Hamiltonicity in directed Toeplitz graphs $T_{n}\langle 1,3,4 ; t\rangle$
 by
 Shabnam Malik

Abstract

An $(n \times n)$ matrix $A=\left(a_{i j}\right)$ is called a Toeplitz matrix if it has constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph is a digraph with Toeplitz adjacency matrix. In this paper, we obtain new results and improve existing results on hamiltonicity of directed Toeplitz graph $T_{n}\langle 1,3,4 ; t\rangle$.

Key Words: Adjacency matrix, Toeplitz matrix, Toeplitz graph, Hamiltonian graph, increasing and decreasing edge, length of an edge.
2010 Mathematics Subject Classification: Primary 05C20; Secondary 05C45.

1 Introduction

We use [18] for basic terminology and notation not defined here. We consider finite, directed and simple graphs.

A Toeplitz matrix is a square matrix having constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph $T_{n}\left\langle s_{1}, \ldots, s_{k} ; t_{1}, \ldots, t_{l}\right\rangle$ of order n is a digraph with Toeplitz adjacency matrix of order n. The edges of directed Toeplitz graph $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k} ; t_{1}, t_{2}, \ldots, t_{l}\right\rangle$ are of two types: increasing edges (u, v), for which $u<v$, and decreasing edges (u, v), where $u>v$. In the directed Toeplitz graph $T_{n}\left\langle s_{1}, \ldots, s_{k} ; t_{1}, \ldots, t_{l}\right\rangle$, the edge (i, j) occurs if and only if $j-i=s_{p}$ or $i-j=t_{q}$ for some integers p and $q(1 \leq p \leq k$ and $1 \leq q \leq l$). Note that any increasing edge has length s_{p} for some p, and any decreasing edge has length t_{q} for some q, and that $T_{n}\left\langle s_{1}, \ldots, s_{k} ; t_{1}, \ldots, t_{l}\right\rangle$ and $T_{n}\left\langle t_{1}, \ldots, t_{l} ; s_{1}, \ldots, s_{k}\right\rangle$ are obtained from each other by reversing the orientation of all edges. We define the length of an edge (u, v) to be $|u-v|$.

Suppose that H is a hamiltonian cycle in $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k} ; t_{1}, t_{2}, \ldots, t_{l}\right\rangle$. The hamiltonian cycle H is determined by two paths $H_{1 \rightarrow n}$ (from 1 to n) and $H_{n \rightarrow 1}$ (from n to 1), i.e., $H=H_{1 \rightarrow n} \cup H_{n \rightarrow 1}$. Then for every vertex v in H, we have $d^{-}(v)=1=d^{+}(v)$. The vertices which are not covered by $H_{n \rightarrow 1}$ would be covered by $H_{1 \rightarrow n}$.

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connectivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric dimension have been studied in [1-5, 7-15, 17]. Hamiltonian properties of Toeplitz graphs were first investigated by R. van Dal et al. in [6] and then studied in [12, 16, 24], while the hamiltonicity in directed Toeplitz graphs was first studied by S. Malik and A.M. Qureshi in [18], then by S. Malik and T. Zamfirescu in [21] and by S. Malik in [19, 20, 22, 23].

In [20], the hamiltonicity of the Toeplitz graphs $G=T_{n}\langle 1,3,4 ; t\rangle$ was investigated, where it was shown the following. For $t=2, G$ is hamiltonian for $n \in\{5,7\}$ and all $n \cong 0,3,4$ $(\bmod 6)$; for $t=3, G$ is hamiltonian for $n \in\{5,6,7,9\}$; for $t=4, G$ is hamiltonian for
$n \in\{5,7,8,9,11,14,15,17,18,20,21\}$ and all $n \geq 23$; for $t=5, G$ is hamiltonian for all n if and only if $n \neq 7$; for $t \in\{6,7\}, G$ is hamiltonian for all n; for $t=8, G$ is hamiltonian for all n if and only if $n \neq 14$; for $t=9, G$ is hamiltonian for all n different from 15 ; for all $t \geq 10, G$ is hamiltonian for all n. It was also shown that $T_{6}\langle 1,3,4 ; 4\rangle$ and $T_{10}\langle 1,3,4 ; 4\rangle$ are non-hamiltonian.

Here in this paper, we improve upon [20] by adding some positive and negative results, and addressing some conjectures on hamiltonicity of $T_{n}\langle 1,3,4 ; t\rangle$. For $t=2$, we show that $T_{n}\langle 1,3,4 ; t\rangle$ is hamiltonian for $n \cong 1,5(\bmod 6)$, and is not hamiltonian for $n \cong 2(\bmod$ $6)$. For $t=4$, we show that $T_{n}\langle 1,3,4 ; t\rangle$ is hamiltonian for $n \in\{13,16,19,22\}$, and is not hamiltonian for $n=12$. For $t=9$, we show that $T_{15}\langle 1,3,4 ; t\rangle$ is hamiltonian. The paper concludes with a conjecture which completes the hamiltonicity investigation in directed Toeplitz graphs $T_{n}\langle 1,3,4 ; t\rangle$.

2 Toeplitz graphs $T_{n}\langle 1,3,4 ; t\rangle$ with $t=2$

Remark 1: Since $T_{n}\langle 1,3,4 ; 2\rangle$ can use increasing edges of length 4 and decreasing edges of length 2 , for any vertex a in $T_{n}\langle 1,3,4 ; 2\rangle$, there exists a path, say $N(a)$, from a to $a+6$ containing all the vertices of the same parity as a, such that $N(a)=(a, a+4, a+2, a+6)$, see Fig. 1. We define two such consecutive paths $N(a)$ from a, namely $N(a) \cup N(a+6)$, such that $N(a) \cup N(a+6)=(a, a+4, a+2, a+6, a+10, a+8, a+12)$, which contains all vertices between a and $a+12$ of the same parity as a, see Fig. 2 for an illustration.

