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Abstract

We introduce the Heron means and Pólya inequality for sector matrices and give
some inequalities involving them. For instance, we show that if A,B ∈ Sα are two
sector matrices and ν ∈ [0, 1], then

0 ≤ Fν(RA,RB) ≤ RFν(A,B) ≤ sec2 αFν(RA,RB)

and
cos3 α∥Hν(A,B)∥ ≤ ∥Fα(ν)(A,B)∥,

where α(ν) = 1 − 4(ν − ν2). We also present the following inequality for the Pólya
inequality ∥∥∥∥∫ 1

0

(A♯νB)dν

∥∥∥∥ ≤ sec3 α

∥∥∥∥23(A♯νB) +
1

3
A∇νB

∥∥∥∥ .
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1 Introduction

There are various combinations of means that interpolate between the geometric and the
arithmetic mean. The Heinz, Heron and logarithmic means are samples of such means
which are defined respectively as follows:

Hν(a, b) =
aνb1−ν + a1−νbν

2
,

Fν(a, b) = (1− ν)
√
ab+ ν

a+ b

2
,

L(a, b) =

∫ 1

0

aνb1−νdν,

0 ≤ ν ≤ 1. It is obvious that

√
ab ≤ Hν(a, b) ≤

a+ b

2
. (1.1)

The second inequality of (1.1) is known as the Heinz inequality for nonnegative real
numbers.
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Bhatia [3], proved that the Heinz and the Heron means satisfy the following inequality

Hν(a, b) ≤ Fα(ν)(a, b), (1.2)

where α(ν) = 1− 4
(
ν − ν2

)
.

Let Mn be the algebra of all n×n complex matrices. For Hermitian matrices A,B ∈ Mn,
we write that A > 0 if A is positive semidefinite, i.e. if ⟨Ax, x⟩ > 0 for all vectors x ∈ Cn.
We also write A > 0 if A is positive definite, i.e. if ⟨Ax, x⟩ > 0 for all vectors x ∈ Cn, and
A > B if A−B > 0.

A matrix A ∈ Mn is called accretive if in its Cartesian (or Toeplitz) decomposition,
A = Rz + iIz, Rz is positive definite, where

Rz =
A+A∗

2
, Iz =

A−A∗

2
.

The numerical range of a matrix A ∈ Mn is defined by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

A matrix A ∈ Mn is said to be sectorial if W (A) ⊆ Sα for some 0 ≤ α < π
2 , where Sα

denote the sector regions in the complex plane as follows:

Sα = {z ∈ C : Rz ≥ 0, |Iz| ≤ (Rz) tanα}.

Clearly, A is positive semidefinite if and only if W (A) ⊆ S0, and if W (A), W (B) ⊆ Sα for
some α ∈ [0, π

2 ), then W (A + B) ⊆ Sα. Moreover, W (A) ⊆ Sα implies W (X∗AX) ⊆ Sα

for any nonzero n × m matrix X; thus W (A−1) ⊆ Sα. The smallest such α is called the
sectorial index of A. When W (A) ⊆ Sα, we will write A ∈ Sα. The operator mean of two
accretive matrices A,B ∈ Mn have been defined by Bedrani et al., in [1] as follows

AσfB =

∫ 1

0

(A!B)dνf (s),

where A!B is the harmonic mean of A, B, the function f : (0,∞) −→ (0,∞) is an operator
monotone function with f(1) = 1 and νf is the probability measure characterizing σf .
Moreover, they also characterize the operator monotone function for an accretive matrix:
let A ∈ Sα and f : (0,∞) −→ (0,∞) be an operator monotone function with f(1) = 1.
Then

f(A) =

∫ 1

0

((1− s)I + sA−1)−1dνf (s),

where νf is probability measure satisfying

f(x) =

∫ 1

0

((1− s)I + sx−1)−1dνf (s).

