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Abstract

An (n×n) matrix A = (aij) is called a Toeplitz matrix if it has constant values along
all diagonals parallel to the main diagonal. A directed Toeplitz graph is a digraph with
Toeplitz adjacency matrix. In this paper, we obtain new results and improve existing
results on hamiltonicity of directed Toeplitz graph Tn⟨1, 3, 4; t⟩.

Key Words: Adjacency matrix, Toeplitz matrix, Toeplitz graph, Hamiltonian
graph, increasing and decreasing edge, length of an edge.
2010 Mathematics Subject Classification: Primary 05C20; Secondary 05C45.

1 Introduction

We use [18] for basic terminology and notation not defined here. We consider finite,
directed and simple graphs.

A Toeplitz matrix is a square matrix having constant values along all diagonals parallel
to the main diagonal. A directed Toeplitz graph Tn⟨s1, . . . , sk; t1, . . . , tl⟩ of order n is a
digraph with Toeplitz adjacency matrix of order n. The edges of directed Toeplitz graph
Tn⟨s1, s2, . . . , sk; t1, t2, . . . , tl⟩ are of two types: increasing edges (u, v), for which u < v, and
decreasing edges (u, v), where u > v. In the directed Toeplitz graph Tn⟨s1, . . . , sk; t1, . . . , tl⟩,
the edge (i, j) occurs if and only if j−i = sp or i−j = tq for some integers p and q (1 ≤ p ≤ k
and 1 ≤ q ≤ l). Note that any increasing edge has length sp for some p, and any decreasing
edge has length tq for some q, and that Tn⟨s1, . . . , sk; t1, . . . , tl⟩ and Tn⟨t1, . . . , tl; s1, . . . , sk⟩
are obtained from each other by reversing the orientation of all edges. We define the length
of an edge (u, v) to be |u− v|.

Suppose that H is a hamiltonian cycle in Tn⟨s1, s2, . . . , sk; t1, t2, . . . , tl⟩. The hamilto-
nian cycle H is determined by two paths H1→n (from 1 to n) and Hn→1 (from n to 1),
i.e., H = H1→n ∪Hn→1. Then for every vertex v in H, we have d−(v) = 1 = d+(v). The
vertices which are not covered by Hn→1 would be covered by H1→n.

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connec-
tivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric
dimension have been studied in [1-5, 7-15, 17]. Hamiltonian properties of Toeplitz graphs
were first investigated by R. van Dal et al. in [6] and then studied in [12, 16, 24], while the
hamiltonicity in directed Toeplitz graphs was first studied by S. Malik and A.M. Qureshi
in [18], then by S. Malik and T. Zamfirescu in [21] and by S. Malik in [19, 20, 22, 23].

In [20], the hamiltonicity of the Toeplitz graphs G = Tn⟨1, 3, 4; t⟩ was investigated, where
it was shown the following. For t = 2, G is hamiltonian for n ∈ {5, 7} and all n ∼= 0, 3, 4
(mod 6); for t = 3, G is hamiltonian for n ∈ {5, 6, 7, 9}; for t = 4, G is hamiltonian for
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n ∈ {5, 7, 8,9, 11, 14, 15, 17, 18, 20, 21} and all n ≥ 23; for t = 5, G is hamiltonian for all
n if and only if n ̸= 7; for t ∈ {6, 7}, G is hamiltonian for all n; for t = 8, G is hamiltonian
for all n if and only if n ̸= 14; for t = 9, G is hamiltonian for all n different from 15; for
all t ≥ 10, G is hamiltonian for all n. It was also shown that T6⟨1, 3, 4; 4⟩ and T10⟨1, 3, 4; 4⟩
are non-hamiltonian.

Here in this paper, we improve upon [20] by adding some positive and negative results,
and addressing some conjectures on hamiltonicity of Tn⟨1, 3, 4; t⟩. For t = 2, we show that
Tn⟨1, 3, 4; t⟩ is hamiltonian for n ∼= 1, 5 (mod 6), and is not hamiltonian for n ∼= 2 (mod
6). For t = 4, we show that Tn⟨1, 3, 4; t⟩ is hamiltonian for n ∈ {13, 16, 19, 22}, and is not
hamiltonian for n = 12. For t = 9, we show that T15⟨1, 3, 4; t⟩ is hamiltonian. The paper
concludes with a conjecture which completes the hamiltonicity investigation in directed
Toeplitz graphs Tn⟨1, 3, 4; t⟩.