Figure 1: The path $N(a)=(a, a+4, a+2, a+6)$ in $T_{n}\langle 1,3,4 ; 2\rangle$

Figure 2: Two path $N(a) \cup N(a+6)=(a, a+4, a+2, a+6, a+10, a+8, a+12)$ in $T_{n}\langle 1,3,4 ; 2\rangle$

The following lemma will be applied in the proof of Theorem 2.
Lemma 1. Let $a<b \leq n$. In $T_{n}\langle 1,3,4 ; 2\rangle$, the maximum number of consecutive paths $N(a)$ between a and b is $\left\lfloor\frac{b-a}{6}\right\rfloor$, and the last vertex of this path is $a+\left\lfloor\frac{b-a}{6}\right\rfloor 6$

Proof. Since six successive vertices are required to construct one path $N(a)$, the maximum number of such consecutive paths between a and b in $T_{n}\langle 1,3,4 ; 2\rangle$ is equal to $\left\lfloor\frac{b-a}{6}\right\rfloor$, that is, $N(a) \cup N(a+6) \cup \ldots \cup N\left(a+\left(\left\lfloor\frac{b-a}{6}\right\rfloor-1\right) 6\right)$. Clearly, the last vertex in this path is $a+\left(\left\lfloor\frac{b-a}{6}\right\rfloor-1\right) 6+6=a+\left\lfloor\frac{b-a}{6}\right\rfloor 6$.

Theorem 1. [20] $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for $n \in\{5,7\}$ and $n \cong 0,3,4(\bmod 6)$.
In Theorem 1, it was shown that $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for $n \cong 0,3,4(\bmod 6)$ and $n \in\{5,7\}$. In [20], it was stated as conjecture that $T_{n}\langle 1,3,4 ; 2\rangle$ is non-hamiltonian for all $n \cong 1,2,5(\bmod 6)$ such that $n \notin\{5,7\}$. Here we show that $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for all $n \cong 1,5(\bmod 6)$, and that $T_{n}\langle 1,3,4 ; 2\rangle$ is non-hamiltonian for all $n \cong 2(\bmod 6)$. Thus we can refine Theorem 1 as follows:

Theorem 2. $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian if and only if $n \neq 2(\bmod 6)$
Proof. Claim. $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for all $n \cong 1,5(\bmod 6)$.
For $n \in\{5,7\}, T_{n}\langle 1,3,4 ; 2\rangle$ has a hamiltonian cycle containing the edge $(n-3, n)$. Indeed $T_{5}\langle 1,3,4 ; 2\rangle$ has a hamiltonian cycle $(1,4,2,5,3,1)$ containing the edge $(2,5)$, see Fig. 3a, and $T_{7}\langle 1,3,4 ; 2\rangle$ has a hamiltonian cycle $(1,2,6,4,7,5,3,1)$ containing the edge $(4,7)$, see Fig. 3b. Starting from $n \in\{5,7\}$, we can extend a hamiltonian cycle

(b)

Figure 3: A hamiltonian cycle in (a) $T_{5}\langle 1,3,4 ; 2\rangle$, and (b) $T_{7}\langle 1,3,4 ; 2\rangle$
in $T_{n}\langle 1,3,4 ; 2\rangle$ containing the edge $(n-3, n)$ to a hamiltonian cycle in $T_{n+6}\langle 1,3,4 ; 2\rangle$ with the same property by replacing the edge $(n-3, n)$ with the path $(n-3, n+1, n+$ $5, n+3, n+6, n+4, n+2, n)$. See Fig. 4 for an illustration. Since the vertices 7 and

Figure 4: Transformation of a hamiltonian cycle in $T_{7}\langle 1,3,4 ; 2\rangle$ to that in $T_{13}\langle 1,3,4 ; 2\rangle$
5 are representative in class 1 and 5 modulo 6 , respectively, it follows that $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for all $n \cong 1,5(\bmod 6)$.

By Theorem $1, T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for all $n \cong 0,3,4(\bmod 6)$. This together with the above claim shows that $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for all $n \not \approx 2(\bmod 6)$.

Conversely, we need to show that $T_{n}\langle 1,3,4 ; 2\rangle$ is not hamiltonian for all $n \cong 2(\bmod 6)$. Assume, to the contrary, that $T_{n}\langle 1,3,4 ; 2\rangle$ is hamiltonian for $n \cong 2(\bmod 6)$, and let H be a hamiltonian cycle in $T_{n}\langle 1,3,4 ; 2\rangle$. Thus $H=H_{1 \rightarrow n} \cup H_{n \rightarrow 1}$. The path $H_{n \rightarrow 1}$ can not cover more than 3 successive vertices (except $(1,2,3,4)$ or $(n-3, n-2, n-1, n)$), for otherwise
$H_{1 \rightarrow n}$ would not be able to cover rest of the vertices as $H_{1 \rightarrow n}$ can not use increasing edge of length greater than 4 . Since $T_{n}\langle 1,3,4 ; 2\rangle$ has decreasing edges of length 2 only and that n is even $($ as $n \cong 2(\bmod 6))$, two possibilities exist for $H_{n \rightarrow 1}$.

