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Abstract

Let E be a real Banach space, K be a cone in E and L be a linear positive and
compact self mapping defined on E. The operator L is said to be a Krein-Rutman
operaor if it has a positive characteristic value λL such that for all h ∈ K r {0E} ,
the nonhomogeneous equation u − θLu = h has no positive solution if θ ≥ λL and a
unique positive solution if θ ∈ (0, λL). M. G. Krein and M. A. Rutman have proved
that if L is strongly positive then L is a Krein-Rutman operator with λL = 1/r(L).
Here r(L) refers to the spectral radius of L.

The main goal of this article is to provide sufficient conditions making of L a
Krein-Rutman operator. The particular case where E is a Hilbert space and L is a
self-adjoint operator is examined.

We also present in this article a version of the Banach contraction principle adapted
to the case where the cone K is normal and minihedral, making of the Banach space
E a Riesz space.
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1 Introduction

Throughout this article, E is a real Banach space. The standard notations E∗ and L (E)
refer respectively to the topological dual of E and the set of all linear bounded self-mapping
defined on E. Let K be a cone in E inducing the order ≼K on E and let L be a positive
compact operator in L (E). We are mainly concerned in this work with the solvability in
K r {0E} of the abstract equation

u− µLu = h (1.1)

where µ is a positive real parameter and h ∈ K.
The set of positive characteristic value (pcv for short) of the operator L consists of the

set of positive real numbers µ for which Equation (1.1) for h = 0E is solvable in K r {0E}.
The Krein-Rutman theory concerns the case of Equation (1.1) where the operator L is
strongly positive and it states that:

a) The operator L has a unique pcv µL = 1/r(L), where r(L) denotes the spectral radius
of L.
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b) Equation (1.1) within h ∈ K r {0E} , is uniquely solvable in K for µ < µL and has no
solution in K for µ ≥ µL.

c) As a pcv of L, µL is algebraically simple.

d) µL is a simple pcv of the adjoint operator L∗ of L.

For a detailed presentation on the Krein-Rutman theory we refer the reader to [7] and
[12].

It is proved in [3] (Proposition 3.16) that if the operator L is strongly positive, then its
unique pcv has the property:

e)

µL = λ−L,K = sup {λ ≥ 0 : ∃u ≻K 0E such that λLu ≼K u}
= λ+L,K = inf {λ ≥ 0 : ∃u ≻K 0E such that λLu ≽K u} .

The constants λ−L,K and λ+L,K have been introduced in [1] and [3] for positive maps in
L (E) and for more general positive maps in [4] and [5]. Define for a positive mapping
N : E → E the nonnegative real number λN,K = supΛN,K where

ΛN,K = {λ ≥ 0 : ∃u ≻K 0E such that λNu ≼K u} .

We have from the above cited works, that if N,N1 : E → E are two positive mappings
such that λN1,K > 0 and N(u) ≼K N1(u) for all u ≻K 0E , then λN,K ≥ λN1,K > 0. This
property becomes more interesting when the mapping N is completely continuous. In such
a case, we have that the set IN defined by

IN = {δ > 0 : i (δN,B(0E , ρ) ∩K,K) = 0 for all ρ > 0}

is nonempty, where i(·, ·, ·) refers to the fixed point index. Roughly speaking, this property
still holds in the case where the condition N(u) ≽K N1(u) for all u ≻K 0E ,, is replaced by
N(u) ≽K N1(u− g(u)) for all u ≻K 0E , where g : E → E is ◦ (∥u∥) at 0E or at ∞. In such
a situation, we have that the set JN defined by

JN = {(δ, ρ) ∈ (0,+∞) : i (δN,B(0E , ρ) ∩K,K) = 0}

is nonempty. Such operators N1 are said to have the strongly index jump property, see [1,
3, 4, 5] where this topological property was extensively used to obtain fixed point theorems
for positive maps.