2 Toeplitz graphs Tn⟨1, 3, 4; t⟩ with t = 2

Remark 1: Since Tn⟨1, 3, 4; 2⟩ can use increasing edges of length 4 and decreasing edges
of length 2, for any vertex a in Tn⟨1, 3, 4; 2⟩, there exists a path, say N(a), from a to a+ 6
containing all the vertices of the same parity as a, such that N(a) = (a, a+4, a+2, a+6),
see Fig. 1. We define two such consecutive paths N(a) from a, namely N(a) ∪ N(a + 6),
such that N(a)∪N(a+ 6) = (a, a+ 4, a+ 2, a+ 6, a+ 10, a+ 8, a+ 12), which contains all
vertices between a and a+ 12 of the same parity as a, see Fig. 2 for an illustration.
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a+6

Figure 1: The path N(a) = (a, a+ 4, a+ 2, a+ 6) in Tn⟨1, 3, 4; 2⟩
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Figure 2: Two path N(a) ∪ N(a + 6) = (a, a + 4, a + 2, a + 6, a + 10, a + 8, a + 12) in
Tn⟨1, 3, 4; 2⟩

The following lemma will be applied in the proof of Theorem 2.

Lemma 1. Let a < b ≤ n. In Tn⟨1, 3, 4; 2⟩, the maximum number of consecutive paths
N(a) between a and b is ⌊ b−a

6 ⌋, and the last vertex of this path is a+ ⌊ b−a
6 ⌋ 6

Proof. Since six successive vertices are required to construct one path N(a), the maxi-
mum number of such consecutive paths between a and b in Tn⟨1, 3, 4; 2⟩ is equal to ⌊ b−a

6 ⌋,
that is, N(a) ∪N(a+ 6) ∪ . . . ∪N(a+ (⌊ b−a

6 ⌋ − 1)6). Clearly, the last vertex in this path

is a+ (⌊ b−a
6 ⌋ − 1)6 + 6 = a+ ⌊ b−a

6 ⌋6.
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Theorem 1. [20] Tn⟨1, 3, 4; 2⟩ is hamiltonian for n ∈ {5, 7} and n ∼= 0, 3, 4 (mod 6).

In Theorem 1, it was shown that Tn⟨1, 3, 4; 2⟩ is hamiltonian for n ∼= 0, 3, 4 (mod 6)
and n ∈ {5, 7}. In [20], it was stated as conjecture that Tn⟨1, 3, 4; 2⟩ is non-hamiltonian for
all n ∼= 1, 2, 5 (mod 6) such that n /∈ {5, 7}. Here we show that Tn⟨1, 3, 4; 2⟩ is hamiltonian
for all n ∼= 1, 5 (mod 6), and that Tn⟨1, 3, 4; 2⟩ is non-hamiltonian for all n ∼= 2 (mod 6).
Thus we can refine Theorem 1 as follows:

Theorem 2. Tn⟨1, 3, 4; 2⟩ is hamiltonian if and only if n � 2 (mod 6)

Proof. Claim. Tn⟨1, 3, 4; 2⟩ is hamiltonian for all n ∼= 1, 5 (mod 6).
For n ∈ {5, 7}, Tn⟨1, 3, 4; 2⟩ has a hamiltonian cycle containing the edge (n − 3, n).

Indeed T5⟨1, 3, 4; 2⟩ has a hamiltonian cycle (1, 4, 2, 5, 3, 1) containing the edge (2, 5),
see Fig. 3a, and T7⟨1, 3, 4; 2⟩ has a hamiltonian cycle (1, 2, 6, 4, 7, 5, 3, 1) containing the
edge (4, 7), see Fig. 3b. Starting from n ∈ {5, 7}, we can extend a hamiltonian cycle

1 2 3 4 5

1 2 3 4 5 6 7

(a)

(b)

Figure 3: A hamiltonian cycle in (a) T5⟨1, 3, 4; 2⟩, and (b) T7⟨1, 3, 4; 2⟩

in Tn⟨1, 3, 4; 2⟩ containing the edge (n − 3, n) to a hamiltonian cycle in Tn+6⟨1, 3, 4; 2⟩
with the same property by replacing the edge (n − 3, n) with the path (n − 3, n + 1, n +
5, n+ 3, n+ 6, n + 4, n + 2, n). See Fig. 4 for an illustration. Since the vertices 7 and

1 2 3 4 5 6 7 8 9 10 11 12 7+6=131 2 3 4 5 6 7

Figure 4: Transformation of a hamiltonian cycle in T7⟨1, 3, 4; 2⟩ to that in T13⟨1, 3, 4; 2⟩

5 are representative in class 1 and 5 modulo 6, respectively, it follows that Tn⟨1, 3, 4; 2⟩ is
hamiltonian for all n ∼= 1, 5 (mod 6).