Case 1: $H_{n \rightarrow 1}=(n, n-2, \ldots, 2,3,1)$

Figure 5: $H_{n \rightarrow 1}=(n, n-2, \ldots, 2,3,1)$ in $T_{n}\langle 1,3,4 ; 2\rangle$
Since $H_{n \rightarrow 1}$ covers all the even vertices only, between n and $4, H_{1 \rightarrow n}$ has to cover all the odd vertices between 5 and n. Thus $H_{1 \rightarrow n}$ has to use consecutive paths as described in Remark 1. By Lemma 1, the longest such path in $H_{1 \rightarrow n}$ from vertex 5 is $N(5) \cup N(5+$ 6) $\cup \ldots \cup N\left(5+\left(\left\lfloor\frac{n-5}{6}\right\rfloor-1\right) 6\right)$, and the last vertex of this path is $5+\left\lfloor\frac{n-5}{6}\right\rfloor 6$ which is $n-3$, because $5+\left\lfloor\frac{n-5}{6}\right\rfloor 6=5+\left\lfloor\frac{n-2-3}{6}\right\rfloor 6=5+\left(\left\lfloor\frac{n-2}{6}\right\rfloor+\left\lfloor\frac{-1}{2}\right\rfloor\right) 6=5+\left(\left\lfloor\frac{n-2}{6}\right\rfloor-\left\lceil\frac{1}{2}\right\rceil\right) 6=$ $5+\left\lfloor\frac{n-2}{6}\right\rfloor 6-6=n-3\left(\right.$ since $\left.n \cong 2(\bmod 6),\left\lfloor\frac{n-2}{6}\right\rfloor=\frac{n-2}{6}\right)$. Since there is no path $P_{n-3 \rightarrow n}$ in $H_{1 \rightarrow n}, H_{1 \rightarrow n}$ terminates at $n-3$. This is a contradiction.

Case 2: $H_{n \rightarrow 1}=(n, n-2, n-1, n-3, n-5, \ldots, 1)$.

Figure 6: $H_{n \rightarrow 1}=(n, n-2, n-1, n-3, n-5, \ldots, 1)$ in $T_{n}\langle 1,3,4 ; 2\rangle$
Consider $(1,2) \in E\left(H_{1 \rightarrow n}\right)$. Since last four vertices have already been visited by $H_{n \rightarrow 1}$, by Lemma 1, the longest path in $H_{1 \rightarrow n}$ between 2 and $n-4$ is $N(2) \cup N(2+6) \cup \ldots \cup$ $N\left(2+\left(\left\lfloor\frac{n-6}{6}\right\rfloor-1\right) 6\right)$ and the last vertex of this path is $2+\left\lfloor\frac{n-6}{6}\right\rfloor 6$ which is $n-6$, because $2+\left\lfloor\frac{n-6}{6}\right\rfloor 6=2+\left\lfloor\frac{n-2-4}{6}\right\rfloor 6=2+\left\lfloor\frac{n-2}{6}\right\rfloor 6+\left\lfloor\frac{-4}{6}\right\rfloor 6=2+\left\lfloor\frac{n-2}{6}\right\rfloor 6-\left\lceil\frac{2}{3}\right\rceil 6=2+\left\lfloor\frac{n-2}{6}\right\rfloor 6-6=n-6$ (since $\left.n \cong 2(\bmod 6),\left\lfloor\frac{n-2}{6}\right\rfloor=\frac{n-2}{6}\right)$. Since there is no path $P_{n-6 \rightarrow n}$ in $H_{1 \rightarrow n}, H_{1 \rightarrow n}$ terminates at vertex $n-6$. This is a contradiction.

Consider $(1,4) \in E\left(H_{1 \rightarrow n}\right)$. Then $(4,2),(2,6) \in E\left(H_{1 \rightarrow n}\right)$, for otherwise vertex 2 would be missed. By Lemma 1, the longest path in $H_{1 \rightarrow n}$ between 6 and $n-4$ is $N(6) \cup N(6+$ 6) $\cup \ldots \cup N\left(6+\left(\left\lfloor\frac{n-10}{6}\right\rfloor-1\right) 6\right)$, and the last vertex of this path is $6+\left\lfloor\frac{n-10}{6}\right\rfloor 6$ which is $n-8$, because $6+\left\lfloor\frac{n-10}{6}\right\rfloor 6=6+\left\lfloor\frac{n-2-8}{6}\right\rfloor 6=6+\left\lfloor\frac{n-2}{6}\right\rfloor 6+\left\lfloor\frac{-8}{6}\right\rfloor 6=6+\left\lfloor\frac{n-2}{6}\right\rfloor 6-\left\lceil\frac{4}{3}\right\rceil 6=$ $6+\left\lfloor\frac{n-2}{6}\right\rfloor 6-12=n-8\left(\right.$ since $\left.n \cong 2 \bmod 6,\left\lfloor\frac{n-2}{6}\right\rfloor=\frac{n-2}{6}\right)$. Since there is no path $P_{n-8 \rightarrow n}$ in $H_{1 \rightarrow n}, H_{1 \rightarrow n}$ terminates at vertex $n-8$. This is a contradiction.

This completes the proof.

3 Toeplitz graphs $T_{n}\langle 1,3,4 ; t\rangle$ with $t=4$

Theorem 3. [20] $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian for $n \in\{5,7,8,9,11,14,15,17,18,20$, $21\}$ and all $n \geq 23$.

Theorem 4. [20] $T_{6}\langle 1,3,4 ; 4\rangle$ is non-hamiltonian.