Later, Raissouli et. al. [11] defined the following weighted geometric mean of two accretive
matrices A,B ∈ Mn,

A♯νB =
sin νπ

π

∫ 1

0

tν−1(A−1 + tB−1)−1 dt

t
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Recently, Mao et al [10] defined the Heinz mean for two sector matrices A,B ∈ Mn with
W (A),W (B) ⊆ Sα as follows

Hν(A,B) =
A♯νB +A♯1−νB

2

where ν ∈ [0, 1].
They derived the following inequalities regarding Heinz mean for sector matrices:

Hν(RA,RB) ≤ RHν(A,B) ≤ sec2 αHν(RA,RB) (1.3)

RH−1
ν (A,B) ≤ sec2 αRHν(A

−1, B−1). (1.4)

Yang and Lu [13] generalized the results in [10] and proved the following inequalities
hold for any unital positive linear map Φ.

RH−1
ν (Φ(A),Φ(B)) ≤ sec2 αRHν(Φ(A

−1),Φ(B−1)).

This paper is devoted to the study of the inequalities for the Heron means and Pólya
inequality for sector matrices. We show that if A,B ∈ Sα are two sector matrices and
ν ∈ [0, 1], then

∥Fα(ν)(A,B)∥ ≥ cos3 α∥Hν(A,B)∥,

where α(ν) = 1− 4(ν − ν2). We also show that the following inequality holds for the Pólya
inequality ∥∥∥∥∫ 1

0

(A♯νB)dν

∥∥∥∥ ≤ sec3 α

∥∥∥∥23(A♯νB) +
1

3
A∇νB

∥∥∥∥ .
2 Heron inequalities for sector matrices

Raissouli et al. in [11] showed that if A,B ∈ B(H) are accretive and ν ∈ [0, 1]. Then

RA♯νRB ≤ R(A♯νB) ≤ sec2 α((RA)♯ν(RB)). (2.1)

Lin [8] proved that if A ∈ Mn has a positive definite real part, then

R(A−1) ≤ R(A)−1 ≤ sec2 αR(A−1), (2.2)

and
det(RA) ≤ |detA| ≤ secn αdet(RA). (2.3)

The operator norm ∥A∥ of A ∈ Mn is defined by

∥A∥ = sup{⟨Ax, y⟩ : x.y ∈ Cn, ∥x∥ = ∥y∥ = 1}.

Recall that a norm ||| · ||| on Mn is unitarily invariant if |||UAV ||| = |||A||| for any A ∈ Mn

and for all unitary matrices U, V ∈ Mn.
Let A ∈ Mn. Then

λj(RA) ≤ σj(A) ≤ sec2 αλj(RA), j = 1, ..., n. (2.4)
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Consequently,
|||RA||| ≤ |||A||| ≤ sec α|||RA||| (2.5)

for any unitarily invariant norm ||| · ||| on B(H), see [5].
Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα and let ν ∈ [0, 1]. Liu and Wang [9]

showed that the following inequalities hold.

cos2 αR(A!B) ≤ R(A♯B) ≤ sec2 αR(A∇B) (2.6)

Let A,B ∈ Mn with W (A),W (B) ⊆ Sα. We define the Heron mean of sector matrices (in
particular, positive definite matrices) to be as follows:

Fν(A,B) = ν(A∇B) + (1− ν)A♯B

where ν ∈ [0, 1].
Zhao et al. in [14] gave an inequality for the Heinz-Heron means as follows:

Let A and B be two positive definite operators, then

Hν(A,B) ≤ Fα(ν)(A,B) (2.7)

for ν ∈ [0, 1], where α(ν) = 1− 4(ν − ν2).

Theorem 1. Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα and let ν ∈ [0, 1]. Then

(a) 0 ≤ Fν(RA,RB) ≤ RFν(A,B) ≤ sec2 αFν(RA,RB),

(b) 0 ≤ cos2ν αRA♯RB ≤ cos2ν αR(A♯B) ≤ RFν(A,B)

≤ sec2 α(1− ν sin2 α)R(A∇B)

Proof. (a) By (2.1) we have

RFν(A,B) = (1− ν)R(A♯B) + νR(A∇B)

≥ (1− ν)(R(A)♯R(B)) + ν(R(A)∇R(B))

= Fν(RA,RB),

and

R(Fν(A,B)) = (1− ν)R(A♯B) + νR(A∇B)

≤ (1− ν) sec2 α(RA♯RB) + ν(RA∇RB)

≤ sec2 αFν(RA,RB).