By Theorem 1, Tn⟨1, 3, 4; 2⟩ is hamiltonian for all n ∼= 0, 3, 4 (mod 6). This together
with the above claim shows that Tn⟨1, 3, 4; 2⟩ is hamiltonian for all n � 2 (mod 6).

Conversely, we need to show that Tn⟨1, 3, 4; 2⟩ is not hamiltonian for all n ∼= 2 (mod 6).
Assume, to the contrary, that Tn⟨1, 3, 4; 2⟩ is hamiltonian for n ∼= 2 (mod 6), and let H be a
hamiltonian cycle in Tn⟨1, 3, 4; 2⟩. Thus H = H1→n∪Hn→1. The path Hn→1 can not cover
more than 3 successive vertices (except (1, 2, 3, 4) or (n− 3, n− 2, n− 1, n)), for otherwise
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H1→n would not be able to cover rest of the vertices as H1→n can not use increasing edge
of length greater than 4. Since Tn⟨1, 3, 4; 2⟩ has decreasing edges of length 2 only and that
n is even (as n ∼= 2 (mod 6)), two possibilities exist for Hn→1.

Case 1: Hn→1 = (n, n− 2, . . . , 2, 3, 1)

n-4 n-3

. . .

51 2 3 4 nn-1n-2

Figure 5: Hn→1 = (n, n− 2, . . . , 2, 3, 1) in Tn⟨1, 3, 4; 2⟩

Since Hn→1 covers all the even vertices only, between n and 4, H1→n has to cover all
the odd vertices between 5 and n. Thus H1→n has to use consecutive paths as described
in Remark 1. By Lemma 1, the longest such path in H1→n from vertex 5 is N(5) ∪N(5 +
6) ∪ . . . ∪ N(5 + (⌊n−5

6 ⌋ − 1)6), and the last vertex of this path is 5 + ⌊n−5
6 ⌋ 6 which is

n− 3, because 5 + ⌊n−5
6 ⌋6 = 5+ ⌊n−2−3

6 ⌋6 = 5+ (⌊n−2
6 ⌋+ ⌊−1

2 ⌋)6 = 5 + (⌊n−2
6 ⌋ − ⌈ 1

2⌉)6 =
5+⌊n−2

6 ⌋6−6 = n−3 (since n ∼= 2 (mod 6), ⌊n−2
6 ⌋ = n−2

6 ). Since there is no path Pn−3→n

in H1→n, H1→n terminates at n− 3. This is a contradiction.
Case 2: Hn→1 = (n, n− 2, n− 1, n− 3, n− 5, . . . , 1).

5 n-5 n-4 n-3 n-2 n-1 n1 2 3 4

. . .

Figure 6: Hn→1 = (n, n− 2, n− 1, n− 3, n− 5, . . . , 1) in Tn⟨1, 3, 4; 2⟩

Consider (1, 2) ∈ E(H1→n). Since last four vertices have already been visited by Hn→1,
by Lemma 1, the longest path in H1→n between 2 and n − 4 is N(2) ∪ N(2 + 6) ∪ . . . ∪
N(2 + (⌊n−6

6 ⌋ − 1)6) and the last vertex of this path is 2 + ⌊n−6
6 ⌋6 which is n− 6, because

2+⌊n−6
6 ⌋6 = 2+⌊n−2−4

6 ⌋6 = 2+⌊n−2
6 ⌋6+⌊−4

6 ⌋6 = 2+⌊n−2
6 ⌋6−⌈ 2

3⌉6 = 2+⌊n−2
6 ⌋6−6 = n−6

(since n ∼= 2 (mod 6), ⌊n−2
6 ⌋ = n−2

6 ). Since there is no path Pn−6→n in H1→n, H1→n

terminates at vertex n− 6. This is a contradiction.
Consider (1, 4) ∈ E(H1→n). Then (4, 2), (2, 6) ∈ E(H1→n), for otherwise vertex 2 would

be missed. By Lemma 1, the longest path in H1→n between 6 and n − 4 is N(6) ∪N(6 +
6) ∪ . . . ∪ N(6 + (⌊n−10

6 ⌋ − 1)6), and the last vertex of this path is 6 + ⌊n−10
6 ⌋6 which is

n− 8, because 6 + ⌊n−10
6 ⌋6 = 6 + ⌊n−2−8

6 ⌋6 = 6 + ⌊n−2
6 ⌋6 + ⌊−8

6 ⌋6 = 6 + ⌊n−2
6 ⌋6− ⌈ 4

3⌉6 =
6+ ⌊n−2

6 ⌋6−12 = n−8 (since n ∼= 2 mod 6, ⌊n−2
6 ⌋ = n−2

6 ). Since there is no path Pn−8→n

in H1→n, H1→n terminates at vertex n− 8. This is a contradiction.
This completes the proof.