Theorem 5. [20] $T_{10}\langle 1,3,4 ; 4\rangle$ is non-hamiltonian.
In [20], it was shown that $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian for $n \in\{5,7,8,9,11,14$, $15,17,18,20,21\}$ and all $n \geq 23$. Furthermore it was shown that $T_{6}\langle 1,3,4 ; 4\rangle$ and $T_{10}\langle 1,3,4 ; 4\rangle$ are non-hamiltonian, and a conjecture was stated, that is, $T_{n}\langle 1,3,4 ; 4\rangle$ is nonhamiltonian for $n \in\{12,13,16,19,22\}$. Here we show that $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian for $n \in\{13,16,19,22\}$. We also show that $T_{12}\langle 1,3,4 ; 4\rangle$ is non-hamiltonian. Thus we can refine Theorem 3-5 as follows:

Theorem 6. $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian if and only if $n \notin\{6,10,12\}$
Proof. Claim 1. For $n \in\{13,16,19,22\}, T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian.
In Fig. 7, we display a hamiltonian cycle $(1,2,6,10,11,7,3,4,8,12,13,9,5,1)$ in $T_{13}\langle 1,3,4 ; 4\rangle$. In Fig. 8, we display a hamiltonian cycle $(1,2,3,4,7,8,11,15,16,12,13,14,10$, $6,9,5,1)$ in $T_{16}\langle 1,3,4 ; 4\rangle$. In Fig. 9, we display a hamiltonian cycle $(1,2,3,6,7,10,11,14,18$, $19,15,16,17,13,9,12,8,4,5,1)$ in $T_{19}\langle 1,3,4 ; 4\rangle$. In Fig. 10, we display a hamiltonian cycle $(1,2,3,6,9,10,13,14,17,21,22,18,19,20,16,12,15,11,7,8,4,5,1)$ in $T_{22}\langle 1,3,4 ; 4\rangle$.

Figure 7: A hamiltonian cycle in $T_{13}\langle 1,3,4 ; 4\rangle$

Figure 8: A hamiltonian cycle in $T_{16}\langle 1,3,4 ; 4\rangle$

Figure 9: A hamiltonian cycle in $T_{19}\langle 1,3,4 ; 4\rangle$

Figure 10: A hamiltonian cycle in $T_{22}\langle 1,3,4 ; 4\rangle$
By Theorem 3, $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian for $n \in\{5,7,8,9,11,14,15,17,18,20$, $21\}$ and all $n \geq 23$. This together with Claim 1 shows that $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian for $n \notin\{6,10,12\}$.

Conversely, we show that $T_{n}\langle 1,3,4 ; 4\rangle$ is not hamiltonian for $n \in\{6,10,12\}$. Claim 2. $T_{12}\langle 1,3,4 ; 4\rangle$ is non-hamiltonian.

Assume, to the contrary, that $T_{12}\langle 1,3,4 ; 4\rangle$ is hamiltonian. Let $H=H_{1 \rightarrow 12} \cup H_{12 \rightarrow 1}$ be a hamiltonian cycle in $T_{12}\langle 1,3,4 ; 4\rangle$. Let $V\left(H_{12 \rightarrow 1} \backslash\{1,12\}\right)=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$, where each
$V_{i}, i \in\{1,2, \ldots, k\}$, is a disjoint set of successive vertices. But then order of each V_{i} should not be greater than 3 because $H_{1 \rightarrow 12}$ has no edge of length greater than 3 . Thus $\left|V_{i}\right| \leq 3$. Let A be the set of all decreasing edges in $T_{12}\langle 1,3,4 ; 4\rangle$. Since the decreasing edges are of length 4 only, $A=\{(12,8),(11,7),(10,6),(9,5),(8,4),(7,3),(6,2),(5,1)\}$, and $|A|=8$. Let B be the set of all decreasing edges in $H_{12 \rightarrow 1}$. Since $B \subseteq A$ and $d^{-}(1)=d^{+}(12)=1$, $(12,8),(5,1) \in B$. Since $H_{12 \rightarrow 1}$ can not have only these two edges as its decreasing edges, for otherwise $H_{12 \rightarrow 1}$ terminates at vertex $8,3 \leq|B| \leq 8$. Six cases arise as per number of decreasing edges in $H_{12 \rightarrow 1}$ (other than $(12,8)$ and $(5,1)$).

Case 1. If $|B|=3$. Since $(12,8),(5,1) \in B$, six subcases arise:
(i) Let $(11,7) \in B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 11} \cup(11,7) \cup P_{7 \rightarrow 5} \cup(5,1)$, and $P_{8 \rightarrow 11}=$ $(8,11)$. Since there is no path $P_{7 \rightarrow 5}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 7 .
(ii) Let $(10,6) \in B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 10} \cup(10,6) \cup P_{6 \rightarrow 5} \cup(5,1)$, and $P_{8 \rightarrow 10}=$ $(8,9,10)$. Since there is no path $P_{6 \rightarrow 5}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 6 .
(iii) Let $(7,3) \in B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 7} \cup(7,3) \cup P_{3 \rightarrow 5} \cup(5,1)$, and $P_{3 \rightarrow 5}=(3,4,5)$. Since there is no path $P_{8 \rightarrow 7}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 8 .
(iv) Let $(6,2) \in B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 6} \cup(6,2) \cup P_{2 \rightarrow 5} \cup(5,1)$. Since there is no path $P_{8 \rightarrow 6}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 8 .
(v) Let $(9,5) \in B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 9} \cup(9,5) \cup(5,1)$, and $P_{8 \rightarrow 9}=(8,9)$. Thus $H_{12 \rightarrow 1}=(12,8,9,5,1)$. But then, by considering all the following possible cases, we see that there is no path $H_{1 \rightarrow 12}$:

Consider $(1,2),(2,3),(3,4) \in E\left(H_{1 \rightarrow 12}\right)$. If $(4,7),(7,10),(10,11) \in E\left(H_{1 \rightarrow 12}\right)$, but then $H_{1 \rightarrow 12}$ terminates at vertex 11, for otherwise vertex 6 would be missed. If $(4,7),(7,10)$, $(10,6) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 6 . If $(4,7),(7,11) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 11, for otherwise vertices 6 and 10 would be missed.

