient equa-
tions.
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1 Introduction

In this paper we study the question of the disconjugacy on the interval I := [a, b] ⊂ [0, +∞[
of the fourth order linear ordinary differential equation

u(4)(t) = p(t)u(t), (1.1)

where p : I → R is a Lebesgue integrable function. Also we consider the following two-point
boundary conditions

u(a) = 0 , u(i)(b) = 0 (i = 0, 1, 2), (1.21)

u(i)(a) = 0, u(i)(b) = 0 (i = 0, 1), (1.22)

and
u(i)(a) = 0 (i = 0, 1, 2), u(b) = 0, (1.23)

because it is well known that the question of disconjugacy of equations (1.1) in the interval
I is closely related with these boundary conditions.

The study of the fourth order boundary value problems is important since they appear
as model equations for a large class of higher order parabolic equations arising, for instance,
in statistical mechanics, phase field models, hydrodynamics, suspension bridges models, etc.
The study of the disconjugacy property plays an important role in these investigations.

The disconjugacy results obtained in this paper can be also understood as comparison
theorems. In this direction, Theorem 6 completes Kondrat’ev’s second comparison theorem
for n = 4.
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Theorem 1. ([12], Theorem 2) Let p1, p2 : [a, b] → R be continuous functions such that
the equations

u(4)(t) = p1(t)u(t), u(4)(t) = p2(t)u(t), (1.3)

are disconjugate on I, and p1 ≤ p ≤ p2. Then equation (1.1) is disconjugate too.

Indeed, Theorem 6 shows that if p1, p2 are the constant sign functions, then in Theorem
1 the assumption of the disconjugacy of equations (1.3) can be replaced by the more general
assumptions that p1 ∈ D−(I), p2 ∈ D+(I) (See Definitions 2 and 3). Theorems 1 and 6 are
compared in Remark 6.

On the other hand, Theorem 6 significantly improves Coppel’s well known theorem ([6],
Theorem 1, p. 86), that the condition max

t∈[a, b]
|p(t)| ≤ 128

(b−a)4 guarantees the disconjugacy of

equation (1.1). This fact is discussed in detail in Remark 7.
Also Theorems 2 and 4 generalize for the Lebesgue integrable coefficient p Theorems 3.1

and 4.1 of Ma et al. [15], which are formulated for the constant-coefficient equations (See
Remarks 3, 5).

The following notations are used throughout the paper: R = ]−∞, +∞[ , R+ = ]0, +∞[,
R+

0 = [0, +∞[ , R−
0 = R \ R+, R− = R \ R+

0 ; C(I;R) is the Banach space of continuous

functions u : I → R with the norm ∥u∥C = max{|u(t)| : t ∈ I}; C̃3(I;R) is the set of
functions u : I → R which are absolutely continuous together with their third derivatives;
L(I;R) is the Banach space of Lebesgue integrable functions p : I → R with the norm

∥p∥L =
∫ b

a
|p(s)|ds; For arbitrary x, y ∈ L(I; R), the notation

x(t) 4 y(t) (x(t) < y(t)) for t ∈ I,

means that x ≤ y (x ≥ y) and x ̸= y. Also we use the notations [x]± = (|x| ± x)/2.

By a solution of equation (1.1) we understand a function u ∈ C̃3(I; R), which satisfies
equation (1.1) a. e. on I.

Definition 1. Equation (1.1) is said to be disconjugate (non oscillatory) on I, if every
nontrivial solution u has less then four zeros on I, the multiple zeros being counted according
to their multiplicity. Otherwise we say that equation (1.1) is oscillatory on I.

Definition 2. We will say that p ∈ D+(I) if p ∈ L(I;R+
0 ), and problem (1.1), (1.22) has a

solution u, such that
u(t) > 0 for t ∈ ]a, b[ . (1.4)

Definition 3. We will say that p ∈ D−(I) if p ∈ L(I;R−
0 ), and problem (1.1), (1.23) has a

solution u, such that inequality (1.4) holds.