3 Toeplitz graphs Tn⟨1, 3, 4; t⟩ with t = 4

Theorem 3. [20] Tn⟨1, 3, 4; 4⟩ is hamiltonian for n ∈ {5, 7, 8, 9, 11, 14, 15, 17, 18, 20,
21} and all n ≥ 23.

Theorem 4. [20] T6⟨1, 3, 4; 4⟩ is non-hamiltonian.
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Theorem 5. [20] T10⟨1, 3, 4; 4⟩ is non-hamiltonian.

In [20], it was shown that Tn⟨1, 3, 4; 4⟩ is hamiltonian for n ∈ {5, 7, 8, 9, 11, 14,
15, 17, 18, 20, 21} and all n ≥ 23. Furthermore it was shown that T6⟨1, 3, 4; 4⟩ and
T10⟨1, 3, 4; 4⟩ are non-hamiltonian, and a conjecture was stated, that is, Tn⟨1, 3, 4; 4⟩ is non-
hamiltonian for n ∈ {12, 13, 16, 19, 22}. Here we show that Tn⟨1, 3, 4; 4⟩ is hamiltonian for
n ∈ {13, 16, 19, 22}. We also show that T12⟨1, 3, 4; 4⟩ is non-hamiltonian. Thus we can refine
Theorem 3-5 as follows:

Theorem 6. Tn⟨1, 3, 4; 4⟩ is hamiltonian if and only if n /∈ {6, 10, 12}
Proof. Claim 1. For n ∈ {13, 16, 19, 22}, Tn⟨1, 3, 4; 4⟩ is hamiltonian.
In Fig. 7, we display a hamiltonian cycle (1, 2, 6, 10, 11, 7, 3, 4, 8, 12, 13, 9, 5, 1) in

T13⟨1, 3, 4; 4⟩. In Fig. 8, we display a hamiltonian cycle (1, 2, 3, 4, 7, 8, 11, 15, 16, 12, 13, 14, 10,
6, 9, 5, 1) in T16⟨1, 3, 4; 4⟩. In Fig. 9, we display a hamiltonian cycle (1, 2, 3, 6, 7, 10, 11, 14, 18,
19, 15, 16, 17, 13, 9, 12, 8, 4, 5, 1) in T19⟨1, 3, 4; 4⟩. In Fig. 10, we display a hamiltonian cycle
(1, 2, 3, 6, 9, 10, 13, 14, 17, 21, 22, 18, 19, 20, 16, 12, 15, 11, 7, 8, 4, 5, 1) in T22⟨1, 3, 4; 4⟩.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 7: A hamiltonian cycle in T13⟨1, 3, 4; 4⟩

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8: A hamiltonian cycle in T16⟨1, 3, 4; 4⟩

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 191 2 3

Figure 9: A hamiltonian cycle in T19⟨1, 3, 4; 4⟩

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 224 5 61 2 3

Figure 10: A hamiltonian cycle in T22⟨1, 3, 4; 4⟩

By Theorem 3, Tn⟨1, 3, 4; 4⟩ is hamiltonian for n ∈ {5, 7, 8, 9, 11, 14, 15, 17, 18, 20,
21} and all n ≥ 23. This together with Claim 1 shows that Tn⟨1, 3, 4; 4⟩ is hamiltonian for
n /∈ {6, 10, 12}.

Conversely, we show that Tn⟨1, 3, 4; 4⟩ is not hamiltonian for n ∈ {6, 10, 12}.
Claim 2. T12⟨1, 3, 4; 4⟩ is non-hamiltonian.

Assume, to the contrary, that T12⟨1, 3, 4; 4⟩ is hamiltonian. Let H = H1→12 ∪H12→1 be
a hamiltonian cycle in T12⟨1, 3, 4; 4⟩. Let V (H12→1\{1, 12}) = V1∪V2∪ · · ·∪Vk, where each
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Vi, i ∈ {1, 2, . . . , k}, is a disjoint set of successive vertices. But then order of each Vi should
not be greater than 3 because H1→12 has no edge of length greater than 3. Thus | Vi |≤ 3.
Let A be the set of all decreasing edges in T12⟨1, 3, 4; 4⟩. Since the decreasing edges are of
length 4 only, A = {(12, 8), (11, 7), (10, 6), (9, 5), (8, 4), (7, 3), (6, 2), (5, 1)}, and |A| = 8.
Let B be the set of all decreasing edges in H12→1. Since B ⊆ A and d−(1) = d+(12) = 1,
(12, 8), (5, 1) ∈ B. Since H12→1 can not have only these two edges as its decreasing edges,
for otherwise H12→1 terminates at vertex 8, 3 ≤ |B| ≤ 8. Six cases arise as per number of
decreasing edges in H12→1 (other than (12, 8) and (5, 1)).