Unfortunately, there are functional spaces whose natural cone is not solid and the Krein-
Rutman theorem can not be used. This is the case of Lp(I) where I is an interval of R. Its
natural cone {u ∈ Lp(I) : u ≥ 0 a.e. in I} is not solid as it is mentioned in Example 1.1.3 in
[9] and on page 219 in [7]. Thus, the main goal of this work is to adapt the Krein-Rutman
theory to such spaces. In this article, a positive compact operator L ∈ L (E) having a
pcv λL such that Equation (1.1), within h ∈ K r {0E} , is uniquely solvable in K for
µ < µL and has no solution in K for µ ≥ µL, is said to be a Krein-Rutman operator (KRO
for short). Theorems 3, 6 and Corollaries 2, 3 provide sufficient conditions for a positive
compact operator to be a KRO.
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We also present in this article a version of Banach contraction principle in the case
where the cone K is normal and minihedral, making of the Banach space E a Riesz space.
We end the paper with two applications of our main results. The first application concerns
the generalized Fisher equation and in the second one, we apply our version of the Banach
contraction principle to obtain an existence and uniqueness result for a third-order boundary
value problem (bvp for short) posed on the half-line.

2 Abstract background

Definition 1. A nonempty closed and convex set K is said to be a cone in E if
i) (tK) ⊂ K for all t ≥ 0 and
ii) K ∩ (−K) = {0E} .

It is well known that if K is a cone in E, then K induces a partial order in the Banach
space E. We write for all x, y ∈ X : x ≼K y (or y ≽K x) if y − x ∈ K and x ≺K y (or
y ≻K x) if y − x ∈ K r {0E}. Thus, vectors lying in K r {0E} are said to be positive.

Definition 2. Let Ω be a nonempty set in E. Then

a) u ∈ E is said to be an upper bound of Ω if v ≼K u for all v ∈ Ω;

b) u ∈ E is said to be a lower bound of Ω if v ≽K u for all v ∈ Ω;

c) u ∈ E is said to be the least upper bound of Ω and we write u = supΩ, if u is an upper
bound of Ω and v ≼K w for all v ∈ Ω implies u ≼K w;

d) u ∈ E is said to be the greatest lower bound of Ω and we write u = inf Ω, if u is a lower
bound of Ω and v ≽K w for all v ∈ Ω implies u ≽K w.

Definition 3. Let K be a cone in E. Then K is said to be

a) total, if K −K = E,

b) normal if there is a positive constant nK such that for all u, v ∈ E, 0E ≼K u ≼K v
implies ∥u∥ ≤ nK ∥v∥,

c) minihedral if sup (x, y) exists for all x, y ∈ E.

Remark 1. Notice that if a cone K is minihedral then inf (x, y) exists for all x, y ∈ E.
Moreover, we have inf(x, y) = − sup(−x,−y).

Remark 2. It is well known that if K is a minihedral cone inducing the order ≼K on E,
then (E,≼K) is a Riesz space or a Banach lattice in the sence given in [10]..

Definition 4. Let K be a minihedral cone in E inducing the order ≼K on E. For x ∈ E, we
define the positive part, the negative part and the absolute value of the vector x respectively
by

x+ = sup(x, 0), x− = sup(−x, 0) and |x| = x+ + x−.

Proposition 1. ([10]) Let K be a minihedral cone in E inducing the order ≼K on E. Then
the absolute value define then a self-mapping on E and it has the following properties:
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i) |x| ≽K 0E for all x ∈ E,

ii) |x| = 0E ⇒ x = 0E ,

iii) |tx| = |t| |x| for all x ∈ E and t ∈ R,

iv) |x+ y| ≼K |x|+ |y| for all x, y ∈ E,

v) ||x| − |y|| ≼K |x− y| for all x, y ∈ E.

Proposition 2. Let K be a minihedral cone in E, then the following assertions are equiv-
alents.

i) The mapping |·| : E → K is continuous.

ii) The mapping |·| : E → K is continuous at 0E .

iii) There exists η > 0 such that ∥|u|∥ ≤ η ∥u∥ for all u ∈ E.