Remark 1. Let p ∈ L(I; R+
0 ) (p ∈ L(I; R−

0 )), and consider the equation

u(4)(t) = λ4p(t)u(t) for t ∈ I. (1.5)

It follows from Lemma 8 that the set D+(I) (D−(I)) can be interpreted as a set of functions
p : I → R+

0 (R−
0 ) for which λ = 1 is the first eigenvalue of problem (1.5), (1.22) ( (1.5),

(1.21) and (1.5), (1.23)). Also, the fact that λ > 0 is the first eigenvalue of problem (1.5),
(1.22) ( (1.5), (1.21) or (1.5), (1.23)) is equivalent to the inclusion λ4p ∈ D+(I) (λ4p ∈
D−(I)).
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2 Main results

2.1 Disconjugacy of equation (1.1) with non-negative coefficient

We will first consider equation (1.1) when the coefficient p is non-negative. In this case we
prove the following.

Theorem 2. Let p ∈ L(I; R+
0 ). Then equation (1.1) is disconjugate on I iff there exists

p∗ ∈ D+(I), such that
p(t) 4 p∗(t) for t ∈ I. (2.1)

Remark 2. From Theorem 2 it is clear that if x, y ∈ D+(I), then none of the inequalities
x 4 y and y 4 x holds.

Corollary 1. Let p ∈ L(I; R+
0 ), p ̸≡ 0, and λ0 > 0 be the first eigenvalue of problem (1.5),

(1.22). Then equation (1.1) is disconjugate on I iff λ0 > 1.

Let λ1 > 0 be the first eigenvalue of the problem

u(4)(t) = λ4u(t), u(i)(0) = 0, u(i)(1) = 0 (i = 0, 1), (2.2)

then it follows from Remark 1 that
λ4
1

(b−a)4 ∈ D+(I). Therefore from Theorem 2 and Remark

2 we obtain

Corollary 2. Equation (1.1) is disconjugate on I if

0 ≤ p(t) 4 λ4
1

(b− a)4
for t ∈ I, (2.3)

and is oscillatory on I if

p(t) ≥ λ4
1

(b− a)4
for t ∈ I. (2.4)

Remark 3. It is well known that the first eigenvalue λ1 of problem (2.2) is the first positive
root of the equation cosλ · coshλ = 1, and λ1 ≈ 4.73004 (see [5], [15]). Also in Theorem
3.1 of paper [15] it was proved that the equation u(4) = λ4u is disconjugate on [0, 1] if
0 ≤ λ < λ1.

But even if both conditions (2.3) and (2.4) are violated, the question on the disconjugacy
of equation (1.1) can be answered by the following theorem

Theorem 3. Let p ∈ L(I; R+
0 ), and there exists M ∈ R+

0 such that

M
b− a

2
+

∫ b

a

[p(s)−M ]+ds ≤
192

(b− a)3
. (2.5)

Then equation (1.1) is disconjugate on I.

Note that in [3] it is proved that when p : I → R+
0 is an essentially bounded function

and M = 0 or M = ess sup
t∈I

p(t), then condition (2.5) guarantees the unique solvability of

the equation u(4) = pu+ h under condition (1.22).
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The example below shows that: a) There exists such a functions p for which both
conditions (2.3) and (2.4) are violated but condition (2.5) holds and therefore equation
(1.1) is disconjugate on I; b) For some essentially bounded function p condition (2.5) does
not hold if the constant M takes its extremal values 0 and ess sup

t∈I
p(t), but there exists

M ∈]0, ess sup
t∈I

p(t)[ for which condition (2.5) holds.

Example 1. Let a = 0, b = 1, and p(t) = 800t3 on t ∈ I. Then conditions (2.3) and (2.4)
are violated, and (2.5) does not hold if M = 0 or M = ess sup

t∈I
p(t). On the other hand it is

not difficult to verify that due to the inequality p(t) ≥ 864/5 on t ∈ [3/5, 1], condition (2.5)
holds with M = 864/5.

2.2 Disconjugacy of equation (1.1) with non-positive coefficient

Now we will consider equation (1.1) with the non-positive coefficient p, and we prove the
following.