Case 1. If |B| = 3. Since (12, 8), (5, 1) ∈ B, six subcases arise:
(i) Let (11, 7) ∈ B. Then H12→1 = (12, 8) ∪ P8→11 ∪ (11, 7) ∪ P7→5 ∪ (5, 1), and P8→11 =
(8, 11). Since there is no path P7→5 in H12→1, H12→1 terminates at vertex 7.
(ii) Let (10, 6) ∈ B. Then H12→1 = (12, 8) ∪ P8→10 ∪ (10, 6) ∪ P6→5 ∪ (5, 1), and P8→10 =
(8, 9, 10). Since there is no path P6→5 in H12→1, H12→1 terminates at vertex 6.
(iii) Let (7, 3) ∈ B. ThenH12→1 = (12, 8)∪P8→7∪(7, 3)∪P3→5∪(5, 1), and P3→5 = (3, 4, 5).
Since there is no path P8→7 in H12→1, H12→1 terminates at vertex 8.
(iv) Let (6, 2) ∈ B. Then H12→1 = (12, 8) ∪ P8→6 ∪ (6, 2) ∪ P2→5 ∪ (5, 1). Since there is no
path P8→6 in H12→1, H12→1 terminates at vertex 8.
(v) Let (9, 5) ∈ B. Then H12→1 = (12, 8) ∪ P8→9 ∪ (9, 5) ∪ (5, 1), and P8→9 = (8, 9). Thus
H12→1 = (12, 8, 9, 5, 1). But then, by considering all the following possible cases, we see
that there is no path H1→12:

Consider (1, 2), (2, 3), (3, 4) ∈ E(H1→12). If (4, 7), (7, 10), (10, 11) ∈ E(H1→12), but then
H1→12 terminates at vertex 11, for otherwise vertex 6 would be missed. If (4, 7), (7, 10),
(10, 6) ∈ E(H1→12), then H1→12 terminates at vertex 6. If (4, 7), (7, 11) ∈ E(H1→12), then
H1→12 terminates at vertex 11, for otherwise vertices 6 and 10 would be missed.

Consider (1, 2), (2, 3) ∈ E(H1→12). If (3, 6), (6, 10), (10, 7) ∈ E(H1→12) or (3, 6), (6, 10),
(10, 11), (11, 7) ∈ E(H1→12), but thenH1→12 terminates at vertex 7. If (3, 6), (6, 7), (7, 11) ∈
E(H1→12), or (3, 7), (7, 10), (10, 11) ∈ E(H1→12), or (3, 7), (7, 11) ∈ E(H1→12), then H1→12

terminates at vertex 11. If (3, 7), (7, 10), (10, 6) ∈ E(H1→12) but then H1→12 terminates at
vertex 6.

Consider (1, 2) ∈ E(H1→12). If (2, 6), (6, 10), (10, 11), (11, 7), (7, 3), (3, 4) ∈ E(H1→12),
then H1→12 terminates at vertex 4. If (2, 6), (6, 7), (7, 10), (10, 11)) ∈ E(H1→12), or (2, 6),
(6, 7), (7, 11) ∈ E(H1→12), then H1→12 terminates at vertex 11.

Consider (1, 4) ∈ E(H1→12). If (4, 7), (7, 10), (10, 11) ∈ E(H1→12), or (4, 7), (7, 11) ∈
E(H1→12), thenH1→12 terminates at vertex 11, for otherwise some vertices would be missed.
If (4, 7), (7, 10), (10, 6), (6, 2), (2, 3) ∈ E(H1→12), then H1→12 terminates at vertex 3.
(vi) Let (8, 4) ∈ B. Then E(H12→1) = (12, 8) ∪ (8, 4) ∪ P4→5 ∪ (5, 1). Since the only
possibility for the path P4→5 in H12→1 is P4→5 = (4, 5), H12→1 = (12, 8, 4, 5, 1). But then,
by considering all the following possible cases, we see that there is no path H1→12:

Consider (1, 2), (2, 3) ∈ E(H1→12). If (3, 6), (6, 7), (7, 10) ∈ E(H1→12), but then H1→12

terminates at vertex 10, for otherwise vertex 9 would be missed. If (3, 6), (6, 7), (7, 11)
∈ E(H1→12), or (3, 7), (7, 10), (10, 11) ∈ E(H1→12), or (3, 6), (7, 11) ∈ E(H1→12), then
H1→12 terminates at vertex 11. If (3, 6), (6, 10), (10, 11), (11, 7) ∈ E(H1→12), or (3, 6), (6, 9),
(9, 10), (10, 11), (11, 7) ∈ E(H1→12), then H1→12 terminates at vertex 7. If (3, 7), (7, 10),
(10, 6), (6, 9) ∈ E(H1→12) but then H1→12 terminates at vertex 9.