(b) By (2.6), we have

RFν(A,B) = (1− ν)R(A♯B) + νR(A∇B)

= R(A♯B)∇νR(A∇B)

≤ sec2 αR(A∇B)∇νR(A∇B)

= [(1− ν) sec2 α+ ν]R(A∇B),
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and by (2.6)

RFν(A,B) = (1− ν)R(A♯B) + νR(A∇B)

= R(A♯B)∇νR(A∇B)

≥ R(A♯B)♯νR(A∇B)

≥ R(A♯B)♯ν cos
2 αR(A♯B)

= cos2ν αR(A♯B).

Lemma 1. Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα and let ν ∈ (0, 1) and α(ν) =
1− 4(ν − ν2). Then

(a) RFα(ν)(A,B) ≥ cos2 αRHν(A,B) ≥ 0

(b) ∥Fα(ν)(A,B)∥ ≥ cos3 α∥Hν(A,B)∥.

Proof. By Theorem 1, (2.7) and (1.3), we get

RFα(ν)(A,B) ≥ Fα(ν)(RA,RB) ≥ Hν(RA,RB)

≥ cos2 αRHν(A,B) ≥ cos2 αHν(RA,RB) ≥ 0. (2.8)

Using (2.5) and (2.8), we obtain

∥Fα(ν)(A,B)∥ ≥ ∥RFα(ν)(A,B)∥ ≥ cos2 α∥RHν(A,B)∥
≥ cos3 α∥Hν(A,B)∥.

Theorem 2. Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα. Then we have

(a) |det(Fν(A,B))| ≤ sec3n α(1− ν sin2 α)n|detA∇B|,
(b) | det(A♯B) |≤ sec(2ν+1)n α | detFν(A,B) |
(c) |detHν(A,B)| ≤ sec3n α|detFα(ν)(A,B)|.

Proof. (a) By (2.3) and Theorem 1, we obtain

|det(Fν(A,B))| ≤ secn αdetRFν(A,B)

≤ secn α sec2n α(1− ν sin2 α)ndetR(A∇B)

≤ sec3n α(1− ν sin2 α)n|detA∇B|.

(b) By (2.3) and Theorem 1, we have

|det(A♯B)| ≤ secn α detR(A♯B) (by (2.3))

≤ secn α sec2νn α detRFν(A,B) (by Theorem 1)

≤ sec(2ν+1)n α|detFν(A,B)|. (by (2.3))
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(c) By (2.3), Lemma 1 and again (2.3), we get

|detHν(A,B)| ≤ secn α det(RHν(A,B)) ≤ secn α sec2n α det(RFα(ν)(A,B))

≤ sec3n α |det(Fα(ν)(A,B))|.

Theorem 3. Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα and let ν ∈ (0, 1). Then

cos2 αR−1(Fν(A,B)) ≤ R(F−1
ν (A,B)) ≤ sec2 αRFν(A

−1, B−1).

Proof. By (2.2), Theorem 1 and operator convexity of the inverse function f(t) = t−1 on
positive real numbers, we deduce

cos2 αR−1(Fν(A,B))

≤ R(F−1
ν (A,B)) (by (2.2))

≤ (RFν(A,B))−1 (by (2.2))

≤ (Fν(RA,RB))−1 (by Theorem 1)

= (ν(RA∇RB) + (1− ν)(RA♯RB))−1

≤ ν(RA∇RB)−1 + (1− ν)(RA♯RB)−1 (by operator convexity)

≤ ν(R−1A∇R−1B) + (1− ν)(R−1A♯R−1B) (by operator convexity)

≤ sec2 α[ν(RA−1∇RB−1) + (1− ν)(RA−1♯RB−1)] (by (2.2))

= sec2 αFν(RA−1,RB−1)

≤ sec2 αRFν(A
−1, B−1). (by Theorem 1)

3 Numerical range of sector matrices

The numerical radius ω(A) of A ∈ Mn is defined by

ω(A) = sup{⟨Ax, x⟩ : x ∈ Cn, ∥x∥ = 1}.