Theorem 4. Let p ∈ L(I; R−
0 ). Then equation (1.1) is disconjugate on I iff there exists

p∗ ∈ D−(I), such that
p(t) < p∗(t) for t ∈ I. (2.6)

Remark 4. From Theorem 4 it is clear that if x, y ∈ D−(I), then none of the inequalities
x 4 y and y 4 x holds.

Corollary 3. Let p ∈ L(I; R−
0 ), p ̸≡ 0, and λ0 > 0 be the first eigenvalue of problem (1.5),

(1.23). Then equation (1.1) is disconjugate on I iff λ0 > 1.

Let λ2 > 0 be the first eigenvalue of the problem

u(4)(t) = −λ4u(t), u(i)(0) = 0 (i = 0, 1, 2), u(1) = 0, (2.7)

then as it follows from Remark 1 the inclusion − λ4
2

(b−a)4 ∈ D−(I) holds. Therefore from

Theorem 4 and Remark 4 we obtain

Corollary 4. Equation (1.1) is disconjugate on I if

− λ4
2

(b− a)4
4 p(t) ≤ 0 for t ∈ I, (2.8)

and is oscillatory on I if

p(t) ≤ − λ4
2

(b− a)4
for t ∈ I. (2.9)

Remark 5. In Theorem 4.1 of [15] (see also [5], Theorems 3.5 and 3.6, [4] subsection
4.1) the following is proved: Let λ2 be the first positive root of the equation tanh λ√

2
=

tan λ√
2
(λ2 ≈ 5.553). Then the equation u(4) = −λ4u is disconjugate on [0, 1] if 0 ≤ λ < λ2.

Even if both conditions (2.8) and (2.9) are violated, the question on the disconjugacy
of equation (1.1) can be answered by the following.
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Theorem 5. Let p ∈ L(I; R−
0 ), such that there exists M ∈ R+

0 with

M
495

1024
(b− a) +

∫ b

a

[p(s) +M ]−ds ≤
110

(b− a)3
. (2.10)

Then equation (1.1) is disconjugate on I.

An example analogous to Example 1 can be also constructed for Theorem 5.

2.3 Disconjugacy of equation (1.1) with not necessarily constant
sign coefficient

On the basis of the Theorems 2 and 4 we get the non-improvable results which guarantee
the disconjugacy of equation (1.1) on I, when p is a not necessarily constant sign function.

Theorem 6. Let p∗ ∈ D−(I) and p∗ ∈ D+(I). Then for an arbitrary function p ∈ L(I; R),
such that

p∗(t) 4 −[p(t)]−, [p(t)]+ 4 p∗(t) for t ∈ I, (2.11)

equation (1.1) is disconjugate on I.

The theorem is optimal in the sense that inequalities (2.11) can not be replaced by the
condition p∗ ≤ p ≤ p∗.

Remark 6. We can see that in the Kondrat’ev’s comparison second theorem (see Theorem
1) the permissible coefficients p1 and p2 should not necessarily be constant sign functions,
while in Theorem 6 for the permissible coefficients p1 and p2, equations (1.3) should not
necessarily be disconjugate. For this reason, if

p(t) = λ4
1[cos(2πt/n)]+ − λ4

2[cos(2πt/n)]−,

then it follows from Theorem 6 the disconjugacy of equation (1.1) on [0, 1] for all n ∈ N
(see Corollary 6), while this fact does not follow from Kondrat’ev’s theorem.

If p∗ ∈ D−(I), p
∗ ∈ D+(I), and

mes{ t ∈ I | p∗(t) · p∗(t) ̸= 0} > 0, (2.12)

then p∗ 4 −[p∗ + p∗]−, [p∗ + p∗]+ 4 p∗, and then Theorem 6 implies the following.

Corollary 5. Let p∗ ∈ D−(I), p∗ ∈ D+(I), and inequality (2.12) holds. Then equation
(1.1) with p = p∗ + p∗ is disconjugate on I.