Consider (1, 2), (2, 6) ∈ E(H1→12). If (6, 10), (10, 11), (11, 7), (7, 3) ∈ E(H1→12), or
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(6, 9), (9, 10), (10, 11), (11, 7), (7, 3) ∈ E(H1→12), then H1→12 terminates at vertex 3.

Case 2. If |B| = 4. Since (12, 8), (5, 1) ∈ B, then C2
6 = 15 subcases arise:

(i) {(6, 2), (7, 3)}, (ii) {(6, 2), (11, 7)}, (iii) {(10, 6), (7, 3)}, (iv) {(10, 6), (11, 7)}. Since, for
subcases (i)-(iv), there exists Vi ∈ V (H12→1 \ {1, 12}) such that | Vi |> 3, this is a contra-
diction.
(v) {(11, 7), (9, 5)} ⊂ B. Then H12→1 = (12, 8) ∪ P8→11 ∪ (11, 7) ∪ P7→9 ∪ (9, 5) ∪ (5, 1),
and P8→11 = (8, 11). Since there is no path P7→9 in H12→1, H12→1 terminates at vertex 7.
(vi) Let {(11, 7), (8, 4)} ⊂ B. Then H12→1 = (12, 8)∪ (8, 4)∪P4→11∪ (11, 7)∪P7→5∪ (5, 1).
Since there is no paths P4→11 in H12→1, H12→1 terminates at vertex 4.
(vii) Let {(11, 7), (7, 3)} ⊂ B. Then H12→1 = (12, 8)∪P8→11∪(11, 7)∪(7, 3)∪P3→5∪(5, 1),
P8→11 = (8, 11), and P3→5 = (2, 4, 5). Thus H1→12 = (1, 2, 6, 9, 10) ∪ P10→12. Since there
is no path P10→12 in H1→12, H1→12 terminates at vertex 10.
(viii) Let {(10, 6), (9, 5)} ⊂ B. Then H12→1 = (12, 8)∪P8→10∪(10, 6)∪P6→9∪(9, 5)∪(5, 1).
Since there is no path P8→10 in H12→1, H12→1 terminates at vertex 8.
(ix) Let {(10, 6), (8, 4)} ⊂ B. Then H12→1 = (12, 8)∪ (8, 4)∪P4→10∪ (10, 6)∪P6→5∪ (5, 1).
Since there is no path P4→10 in H12→1 (for otherwise | Vi |> 3), H12→1 terminates at vertex
4.
(x) Let {(10, 6), (6, 2)} ⊂ B. Then H12→1 = (12, 8)∪P8→10∪ (10, 6)∪ (6, 2)∪P2→5∪ (5, 1),
P8→10 = (8, 9, 10), and P2→5 = (2, 5). But then H1→12 terminates at vertex 1.
(xi) Let {(9, 5), (8, 4)} ⊂ B. Then H12→1 = (12, 8) ∪ (8, 4) ∪ P4→9 ∪ (9, 5) ∪ (5, 1). Since
there is no path P4→9 in H12→1, H1→12 terminates at vertex 4.
(xii) Let {(9, 5), (7, 3)} ⊂ B. Then H12→1 = (12, 8) ∪ P8→7 ∪ (7, 3) ∪ P3→9 ∪ (9, 5) ∪ (5, 1).
Since there is no path P8→7 in H12→1, H1→12 terminates at vertex 8.
(xiii) Let {(9, 5), (6, 2)} ⊂ B. Then H12→1 = (12, 8) ∪ P8→6 ∪ (6, 2) ∪ P2→9 ∪ (9, 5) ∪ (5, 1).
Since there is no path P8→6 in H12→1, H1→12 terminates at vertex 8.
(xiv) Let {(8, 4), (7, 3)} ⊂ B. Then H12→1 = (12, 8) ∪ (8, 4) ∪ P4→7 ∪ (7, 3) ∪ P3→5 ∪ (5, 1),
and P4→7 = (4, 7). Since there is no path P3→5 in H12→1, H1→12 terminates at 3.
(xv) Let {(8, 4), (6, 2)} ⊂ B. Then H12→1 = (12, 8) ∪ (8, 4) ∪ P4→6 ∪ (6, 2) ∪ P2→5 ∪ (5, 1).
Since there is no path P4→6 in H12→1, H1→12 terminates at vertex 4.