Proof. The equivalence between i) and ii) is due to the inequality in v) of Proposition 1. It
is easy to see that iii) implies ii) and , hence let us prove that ii) implies iii). Let ϵ0 > 0,
there is δ0 > 0 such that for all u ∈ E, ∥u∥ ≤ δ0 implies ∥|u|∥ ≤ ϵ0. Therefore, for all u ∈ E
with u ̸= 0E , we have

δ0
∥u∥

∥|u|∥ =

∥∥∥∥∣∣∣∣ δ0u∥u∥

∣∣∣∣∥∥∥∥ ≤ ϵ0,

leading to
∥|u|∥ ≤ η ∥u∥ for all u ∈ E

with η = ϵ0/δ0.

Remark 3. It follows from Proposition 2 that the mapping |·| : E → K is continuous if
and only if sup∥u∥=1 ∥|u|∥ <∞.

Definition 5. Let K be a cone in E, a mapping L ∈ L (E) is said to be:
i) positive, if L (K) ⊂ K,
ii) strongly positive, if K is solid and L (K r {0E}) ⊂ int (K) .

For a cone K in E, LK (E) will denote the subset in L (E) of all positive mapping. The
dual cone associated with K is defined by

K∗ = {φ ∈ E∗ : (φ, u) ≥ 0 for all u ∈ K} .

In general, K∗ is a not a cone with respect of the Definition 1, it happens that K∗ ∩
(−K∗) ̸= {0E∗}. However, K∗ is a cone if and only if K is total. With this definition of the
dual cone, for all operators L in LK (E) , L∗ the adjoint operator associated with L belongs
to LK∗ (E∗).

Definition 6. Let K be a cone in E. A vector u ∈ K is said to be strictly positive if
(φ, u) > 0 for all φ ∈ K∗ r {0E∗} and a functional φ ∈ K∗ is said to be strictly positive, if
(φ, u) > 0 for all u ≻K 0E.
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Definition 7. Let K be a cone in E and L ∈ LK (E) , a positive real number µ is said to
be a pcv of L if there exist u ≻K 0E such that µLu = u. The vector u is then a positive
eigenvector associated with the pcv µ.

For detailled presentations on cones and positivity we refer the reader to [7] and [9]. The
reader will observe that the definition of the minihedrality given here is that of [7]. In [9],
a cone C is said to be minihedral if sup(x, y) exists for all pair (x, y) ∈ E2 having an upper
bounded. To ensure the existence of sup(x, y) for all x, y ∈ E when such is the definition
of the minihedrality, one may assume that the cone C is generating (i.e. E = K − K).
Indeed, for all x, y ∈ E there exist x1, x2, y1, y2 ∈ K such that x = x1 −x2 and y = y1 − y2.
Therefore, we have x ≼K x1 + y1 and y ≼K x1 + y1.

In all this work, we use the following notations: for L ∈ L (E), CV (L) denotes the set
of all characteristic values of L. The spectral radius of L, is defined to be

r(L) =

{
inf
{
|µ|−1

: µ ∈ CV (L)
}

if CV (L) ̸= ∅,
0 if CV (L) ̸= ∅

and we have by the Gelfand formula

r(L) = lim
n→∞

∥Ln∥1/n .

For µ /∈ CV (L) , R (µ,L) = (I − µL)
−1

is the resolvent mapping associated with L and
we have for all µ ∈ C with |µ| < 1/r(L),

R (µ,L) = (I − µL)
−1

=

∞∑
n=0

µnLn. (2.1)

Notice that if K is a cone in E we have from (2.1) that R (µ,L) ∈ LK (E) for all
L ∈ LK (E) and all 0 < µ < 1/r(L).