From Theorem 6 with p∗ := − λ4
2

(b−a)4 and p∗ :=
λ4
1

(b−a)4 we obtain

Corollary 6. Let λ1 > 0 and λ2 > 0 be the first eigenvalues of problems (2.2) and (2.7)
respectively, and the function p ∈ L(I; R) admits the inequalities

− λ4
2

(b− a)4
4 p(t) 4 λ4

1

(b− a)4
for t ∈ I.

Then equation (1.1) is disconjugate on I.



346 Disconjugacy for the fourth order ODE

Remark 7. If we take into account that λ4
1 ≈ 501 and λ4

2 ≈ 951, then it is clear that Corol-
lary 6 significantly improves Coppel’s well known condition max

t∈[a, b]
|p(t)| ≤ 128

(b−a)4 , proved in

[6] (Theorem 1, page 86), which for p ∈ C(I; R) guarantees the disconjugacy of equation
(1.1) on I.

Also from Theorem 1 by Theorems 3 and 5 we obtain

Corollary 7. Let the functions p1 ∈ L(I; R−
0 ), p2 ∈ L(I; R+

0 ), be such that∫ b

a

|p1(s)|ds ≤
110

(b− a)3
,

∫ b

a

p2(s)ds ≤
192

(b− a)3
,

and the condition p1 ≤ p ≤ p2 holds. Then equation (1.1) is disconjugate on I.

3 Auxiliary propositions

For the equation
u(4)(t) = p1(t)u(t) for t ∈ R+

0 , (3.1)

where p1 ∈ Lloc(R
+
0 ; R), and t0 ∈ R+

0 is an arbitrary point, we will define the first conjugate
point η(t0, p1) to t0, and the number τ(t0, p1), as in [11] (see Definition 1.5).

Definition 4. Let t0 ∈ R+
0 , and F (t0, p1) be the set of such t1 > t0 for which some solutions

of equation (3.1) in the interval [t0, t1] have at least 4 zeroes (where zeroes are counted
according to their multiplicities). Then we will say that for equation (3.1), η(t0, p1) =
inf F (t0, p1) is the first conjugate point to t0 (η(t0, p1) = +∞ if F (t0, p1) = ∅).

Definition 5. Let t0 ∈ R+
0 , and E(t0, p1) be the set of such t1 > t0 for which there exists

a solution u of equation (3.1) such that

u(t0) = u(t1) = 0, u(t) > 0 for t ∈]t0, t1[ .

Then τ(t0, p1) = supE(t0, p1).

For an arbitrary function x : [a, b] → R, we introduce the functions x−, x+ : R+
0 → R

by the equalities

x±(t) =

{
x(t) for t ∈ I

±1 for t ∈ R+
0 \ I

. (3.2)

Remark 8. η(a0, x±) < +∞ for an arbitrary a0 ∈ [a, b]. (See for example [11], Theorem
2.15).

Now if we assume that
p1(t) ≥ 0 for t ∈ R+

0 , (3.3)

or
p1(t) ≤ 0 for t ∈ R+

0 , (3.4)

then for the numbers η(t0, p1), τ(t0, p1) ∈ R+ the following results hold.
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Lemma 1. ([10], Corollary 5.1) If inequality (3.3) holds and η(x, p1) < +∞ for x ∈ [t∗, t
∗],

then η(t∗, p1) < η(t∗, p1).

Lemma 2. ([13], Theorem 8.6) If inequality (3.4) holds and 0 < t∗ < t∗, then η(t∗, p1) <
η(t∗, p1).

Lemma 3. ([11], Lemma 1.9) Let η(a, p1) < +∞. Then there exist a solution u of equation
(3.1) positive on ]a, η(a, p1)[ and ℓ ∈ {1, 2, 3} such, that

u(i−1)(a) = 0 (i = 1, ℓ), u(i−1)(η(a, p1)) = 0 (i = 1, 4− ℓ). (3.5)

Moreover, if condition (3.3) ((3.4)) holds then ℓ = 2 (ℓ = 1 or ℓ = 3).