Case 3. If |B| = 5. Since (12, 8), (5, 1) ∈ B, then C3
6 = 20 subcases arise:

(i) {(6, 2), (7, 3), (8, 4)}, (ii) {(6, 2), (7, 3), (9, 5)}, (iii) {(6, 2), (8, 4), (11, 7)},
(iv) {(6, 2), (7, 3), (11, 7)}, (v) {(6, 2), (9, 5), (11, 7)}, (vi) {(10, 6), (7, 3), (6, 2)},
(vii) {(10, 6), (7, 3), (8, 4))}, (viii) {(10, 6), (11, 7), (6, 2)}, (ix) {(10, 6), (11, 7), (7, 3)},
(x) {(10, 6), (11, 7), (8, 4)}, (xi) {(10, 6), (11, 7), (9, 5)}. Since, for (i)-(xi) subsets B, there
exist Vi ∈ V (H12→1 \ {1, 12}) such that | Vi |> 3, this is a contradiction.
(xii) Let {(6, 2), (8, 4), (9, 5)} ⊂ B. Then H12→1 = (12, 8)∪ (8, 4)∪P4→11 ∪ (11, 7)∪P7→9 ∪
(9, 5) ∪ (5, 1). Since there is no path P4→11 in H12→1, H1→12 terminates at vertex 4.
(xiii) Let {(6, 2), (8, 4), (10, 6)} ⊂ B. Then H12→1 = (12, 8)∪P8→11∪(11, 7)∪(7, 3)∪P3→9∪
(9, 5)∪(5, 1), and P8→11 = (8, 11). Since there is no path P3→9 in H12→1, H1→12 terminates
at vertex 3.
(xiv) Let {(6, 2), (9, 5), (10, 6)} ⊂ B. Then H12→1 = (12, 8)∪P8→11∪(11, 7)∪(7, 3)∪P3→8∪
(8, 4) ∪ (4, 5) ∪ (5, 1), and P8→11 = (8, 11). Since there is no path P3→8 in H12→1, H1→12

terminates at vertex 3.
(xv) Let {(6, 2), (7, 3), (10, 6)} ⊂ B. Then H12→1 = (12, 8)∪(8, 4)∪P4→10∪(10, 6)∪P6→9∪
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(9, 5) ∪ (5, 1). Since there is no path P4→10 in H12→1, H1→12 terminates at vertex 4.
(xvi) Let {(7, 3), (8, 4), (11, 7)} ⊂ B. Then H12→1 = (12, 8)∪P8→10∪(10, 6)∪(6, 2)∪P2→9∪
(9, 5) ∪ (5, 1). Since there is no path P8→10 in H12→1, H1→12 terminates at vertex 8.
(xvii) Let {(7, 3), (8, 4), (9, 5)} ⊂ B. Then H12→1 = (12, 8) ∪ (8, 4) ∪ P4→10 ∪ (10, 6) ∪
(6, 2)P2→5 ∪ (5, 1). Since there is no path P4→10 in H12→1, H1→12 terminates at vertex 4.
(xviii) Let {(7, 3), (9, 5), (11, 7)} ⊂ B. Then H12→1 = (12, 8) ∪ P8→10 ∪ (10, 6) ∪ (6, 2) ∪
P2→7 ∪ (7, 3) ∪ P3→5 ∪ (5, 1). Since there is no path P8→10 in H12→1, H1→12 terminates at
vertex 8.
(xix) Let {(8, 4), (9, 5), (10, 6)} ⊂ B. Then H12→1 = (12, 8)∪ (8, 4)∪P4→7 ∪ (7, 3)∪P3→9 ∪
(9, 5) ∪ (5, 1), and P4→7 = (4, 7). Since there is no path P3→9 in H12→1, H1→12 terminates
at vertex 3.
(xx) Let {(8, 4), (9, 5), (11, 7)} ⊂ B. Thus H12→1 = (12, 8) ∪ (8, 4) ∪ P4→6 ∪ (6, 2) ∪ P2→9 ∪
(9, 5) ∪ (5, 1). Since there is no path P4→6 in H12→1, H1→12 terminates at vertex 4.