Consider $(1,2),(2,3) \in E\left(H_{1 \rightarrow 12}\right)$. If $(3,6),(6,10),(10,7) \in E\left(H_{1 \rightarrow 12}\right)$ or $(3,6),(6,10)$, $(10,11),(11,7) \in E\left(H_{1 \rightarrow 12}\right)$, but then $H_{1 \rightarrow 12}$ terminates at vertex 7. If $(3,6),(6,7),(7,11) \in$ $E\left(H_{1 \rightarrow 12}\right)$, or $(3,7),(7,10),(10,11) \in E\left(H_{1 \rightarrow 12}\right)$, or $(3,7),(7,11) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 11. If $(3,7),(7,10),(10,6) \in E\left(H_{1 \rightarrow 12}\right)$ but then $H_{1 \rightarrow 12}$ terminates at vertex 6 .

Consider $(1,2) \in E\left(H_{1 \rightarrow 12}\right)$. If $(2,6),(6,10),(10,11),(11,7),(7,3),(3,4) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 4. If $\left.(2,6),(6,7),(7,10),(10,11)\right) \in E\left(H_{1 \rightarrow 12}\right)$, or $(2,6)$, $(6,7),(7,11) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 11 .

Consider $(1,4) \in E\left(H_{1 \rightarrow 12}\right)$. If $(4,7),(7,10),(10,11) \in E\left(H_{1 \rightarrow 12}\right)$, or $(4,7),(7,11) \in$ $E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 11, for otherwise some vertices would be missed. If $(4,7),(7,10),(10,6),(6,2),(2,3) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 3 .
$(v i)$ Let $(8,4) \in B$. Then $E\left(H_{12 \rightarrow 1}\right)=(12,8) \cup(8,4) \cup P_{4 \rightarrow 5} \cup(5,1)$. Since the only possibility for the path $P_{4 \rightarrow 5}$ in $H_{12 \rightarrow 1}$ is $P_{4 \rightarrow 5}=(4,5), H_{12 \rightarrow 1}=(12,8,4,5,1)$. But then, by considering all the following possible cases, we see that there is no path $H_{1 \rightarrow 12}$:

Consider $(1,2),(2,3) \in E\left(H_{1 \rightarrow 12}\right)$. If $(3,6),(6,7),(7,10) \in E\left(H_{1 \rightarrow 12}\right)$, but then $H_{1 \rightarrow 12}$ terminates at vertex 10 , for otherwise vertex 9 would be missed. If $(3,6),(6,7),(7,11)$ $\in E\left(H_{1 \rightarrow 12}\right)$, or $(3,7),(7,10),(10,11) \in E\left(H_{1 \rightarrow 12}\right)$, or $(3,6),(7,11) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 11. If $(3,6),(6,10),(10,11),(11,7) \in E\left(H_{1 \rightarrow 12}\right)$, or $(3,6),(6,9)$, $(9,10),(10,11),(11,7) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 7. If $(3,7),(7,10)$, $(10,6),(6,9) \in E\left(H_{1 \rightarrow 12}\right)$ but then $H_{1 \rightarrow 12}$ terminates at vertex 9 .

Consider $(1,2),(2,6) \in E\left(H_{1 \rightarrow 12}\right)$. If $(6,10),(10,11),(11,7),(7,3) \in E\left(H_{1 \rightarrow 12}\right)$, or
$(6,9),(9,10),(10,11),(11,7),(7,3) \in E\left(H_{1 \rightarrow 12}\right)$, then $H_{1 \rightarrow 12}$ terminates at vertex 3 .