Lemma 4. Assume that condition (3.4) holds. Then problem (3.1), (3.5) has a solution
positive on ]a, η(a, p1)[ both for ℓ = 1 and ℓ = 3.

Proof. First we assume that the problem (3.1), (3.5) with ℓ = 3 has a solutions u1 positive
on ]a, η(a, p1)[, and u2 is a solution of equation (3.1) which satisfies the conditions

u
(i−1)
2 (η(a, p1)) = 0 (i = 1, 2, 3), u′′′

2 (η(a, p1)) < 0. (3.6)

Then u2 also satisfies the conditions (3.5) with ℓ = 1 and is positive in ]a, η(a, p1)[ . Indeed,
if

ρ(t) := u1(t)u
′′′
2 (t)− u2(t)u

′′′
1 (t)− [u′

1(t)u
′′
2(t)− u′

2(t)u
′′
1(t)],

due to (3.1) we have ρ′(t) ≡ 0, and thus ρ ≡ Const. Therefore by (3.5) and (3.6) we
get −u2(a)u

′′′
1 (a) = ρ(a) = ρ(η(a, p1)) = 0, and then u2(a) = 0, because it is clear that

u′′′
1 (a) ̸= 0. I.e., u2 is a nonzero solution of problem (3.1), (3.5) with ℓ = 1. If there exists

t0 ∈ ]a, η(a, p1)[ such that u2(t0) = 0, then due to conditions (3.6) we get η(t0, p1) ≤
η(a, p1), which contradicts with Lemma 2. Thus our assumption is invalid and u2 > 0 in
]a, η(a, p1)[ .

Analogously we get that if problem (3.1), (3.5) with ℓ = 1 has a positive in ]a, η(a, p1)[
solution u2, then problem (3.1), (3.5) with ℓ = 3 has also positive in ]a, η(a, p1)[ solution
u1. But from Lemma 3 it follows that one of the solutions u1 and u2 exists, and the proof
is finished.

Lemma 5. ([11], Lemma 2.10) Assume that the inequality (3.3) holds. Then for an arbi-
trary t0 ∈ R+

0 the equality τ(t0, p1) = η(t0, p1) holds.

Lemma 6. ([11], Lemma 1.16) Let p1(t) ≥ p2(t) ≥ 0 for t ∈ R+
0 . Then for an arbitrary

t0 ∈ R+
0 the inequality τ(t0, p1) ≤ τ(t0, p2) holds.

Lemma 7. ([13], Theorem 10.1) Let p1(t) ≤ p2(t) ≤ 0 for t ∈ R+
0 . Then for an

arbitrary t0 ∈ R+
0 the inequality η(t0, p1) ≤ η(t0, p2) holds.

The following proposition is the special case of the theorems proved for the more general
problems than (1.1), (1.2ℓ) ℓ = 1, 2, 3 (see [1], [2], [7]-[9], [13] ).
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Proposition 1. Let ℓ ∈ {1, 2, 3}. Then problem (1.5), (1.2ℓ) with (−1)4−ℓp < 0 has an
infinite sequence {λn}+∞

n=1 of real eigenvalues, where

0 < λ1 < λ2 < · · · < λn < · · · , lim
n→+∞

λn = +∞,

and to every eigenvalue λn there corresponds the essentially unique eigenfunction uλn with
exactly n− 1 zeroes in ]a, b[ .

Then we can prove the following.

Lemma 8. Let λ > 0, then the following assertions are equivalent:
A. λ4p ∈ D+(I) (λ

4p ∈ D−(I));
B. η(a, λ4p+) = b (η(a, λ4p−) = b);
C. λ is the first eigenvalue of problem (1.5), (1.22) ((1.5), (1.21) and (1.5), (1.23)).

Proof. Let λ4p ∈ D+(I), and note that then p ̸≡ 0.
From A. and Definitions 4, 5, it is clear that η(a, λ4p+) ≤ b ≤ τ(a, λ4p+), and then

from Lemma 5 condition B. follows. Also from B. by Lemma 3 with ℓ = 2 we obtain A.
Equivalency of A and C, and therefore of C and B, immediately follows from Proposition
1 with ℓ = 2.