Case 4. If |B| = 6. Since (12, 8), (5, 1) ∈ B, then C4
6 = 15 subcases arise:

(i) {(11, 7), (10, 6), (9, 5), (8, 4)}, (ii) {(11, 7), (10, 6), (9, 5), (7, 3)},
(iii) {(11, 7), (10, 6), (9, 5), (6, 2)}, (iv) {(6, 2), (7, 3), (8, 4), (9, 5)},
(v) {(6, 2), (7, 3), (8, 4), (10, 6)}, (vi) {(6, 2), (7, 3), (8, 4), (11, 7)},
(vii) {(6, 2), (7, 3), (11, 7), (10, 6)}, (viii) {(6, 2), (7, 3), (11, 7), (9, 5)},
(ix) {(6, 2), (8, 4), (11, 7), (10, 6)}, (x) {(6, 2), (8, 4), (11, 7), (9, 5)},
(xi) {(6, 2), (7, 3), (10, 6), (9, 5)}, (xii) {(7, 3), (8, 4), (11, 7), (10, 6)},
(xiii) {(7, 3), (8, 4), (9, 5), (10, 6)}. Since for (i)-(xiii) subsets of B there exist Vi ∈ V (H12→1\
{1, 12}) such that | Vi |> 3, this is a contradiction.
(xiv) {(6, 2), (8, 4), (10, 6), (9, 5)} ⊂ B. Then H12→1 = (12, 8) ∪ (8, 4) ∪ P4→10 ∪ (10, 6) ∪
(6, 2)∪P2→9 ∪ (9, 5)∪ (5, 1). Since there is no path P4→7 in H12→1 (as otherwise | Vi |> 3),
H1→12 terminates at vertex 4.
(xv) {(7, 3), (8, 4), (11, 7), (9, 5)} ⊂ B. Then H12→1 = (12, 8) ∪ (8, 4) ∪ P4→11 ∪ (11, 7) ∪
(7, 3) ∪ P3→9 ∪ (9, 5) ∪ (5, 1). Since there is no path P4→11 in H12→1, H1→12 terminates at
vertex 4.

Case 5. If |B| = 7. Since (12, 8), (5, 1) ∈ B, then the following C5
6 = 6 subcases arise:

(i) {(11, 7), (10, 6), (9, 5), (8, 4), (7, 3)} ⊂ B
(ii) {(11, 7), (10, 6), (9, 5), (8, 4), (6, 2)} ⊂ B
(iii) {(11, 7), (10, 6), (9, 5), (7, 3), (6, 2)} ⊂ B.
(iv) {(11, 7), (10, 6), (8, 4), (7, 3), (6, 2)} ⊂ B.
(v) {(11, 7), (9, 5), (8, 4), (7, 3), (6, 2)} ⊂ B.
(vi) {(10, 6), (9, 5), (8, 4), (7, 3), (6, 2)} ⊂ B.

For all these six subcases, since there exist Vi ∈ V (H12→1 \ {1, 12}) such that | Vi |> 3,
this is a contradiction because

Case 6. If |B| = 8. Then A = B and V (H12→1 \ {1, 12}) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} =
V1, where V1 is a set of successive vertices. Since | V1 |> 3, this is a contradiction.

In summary, T12⟨1, 3, 4; 4⟩ is non-hamiltonian.

By Theorem 4 and Theorem 5, Tn⟨1, 3, 4; 4⟩ is not hamiltonian for n ∈ {6, 10}. This
together with Claim 1 and Claim 2 shows that Tn⟨1, 3, 4; 4⟩ is hamiltonian if and only if
n /∈ {6, 10, 12}.
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This completes the proof.

4 Toeplitz graphs Tn⟨1, 3, 4; t⟩ with t = 9

Theorem 7. [20] Tn⟨1, 3, 4; 9⟩ is hamiltonian for all n different from 15.

In [20], it was shown that Tn⟨1, 3, 4; 9⟩ is hamiltonian for all n different from 15, further
it was stated as conjecture that T15⟨1, 3, 4; 9⟩ is non-hamiltonian. But here we show that
T15⟨1, 3, 4; 9⟩ is hamiltonian. Thus we refine Theorem 7 as follows:

Theorem 8. Tn⟨1, 3, 4; 9⟩ is hamiltonian for all n.

Proof. Claim. T15⟨1, 3, 4; 9⟩ is hamiltonian.
Indeed T15⟨1, 3, 4; 9⟩ contains the hamiltonian cycle

(1, 2, 3, 7, 11, 14, 5, 9, 13, 4, 8, 12, 15, 6, 10, 1).

7 8 9 10
11 12 13 14 154 5 61 2 3

Figure 11: Hamiltonian cycle in T15⟨1, 3, 4; 9⟩

By Theorem 7, Tn⟨1, 3, 4; 9⟩ is hamiltonian for all n different from 15. This together with
the above claim shows that Tn⟨1, 3, 4; 9⟩ is hamiltonian for all n.

This finishes the proof.

Conjecture: Tn⟨1, 3, 4; 3⟩ is non-hamiltonian for n /∈ {5, 6, 7, 9}.

5 Concluding Remarks

In this paper we refine results of [20], and address to the stated conjectures in [20].
This completes the investigation of hamiltonnicity of the Toeplitz Graph Tn⟨1, 3, 4; t⟩ by
proposing the above conjecture.
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