Case 2. If $|B|=4$. Since $(12,8),(5,1) \in B$, then $C_{2}{ }^{6}=15$ subcases arise:
(i) $\{(6,2),(7,3)\}$, (ii) $\{(6,2),(11,7)\}$, (iii) $\{(10,6),(7,3)\}$, (iv) $\{(10,6),(11,7)\}$. Since, for subcases (i)-(iv), there exists $V_{i} \in V\left(H_{12 \rightarrow 1} \backslash\{1,12\}\right)$ such that $\left|V_{i}\right|>3$, this is a contradiction.
(v) $\{(11,7),(9,5)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 11} \cup(11,7) \cup P_{7 \rightarrow 9} \cup(9,5) \cup(5,1)$, and $P_{8 \rightarrow 11}=(8,11)$. Since there is no path $P_{7 \rightarrow 9}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 7 . (vi) Let $\{(11,7),(8,4)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 11} \cup(11,7) \cup P_{7 \rightarrow 5} \cup(5,1)$. Since there is no paths $P_{4 \rightarrow 11}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 4.
(vii) Let $\{(11,7),(7,3)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 11} \cup(11,7) \cup(7,3) \cup P_{3 \rightarrow 5} \cup(5,1)$, $P_{8 \rightarrow 11}=(8,11)$, and $P_{3 \rightarrow 5}=(2,4,5)$. Thus $H_{1 \rightarrow 12}=(1,2,6,9,10) \cup P_{10 \rightarrow 12}$. Since there is no path $P_{10 \rightarrow 12}$ in $H_{1 \rightarrow 12}, H_{1 \rightarrow 12}$ terminates at vertex 10 .
(viii) Let $\{(10,6),(9,5)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 10} \cup(10,6) \cup P_{6 \rightarrow 9} \cup(9,5) \cup(5,1)$. Since there is no path $P_{8 \rightarrow 10}$ in $H_{12 \rightarrow 1}, H_{12 \rightarrow 1}$ terminates at vertex 8 .
(ix) Let $\{(10,6),(8,4)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 10} \cup(10,6) \cup P_{6 \rightarrow 5} \cup(5,1)$. Since there is no path $P_{4 \rightarrow 10}$ in $H_{12 \rightarrow 1}$ (for otherwise $\left|V_{i}\right|>3$), $H_{12 \rightarrow 1}$ terminates at vertex 4.
(x) Let $\{(10,6),(6,2)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 10} \cup(10,6) \cup(6,2) \cup P_{2 \rightarrow 5} \cup(5,1)$, $P_{8 \rightarrow 10}=(8,9,10)$, and $P_{2 \rightarrow 5}=(2,5)$. But then $H_{1 \rightarrow 12}$ terminates at vertex 1 .
(xi) Let $\{(9,5),(8,4)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 9} \cup(9,5) \cup(5,1)$. Since there is no path $P_{4 \rightarrow 9}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4 .
(xii) Let $\{(9,5),(7,3)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 7} \cup(7,3) \cup P_{3 \rightarrow 9} \cup(9,5) \cup(5,1)$. Since there is no path $P_{8 \rightarrow 7}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 8 .
(xiii) Let $\{(9,5),(6,2)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 6} \cup(6,2) \cup P_{2 \rightarrow 9} \cup(9,5) \cup(5,1)$. Since there is no path $P_{8 \rightarrow 6}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 8.
(xiv) Let $\{(8,4),(7,3)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 7} \cup(7,3) \cup P_{3 \rightarrow 5} \cup(5,1)$, and $P_{4 \rightarrow 7}=(4,7)$. Since there is no path $P_{3 \rightarrow 5}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at 3 .
(xv) Let $\{(8,4),(6,2)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 6} \cup(6,2) \cup P_{2 \rightarrow 5} \cup(5,1)$. Since there is no path $P_{4 \rightarrow 6}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4.

Case 3. If $|B|=5$. Since $(12,8),(5,1) \in B$, then $C_{3}{ }^{6}=20$ subcases arise:
(i) $\{(6,2),(7,3),(8,4)\}$, (ii) $\{(6,2),(7,3),(9,5)\}$, (iii) $\{(6,2),(8,4),(11,7)\}$,
(iv) $\{(6,2),(7,3),(11,7)\}$, (v) $\{(6,2),(9,5),(11,7)\}$, (vi) $\{(10,6),(7,3),(6,2)\}$,
(vii) $\{(10,6),(7,3),(8,4))\}$, (viii) $\{(10,6),(11,7),(6,2)\}$, (ix) $\{(10,6),(11,7),(7,3)\}$,
(x) $\{(10,6),(11,7),(8,4)\}$, (xi) $\{(10,6),(11,7),(9,5)\}$. Since, for (i)-(xi) subsets B, there exist $V_{i} \in V\left(H_{12 \rightarrow 1} \backslash\{1,12\}\right)$ such that $\left|V_{i}\right|>3$, this is a contradiction.
(xii) Let $\{(6,2),(8,4),(9,5)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 11} \cup(11,7) \cup P_{7 \rightarrow 9} \cup$ $(9,5) \cup(5,1)$. Since there is no path $P_{4 \rightarrow 11}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4 .
(xiii) Let $\{(6,2),(8,4),(10,6)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 11} \cup(11,7) \cup(7,3) \cup P_{3 \rightarrow 9} \cup$ $(9,5) \cup(5,1)$, and $P_{8 \rightarrow 11}=(8,11)$. Since there is no path $P_{3 \rightarrow 9}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 3 .
(xiv) Let $\{(6,2),(9,5),(10,6)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 11} \cup(11,7) \cup(7,3) \cup P_{3 \rightarrow 8} \cup$ $(8,4) \cup(4,5) \cup(5,1)$, and $P_{8 \rightarrow 11}=(8,11)$. Since there is no path $P_{3 \rightarrow 8}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 3 .
$(x v)$ Let $\{(6,2),(7,3),(10,6)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 10} \cup(10,6) \cup P_{6 \rightarrow 9} \cup$
$(9,5) \cup(5,1)$. Since there is no path $P_{4 \rightarrow 10}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4.
(xvi) Let $\{(7,3),(8,4),(11,7)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 10} \cup(10,6) \cup(6,2) \cup P_{2 \rightarrow 9} \cup$ $(9,5) \cup(5,1)$. Since there is no path $P_{8 \rightarrow 10}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 8 .
(xvii) Let $\{(7,3),(8,4),(9,5)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 10} \cup(10,6) \cup$ $(6,2) P_{2 \rightarrow 5} \cup(5,1)$. Since there is no path $P_{4 \rightarrow 10}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4. (xviii) Let $\{(7,3),(9,5),(11,7)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup P_{8 \rightarrow 10} \cup(10,6) \cup(6,2) \cup$ $P_{2 \rightarrow 7} \cup(7,3) \cup P_{3 \rightarrow 5} \cup(5,1)$. Since there is no path $P_{8 \rightarrow 10}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 8 .
(xix) Let $\{(8,4),(9,5),(10,6)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 7} \cup(7,3) \cup P_{3 \rightarrow 9} \cup$ $(9,5) \cup(5,1)$, and $P_{4 \rightarrow 7}=(4,7)$. Since there is no path $P_{3 \rightarrow 9}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 3 .
(xx) Let $\{(8,4),(9,5),(11,7)\} \subset B$. Thus $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 6} \cup(6,2) \cup P_{2 \rightarrow 9} \cup$ $(9,5) \cup(5,1)$. Since there is no path $P_{4 \rightarrow 6}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4 .