Let now λ4p ∈ D−(I), and note that p ̸≡ 0.
If condition A. holds, then problem (1.1), (1.23) has a solution u0 positive in ]a, b[, and

therefore η(a, λ4p−) ≤ b. Assume that η(a, λ4p−) < b. Then due to Lemma 4 there exists
positive in ]a, η(a, λ4p−)[ solution u1 of problems (1.1), (3.5) with ℓ = 3, and we get the

contradiction that v = u1 − u′′′
1 (a)

u′′′
0 (a)u0 is a solution of equation (1.1) and v(i)(a) = 0 (i =

0, 1, 2, 3), v(η(a, λ4p−)) < 0. Therefore the condition B. holds. Also from B. by Lemma 3
with ℓ = 3 we obtain A. Equivalency of A. and C., and therefore of C. and B., immediately
follows from Proposition 1 with ℓ = 3, and Lemma 4.

4 Proof of the main results

Some lemmas from the previous section are formulated for the functions defined on R+
0 . For

this reason if in our proofs these lemmas are used, we extend the coefficients of equations
to R+

0 by the equalities (3.2).

Proof of Theorem 2. If p ≡ 0, then the validity of our theorem is trivial, therefore assume
that p ̸≡ 0.

Sufficiency. From condition (2.1) by Lemmas 5 and 6 (with p1 = p∗+, p2 = p+) we
obtain η(a, p+) ≥ η(a, p∗+), where due to the inclusion p∗ ∈ D+(I) by Lemma 8 we have
η(a, p∗+) = b, and therefore

η(a, p+) ≥ b. (4.1)

But the condition p∗ ∈ D+(I) implies, that the problem

u(4)(t) = p∗+(t)u(t) for t ∈ I, u(i)(a) = 0, u(i)(b) = 0 (i = 0, 1), (4.2)
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has a solution u positive in ]a, b[ . Also, if we assume that η(a, p+) = b, from Lemma 3 with
ℓ = 2, it follows that the problem

v(4)(t) = p+(t)v(t) for t ∈ I, v(i)(a) = 0, v(i)(b) = 0 (i = 0, 1), (4.3)

has a solution v positive in ]a, b[ . Now if we multiply equations (4.2) and (4.3) respectively
by v and −u, and integrate their sum from a to b, in view of (3.2) and boundary conditions

(4.2) and (4.3), by integration by parts we obtain equality
∫ b

a
(p∗(s)− p(s))u(s)v(s)ds = 0,

which contradicts condition (2.1). Thus our assumption is invalid and due to (4.1) we have

η(a, p+) > b. (4.4)

Now assume that equation (1.1) is oscillatory on I, i.e., it has a solution u with at
least four zeroes in [a, b]. Therefore if t0 ∈ [a, b[ is the first zero of u, it is clear that
η(t0, p+) ∈]t0, b], and then due to (4.4) we get η(t0, p+) < η(a, p+). Thus t0 ̸= a, and
then from Lemma 1 and Remark 8 it follows that η(t0, p+) > η(a, p+),, contradicting the
previous inequality. Therefore our assumption is invalid and equation (1.1) is disconjugate
on I.

Necessity. Let equation (1.1) be disconjugate on I. Due to Proposition 1, problem
(1.5), (1.22) has the first eigenvalue λ1 > 0, and from Lemma 8 with ℓ = 2 it follows that
p1 := λ4

1p ∈ D+(I), and
η(a, λ4

1p+) = b. (4.5)

Also from the disconjugacy of (1.1) on I it follows that λ1 ̸= 1 and η(a, p+) > b. Now
assume that λ1 < 1. Then from Lemmas 5, 6, we obtain η(a, λ4

1p+) ≥ η(a, p+) > b, which
contradicts (4.5). The obtained contradiction proves that λ1 > 1, and therefore condition
(2.1) holds, where p1 ∈ D+(I).