Kittaneh et al. [7] proved that

ω(RA) ≤ ω(A) ≤ sec2 αω(RA). (3.1)

Bedrani et al. [2] showed that if A,B ∈ Sα and ν ∈ [0, 1], then

cos3 αω−1(A) ≤ ω(A−1), (3.2)

cos α ∥ A ∥≤ ω(A) ≤∥ A ∥, (3.3)
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and
ω(A♯νB) ≤ sec3 αω1−ν(A)ων(B). (3.4)

Weyl’s monotonicity theorem [4, p. 63] implies that if 0 ≤ A ≤ B, then

λj(A) ≤ λj(B) for all 1 ≤ j ≤ n. (3.5)

Theorem 4. Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα and ν ∈ (0, 1). Then

a) σj(Fν(A,B)) ≤ sec4 α(1− ν sin2 α)σj(A∇B),

b) σj(A♯B) ≤ sec2ν+2 ασj(Fν(A,B)).

Proof. a) By (2.4), Theorem 1 and (3.5), we obtain

σj(Fν(A,B)) ≤ sec2 αλj(RFν(A,B)) (by (2.4))

≤ sec2 α sec2 α(1− ν sin2 α)λj(R(A∇B)) (by Theorem 1 and (3.5))

= sec4 α(1− ν sin2 α)λj(R(A∇B))

≤ sec4 α(1− ν sin2 α)σj(A∇B). (by (2.4))

b) By (2.4) and Theorem 1 and (3.5), we have

σj(A♯B) ≤ sec2 αλj(R(A♯B)) (by (2.4))

≤ sec2 α sec2ν αλj(RFν(A,B)) (by Theorem 1 and (3.5))

≤ sec2ν+2 ασj(Fν(A,B)). (by (2.4))

Theorem 5. Let A,B ∈ Mn be such that W (A),W (B) ⊆ Sα and let ν ∈ (0, 1). Then for
any unitarily invariant norm ∥ · ∥, the following inequalities hold

cos2ν+1 α ∥ A♯B ∥≤∥ Fν(A,B) ∥≤ sec3 α(1− ν sin2 α) ∥ A∇B ∥ .

Proof. By (2.5) and Theorem 1, we get

∥ Fν(A,B) ∥ ≤ sec α ∥ RFν(A,B) ∥ (by (2.5))

≤ secα sec2 α(1− ν sin2 α) ∥ R(A∇B) ∥ (by Theorem 1)

≤ sec3 α(1− ν sin2 α) ∥ A∇B ∥, (by (2.5))

and

∥ A♯B ∥ ≤ sec α ∥ R(A♯B) ∥ (by (2.5))

≤ sec2ν+1 α ∥ R(Fν(A,B)) ∥ (by Theorem 1)

≤ sec2ν+1 α ∥ Fν(A,B) ∥ . (by (2.5))
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Theorem 6. Let A,B ∈ Sα. Then, for ν ∈ (0, 1),

cos2ν+2 αω(A♯B) ≤ ω(Fν(A,B)) ≤ sec4 α(1− ν sin2 α)ω(A∇B).

Proof. By Theorem 5 and (3.3) we have

ω(A♯B) ≤∥ A♯B ∥
≤ sec2ν+1 α ∥ Fν(A,B) ∥
≤ sec2ν+2 αω(Fν(A,B)),

and

ω(Fν(A,B)) ≤∥ Fν(A,B) ∥

≤ sec3 α(1− ν sin2 α) ∥ A+B

2
∥

= sec4 α(1− ν sin2 α)ω(A∇B).