Case 4. If $|B|=6$. Since $(12,8),(5,1) \in B$, then $C_{4}{ }^{6}=15$ subcases arise:
(i) $\{(11,7),(10,6),(9,5),(8,4)\}$, (ii) $\{(11,7),(10,6),(9,5),(7,3)\}$,
(iii) $\{(11,7),(10,6),(9,5),(6,2)\}$, (iv) $\{(6,2),(7,3),(8,4),(9,5)\}$,
(v) $\{(6,2),(7,3),(8,4),(10,6)\}$, (vi) $\{(6,2),(7,3),(8,4),(11,7)\}$,
(vii) $\{(6,2),(7,3),(11,7),(10,6)\}$, (viii) $\{(6,2),(7,3),(11,7),(9,5)\}$,
(ix) $\{(6,2),(8,4),(11,7),(10,6)\},(\mathrm{x})\{(6,2),(8,4),(11,7),(9,5)\}$,
(xi) $\{(6,2),(7,3),(10,6),(9,5)\}$, (xii) $\{(7,3),(8,4),(11,7),(10,6)\}$,
(xiii) $\{(7,3),(8,4),(9,5),(10,6)\}$. Since for (i)-(xiii) subsets of B there exist $V_{i} \in V\left(H_{12 \rightarrow 1} \backslash\right.$ $\{1,12\})$ such that $\left|V_{i}\right|>3$, this is a contradiction.
(xiv) $\{(6,2),(8,4),(10,6),(9,5)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 10} \cup(10,6) \cup$ $(6,2) \cup P_{2 \rightarrow 9} \cup(9,5) \cup(5,1)$. Since there is no path $P_{4 \rightarrow 7}$ in $H_{12 \rightarrow 1}$ (as otherwise $\left.\left|V_{i}\right|>3\right)$, $H_{1 \rightarrow 12}$ terminates at vertex 4 .
$(\mathrm{xv})\{(7,3),(8,4),(11,7),(9,5)\} \subset B$. Then $H_{12 \rightarrow 1}=(12,8) \cup(8,4) \cup P_{4 \rightarrow 11} \cup(11,7) \cup$ $(7,3) \cup P_{3 \rightarrow 9} \cup(9,5) \cup(5,1)$. Since there is no path $P_{4 \rightarrow 11}$ in $H_{12 \rightarrow 1}, H_{1 \rightarrow 12}$ terminates at vertex 4 .

Case 5. If $|B|=7$. Since $(12,8),(5,1) \in B$, then the following $C_{5}{ }^{6}=6$ subcases arise:
(i) $\quad\{(11,7),(10,6),(9,5),(8,4),(7,3)\} \subset B$
(ii) $\{(11,7),(10,6),(9,5),(8,4),(6,2)\} \subset B$
(iii) $\{(11,7),(10,6),(9,5),(7,3),(6,2)\} \subset B$.
(iv) $\{(11,7),(10,6),(8,4),(7,3),(6,2)\} \subset B$.
(v) $\{(11,7),(9,5),(8,4),(7,3),(6,2)\} \subset B$.
(vi) $\{(10,6),(9,5),(8,4),(7,3),(6,2)\} \subset B$.

For all these six subcases, since there exist $V_{i} \in V\left(H_{12 \rightarrow 1} \backslash\{1,12\}\right)$ such that $\left|V_{i}\right|>3$, this is a contradiction because

Case 6. If $|B|=8$. Then $A=B$ and $V\left(H_{12 \rightarrow 1} \backslash\{1,12\}\right)=\{2,3,4,5,6,7,8,9,10,11\}=$ V_{1}, where V_{1} is a set of successive vertices. Since $\left|V_{1}\right|>3$, this is a contradiction.

In summary, $T_{12}\langle 1,3,4 ; 4\rangle$ is non-hamiltonian.
By Theorem 4 and Theorem $5, T_{n}\langle 1,3,4 ; 4\rangle$ is not hamiltonian for $n \in\{6,10\}$. This together with Claim 1 and Claim 2 shows that $T_{n}\langle 1,3,4 ; 4\rangle$ is hamiltonian if and only if $n \notin\{6,10,12\}$.

This completes the proof.

4 Toeplitz graphs $T_{n}\langle 1,3,4 ; t\rangle$ with $t=9$

Theorem 7. [20] $T_{n}\langle 1,3,4 ; 9\rangle$ is hamiltonian for all n different from 15.
In [20], it was shown that $T_{n}\langle 1,3,4 ; 9\rangle$ is hamiltonian for all n different from 15 , further it was stated as conjecture that $T_{15}\langle 1,3,4 ; 9\rangle$ is non-hamiltonian. But here we show that $T_{15}\langle 1,3,4 ; 9\rangle$ is hamiltonian. Thus we refine Theorem 7 as follows:

Theorem 8. $T_{n}\langle 1,3,4 ; 9\rangle$ is hamiltonian for all n.
Proof. Claim. $T_{15}\langle 1,3,4 ; 9\rangle$ is hamiltonian.
Indeed $T_{15}\langle 1,3,4 ; 9\rangle$ contains the hamiltonian cycle

$$
(1,2,3,7,11,14,5,9,13,4,8,12,15,6,10,1)
$$

Figure 11: Hamiltonian cycle in $T_{15}\langle 1,3,4 ; 9\rangle$

By Theorem $7, T_{n}\langle 1,3,4 ; 9\rangle$ is hamiltonian for all n different from 15 . This together with the above claim shows that $T_{n}\langle 1,3,4 ; 9\rangle$ is hamiltonian for all n.