Proof of Corollary 1. Sufficiency. Let λ0 > 1, then p 4 λ4
0p, where due to Lemma 8 we

have λ4
0p ∈ D+(I), and from Theorem 2 we obtain the disconjugacy of equation (1.1) on I.

The proof of the necessity is analogous to the proof of the necessity of Theorem 2.

Proof of Theorem 3. Assume that equation (1.1) is not disconjugate on I. Then there exists
a solution u of equation (3.1) (with p1 = p+) which has at least four zeroes in [a, b], and
if a0 ∈ [a, b[ is the first zero of u, then b0 := η(a0, p+) ∈ ]a0, b]. Therefore due to Lemma
3, equation (3.1) (with p1 = p+) under the boundary conditions u(i)(a0) = 0, u(i)(b0) =
0 (i = 0, 1), has a solution u positive in ]a0, b0[ and p1(t) = p(t) on [a0, b0]. Therefore if
ω0 := b0 − a0 and

v(t) := u(tω0 + a0), h(t) := ω4
0p(tω0 + a0) for t ∈ [0, 1], (4.6)

there exists t0 ∈ ]0, 1[ such, that v(t0) = ||v||C , and then

1

||v||C

∫ 1

0

G(t0, s)h(s)v(s)ds = 1, (4.7)
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where

G(t, s) =
1

6

{
(1− t)2s2(3t− s− 2st) for 0 ≤ s ≤ t ≤ 1

(1− s)2t2(3s− t− 2st) for 0 ≤ t < s ≤ 1

is the Green’s functions of the problem u(4) = 0, u(i)(0) = u(i)(1) = 0 (i = 0, 1). Also it is
not difficult to verify that

0 ≤ G(t, s) ≤ 1

192
,

∫ 1

0

G(t, s)ds =
t2(1− t)2

24
≤ 1

384
for s, t ∈ [0, 1].

Consequently for an arbitrary M ∈ R+
0 we have the estimation

1 <

∫ 1

0

G(t0, s)h(s)ds ≤ M
ω4
0

384
+

ω4
0

192

∫ 1

0

[h(s)
ω4
0

−M
]
+
ds,

which contradicts (2.5), and therefore proves our theorem.

Proof of Theorem 4. If p ≡ 0, then the validity of our theorem is trivial, therefore assume
that p ̸≡ 0.

Sufficiency. From condition (2.6), by Lemma 7 (with p1 = p∗−, p2 = p−) we ob-
tain η(a, p−) ≥ η(a, p∗−), where due to the inclusion p∗ ∈ D−(I) by Lemma 8 we have
η(a, p∗−) = b, and therefore η(a, p−) ≥ b. Now if we assume that η(a, p−) = b, as in the
proof of Theorem 2 by Lemma 3 with ℓ = 1 (instead of ℓ = 2) we obtain that

η(a, p−) > b. (4.8)

Now assume that equation (1.1) is oscillatory on I, i.e., it has a solution u with at
least four zeroes in [a, b]. Therefore if t0 ∈ [a, b[ is the first zero of u, it is clear that
η(t0, p−) ∈ ]t0, b], and then due to (4.8) we get η(t0, p−) < η(a, p−). Thus t0 ̸= a, and
then from Lemma 2 it follows that η(t0, p−) > η(a, p−), which contradicts the previous
inequality. Therefore our assumption is invalid and equation (1.1) is disconjugate on I.

Necessity. Let equation (1.1) be disconjugate on I. Due to Proposition 1 problem (1.5),
(1.23) has the first eigenvalue λ1 > 0, and from Lemma 8 with ℓ = 3 it follows that
p1 := λ4

1p ∈ D−(I), and
η(a, λ4

1p−) = b. (4.9)

Also from the disconjugacy of (1.1) on I it follows that λ1 ̸= 1 and η(a, p−) > b. Now
assume that λ1 < 1. Then from Lemma 7, we obtain η(a, λ4

1p−) ≥ η(a, p−) > b, which
contradicts (4.9). The obtained contradiction proves that λ1 > 1, and therefore condition
(2.6) holds, where p1 ∈ D−(I).