Remark 1. Let A,B ∈ Sα and ν ∈ (0, 1), then by (1.4) and (3.1) we have

(a) ω(H−1
ν (A,B)) ≤ sec2 α ω(RH−1

ν (A,B))

≤ sec4 α ω(RHν(A
−1, B−1))

≤ sec4 α ω(Hν(A
−1, B−1)),

and by Theorem 3 and (3.1) we have

(b) ω(F−1
ν (A,B)) ≤ sec2 α ω(RF−1

ν (A,B))

≤ sec4 α ω(RFν(A
−1, B−1))

≤ sec4 α ω(Fν(A
−1, B−1)).

By (3.2) and (3.4) we obtain

(c) ω−1(Hν(A,B)) ≤ sec3 αω(H−1
ν (A,B))

= sec3 αω

(
A♯νB +A♯1−νB

2

)−1

≤ sec3 αω

(
(A♯νB)−1 + (A♯1−νB)−1

2

)
= sec3 αω

(
A−1♯νB

−1 +A−1♯1−νB
−1

2

)
= sec3 αω(Hν(A

−1, B−1))
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and

(d) ω−1(Fν(A,B)) ≤ sec3 αω(F−1
ν (A,B))

= sec3 αω((1− ν)A♯B + νA∇B)−1

≤ sec3 αω((1− ν)(A♯B)−1 + ν(A∇B)−1)

= sec3 αω((1− ν)(A−1♯B−1) + ν(A∇B)−1)

≤ sec3 αω((1− ν)(A−1♯B−1) + ν(A−1∇B−1))

= sec3 αω(Fν(A
−1, B−1)).

4 The Pólya inequality for sector matrices

The classical Pólya inequality asserts that if a, b ≥ 0, then∫ 1

0

aνb1−νdν ≤ 1

3

(
2
√
ab+

a+ b

2

)
. (4.1)

Zou [15], obtained a matrix version of (4.1) for all positive definite matrices A,B ∈ Mn,
as follows: ∫ 1

0

A♯νBdν ≤ 1

3
(2A♯B +A∇B) . (4.2)

Meanwhile, this author also presented the following norm inequality of Pólya type for
matrices: ∥∥∥∥∫ 1

0

AνXB1−νdν

∥∥∥∥
2

≤ 1

3

∥∥∥∥2A1/2XB1/2 +
AX +XB

2

∥∥∥∥
2

, (4.3)

where A,B,X ∈ Mn such that A and B are positive semidefinite.

Theorem 7. Let A,B ∈ Sα. Then, for ν ∈ [0, 1],∥∥∥∥∫ 1

0

(A♯νB)dν

∥∥∥∥ ≤ sec3 α

∥∥∥∥23(A♯νB) +
1

3
A∇νB

∥∥∥∥ .
Proof. By Lemma 1 of [6], we have (

∫ 1

0
(A♯νB)dν)∗ =

∫ 1

0
(A♯νB)∗dν.

ThereforeR
∫ 1

0
(A♯νB)dν =

∫ 1

0
R(A♯νB)dν. By Theorem 3 of [12],

0 ≤
∫ 1

0

(RA♯νRB)dν ≤ R
∫ 1

0

(A♯νB)dν =

∫ 1

0

R(A♯νB)dν

≤ sec2 α

∫ 1

0

(RA♯νRB)dν

≤ sec2 α

(
2

3
RA♯νRB +

1

3
RA∇νRB

)
≤ sec2 αR

(
2

3
(A♯νB) +

1

3
A∇νB

)
. (4.4)
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Using (2.5) and (4.4), we get∥∥∥∥∫ 1

0

(A♯νB)dν

∥∥∥∥ ≤ sec α

∥∥∥∥R ∫ 1

0

(A♯νB)dν

∥∥∥∥
≤ sec3 α

∥∥∥∥R(
2

3
(A♯νB) +

1

3
A∇νB

)∥∥∥∥
≤ sec3 α

∥∥∥∥23(A♯νB) +
1

3
A∇νB

∥∥∥∥ .
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