This finishes the proof.

Conjecture: $T_{n}\langle 1,3,4 ; 3\rangle$ is non-hamiltonian for $n \notin\{5,6,7,9\}$.

5 Concluding Remarks

In this paper we refine results of [20], and address to the stated conjectures in [20]. This completes the investigation of hamiltonnicity of the Toeplitz Graph $T_{n}\langle 1,3,4 ; t\rangle$ by proposing the above conjecture.

References

[1] A. Ahmad, F. Nadeem, A. Gupta, On super edge-magic deficiency of certain Toeplitz graphs, Hacet. J. Math. Stat., 47 (3), 513-519 (2018).
[2] A. Ahmad, M. Baca, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, U. P. B. Sci. Bull. ser. A., 78 (4), 155-162 (2016).
[3] S. Akbari, S. Hossein Ghorban, S. Malik, S. Qajar, Conditions for regularity and for 2-connectivity of Toeplitz graphs, Util. Math., 110, 305-314 (2019).
[4] L. Aslam, S. Sarwar, M. J. Yousaf, S. Waqar, Cycle discrepancy of cubic Toeplitz graphs, Pakistan J. Eng. Appl. Sci., 22, 14-19 (2018).
[5] S. Bau, A generalization of the concept of Toeplitz graphs, Mong. Math. J., 15, 54-61 (2011).
[6] R. van Dal, G. Tijssen, Z. Tuza, J. A. A. van der Veen, Ch. Zamfirescu, T. Zamfirescu, Hamiltonian properties of Toeplitz graphs, Discrete Math., 159, 69-81 (1996).
[7] R. Euler, H. LeVerge, T. Zamfirescu, A characterization of infinite, bipartite Toeplitz graphs, in: Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory. 1, Academia Sinica, World Scientific, Singapore, 119-130 (1995).
[8] R. Euler, Coloring infinite, planar Toeplitz graphs, Tech. Report, LIBr, November (1998).
[9] R. Euler, Coloring planar Toeplitz graphs and the stable setpolytope, Discrete Math., 276, 183-200 (2004).
[10] R. Euler, Characterizing bipartite Toeplitz graphs, Theor. Comput. Sci., 263, 47-58 (2001).
[11] R. Euler, T. Zamfirescu, On planar Toeplitz graphs, Graphs and Combinatorics, 29, 1311-1327 (2013).
[12] C. Heuberger, On hamiltonian Toeplitz graphs, Discrete Math., 245, 107-125 (2002).
[13] S. Hossein Ghorban, Toeplitz graph decomposition, Transactions on Combinatorics, 1 (4), 35-41 (2012).
[14] J. B. Liu, M. F. Nadeem, H. M. A. Siddiqui, W. Nazir, Computing metric dimension of certain families of Toeplitz graphs, IEEE Access, 7, 126734-126741 (2019).
[15] M. Baca, Y. Bashir, F. Nadeem, A. Shabbir, On super edge-antimagic total labeling of Toeplitz graphs, Springer Proceedings in Mathematics and Statistics, 98, 1-10 (2015).
[16] M. F. Nadeem, A. Shabbir, T. Zamfirescu, Hamiltonian connectedness of Toeplitz graphs, Mathematics in the 21st Century, Springer Proceedings in Mathematics and Statistics, 98, 135-149 (2015).
[17] S. Nicoloso, U. Pietropaoli, On the chromatic number of Toeplitz graphs, Discrete Applied Mathematics, 164 (1), 286-296 (2014).
[18] S. Malik, A. M. Qureshi, Hamiltonian cycles in directed Toeplitz graphs, Ars Comb., CIX April, 511-526 (2013).
[19] S. Malik, Hamiltonian cycles in directed Toeplitz graphs-Part 2, Ars Comb., 116, 303-319 (2014).
[20] S. Malik, Hamiltonicity in directed Toeplitz graphs of maximum (out or in) degree 4, Util. Math., 89, 33-68 (2012).
[21] S. Malik, T. Zamfirescu, Hamiltonian connectedness in directed Toeplitz graphs, Bull. Math. Soc. Sci. Math. Roumanie, 53 (101), 145-156 (2010).
[22] S. Malik, Hamiltonian cycles in directed Toeplitz graphs $T_{n}\left\langle 1,2 ; t_{1} \leq 5, t_{2}\right\rangle$, Util. Math., 99, 3-17 (2016).
[23] S. Malik, Hamiltonicity in directed Toeplitz graphs $T_{n}\left\langle 1,2 ; t_{1}, t_{2}\right\rangle$, Australas. J. Combin., 78 (3), 434-449 (2020).
[24] H. Zafar, N. Akhter, M. K. Jamil, F. Nadeem, Hamiltonian connectedness and Toeplitz graphs, American Scientific Research Journal for Engineering, Technology, and Sciences, 33 (1), 255-268 (2017).

Received: 13.10.2020
Revised: 04.05.2021
Accepted: 04.05.2021