Proof of Corollary 3. Sufficiency. Let λ0 > 1, then λ4
0p 4 p, where due to Proposition 1 we

have λ4
0p ∈ D−(I). Therefore from Theorem 4 it follows disconjugacy of equation (1.1) on

I. Proof of the necessity is analogous to the proof of the necessity of Theorem 4.
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Proof of Theorem 5. Assume that equation (1.1) is not disconjugate on I. Then there exists
a solution u of equation (3.1) (with p1 = p−), which has at least four zeroes in [a, b],
and if a0 ∈ [a, b[ is the first zero of u, then b0 := η(a0, p1) ∈ ]a0, b]. Therefore due to
Lemma 4, equation (3.1) (with p1 = p−), under the boundary conditions u(i)(a0) = 0 (i =
0, 1, 2), u(b0) = 0, has a solution u positive in ]a0, b0[ , and p1(t) = p(t) on [a0, b0].
Therefore if ω0 := b0 − a0, and if the functions v and h are defined by the equalities (4.6),
then there exists t0 ∈ ]0, 1[ for which v(t0) = ||v||C and then equality (4.7) holds where

G(t, s) = −1

6

{
t3(1− s)3 − (t− s)3 for 0 ≤ s ≤ t ≤ 1

t3(1− s)3 for 0 ≤ t < s ≤ 1

is the Green’s functions of the problem u(4) = 0, u(i)(0) = 0 (i = 0, 1, 2), u(1) = 0. It is not
difficult to verify that

− 1

110
< G(t, s) ≤ 0,

∫ 1

0

|G(t, s)|ds = t3(1− t)

24
≤ 9

2048
for s, t ∈ [0, 1],

and then for an arbitrary M ∈ R+
0 we have the estimation

1 <

∫ 1

0

|G(t0, s)|(−h(s))ds < M
9ω4

0

2048
+

ω4
0

110

∫ 1

0

[h(s)
ω4
0

+M
]
−
ds,

which contradicts (2.10) and therefore proves our theorem.

Proof of Theorem 6. Assume the contrary, i.e., that equation (1.1) has a solution u with at
least four zeroes in I. If a0 ∈ [a, b[ is the first zero of u, it is clear that b0 := η(a0, p) ∈ ]a0, b].
Therefore due to Lemma 3 there exists ℓ ∈ {1, 2, 3} such that the problem

u(4)(t) = [p(t)]+u(t)− [p(t)]−u(t) for t ∈ [a0, b0], (4.10)

u(i−1)(a0) = 0 (i = 1, ℓ), u(i−1)(b0) = 0 (i = 1, 4− ℓ), (4.11ℓ)

has a solution u positive on I0 := ]a0, b0[ . Also due to condition (2.11), from Theorems 2
and 4, we obtain that the equations

u(4)(t) = [p(t)]+u(t) for t ∈ I, (4.12)

u(4)(t) = −[p(t)]−u(t) for t ∈ I, (4.13)

are disconjugate on I, and therefore on [a0, b0] too. On the other hand, it follows from
Lemma 4.2 of [14] (see also Lemma 2.6 in [4]) that the Green’s functions G1ℓ and G2ℓ of
problems (4.12), (4.11ℓ) and (4.13), (4.11ℓ) respectively, satisfy the conditions

(−1)ℓG1ℓ(t, s) ≥ 0, (−1)ℓG2ℓ(t, s) ≥ 0 for t, s ∈ [a0, b0].

Then from (4.10), non-negativity of the functions [p]±, and positivity of u on I0, we have

(−1)ℓ+1u(t) =
∣∣∣ ∫ b0

a0

G1ℓ(t, s)[p(s)]−u(s)ds
∣∣∣, (−1)ℓu(t) =

∣∣∣ ∫ b0

a0

G2ℓ(t, s)[p(s)]+u(s)ds
∣∣∣,

on I0, which is a contradiction. Therefore our assumption is invalid and equation (1.1) is
diconjugate on I.
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