We recall now briefly what is known as the Riesz-Schauder theory. Let L ∈ L (E) be
compact, we have:

A) CV (L) is empty or finite or consists of a sequence (µk) with lim |µk| = +∞,

B) L∗ is compact,

C) if µ ∈ CV (L) then the geometric multiplicity of µ, m(µ) = dimN(I − µL) < ∞ and
R (I − µL) is closed,

D) We have that CV (L) ⊂ CV (L∗). Moreover, for all µ ∈ CV (L),

N(I − µL)⊥ = R (I∗ − µL∗) ,

N (I∗ − µL∗)
⊥
= R (I − µL) ,

dimN(I − µL) = dimN(I∗ − µL∗).
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E) For all µ ∈ CV (L), there is a smallest n (µ) such that for all k ≥ n (µ)

Nµ = N(I − µL)n(µ) ⊃ N(I − µL)k, Rµ = R (I − µL)
n(µ) ⊂ R (I − µL)

k
,

L (Nµ) ⊂ Nµ, L (Rµ) ⊂ Rµ and Nµ ⊕Rµ = E.

F) If µ ∈ CV (L) and Pµ and Qµ are respectively the projections of E on Nµ and Rµ, then

LPµ = PµL, and LQµ = QµL.

The integer κ (µ) = dimN(I −µL)n(µ) is the algebraic multiplicity of the characteristic
value µ. For a detailed presentation on the Riesz-Schauder theory, we refer the reader to
[11].

The following theorem is due to M. G. Krein and M. A. Rutman and plays a key role
in this paper.

Theorem 1 ([7, 12]). Let K be a cone in E and let L be a compact operator in LK (E) .
Assume that the cone K is total in E and r(L) > 0, then 1/r(L) is a pcv of L and L∗.

3 Main results

3.1 Notations and preliminaries

The statements of the main results in this article as well as their proofs need to introduce
some notations and preliminary lemmas. For any cone K in E and any operator L in
LK (E), we let

FK = K −K
CVK(L) = {µ > 0 : ∃u ≻K 0E such that µLu = u} ,

µ−
L,K =

{
inf CVK(L) if CVK(L) ̸= ∅
+∞ if CVK(L) = ∅

µ+
L,K =

{
supCVK(L) if CVK(L) ̸= ∅
+∞ if CVK(L) = ∅.

Notice that K is a total cone in FK , L(FK) ⊂ FK and LF , the restriction of L to FK ,
belongs to LK (FK) and is compact if L is. Moreover, we have CVK(L) = CVK(LF ).

With any cone K in E and any operator L in LK (E) is associated the abstract equation:

u− µLu = h (Eµ,h,L)

where µ is a positive real parameter and h ∈ K.
As it is mentioned in the section Introduction, we are concerned by the solvability of

the equation (Eµ,h,L) in K. For this reason, we introduce the following constants γ−L,K and

γ+L,K that are related to the positive solvability of Equation (Eµ,h,L).

γ−L,K = sup

{
γ ≥ 0 : for all µ ∈ (0, γ) and h ≻K 0E , Equation
(Eµ,h,L) has a unique solution in K

}
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γ+L,K = inf

{
γ ≥ 0 : for all µ ∈ (γ,+∞) and h ≻K 0E , Equation
(Eµ,h,L) has no solution in K

}
.

Notice that for all µ ∈ (0,+∞) r CV (L) and h ≻K 0E , u = R (µ,L)h is the unique
solution of Equation (Eµ,h,L). This means that the constant γ+L,K represents the nonnegative

real number at which the resolvent mapping stops to be positive, i.e. R (µ,L) (K) * K for
µ > γ+L,K . Furthermore, since (2.1) guarantees that for all µ < 1/r(L), R (µ,L) is a positive

mapping, we have γ+L,K ≥ 1/r(L). The definition of the constant γ−L,K implies that for all

µ > γ−L,K , the set R (µ,L) (K) ∩ (K r {0E}) is nonempty, we can say that the constant

γ−L,K represents the first nonnegative real number at which the resolvent mapping starts to

be positive. Clearly, it yields from their definitions that γ−L,K ≤ γ+L,K .

Let λ−L,K and λ+L,K be the constants associated with the cone K in E and the operator
L in LK (E), defined by

λ+L,K = supΛ+
L,K ,

λ−L,K =

{
inf Λ−

L,K if Λ−
L,K ̸= ∅,

+∞ if Λ−
L,K = ∅.

where
Λ−
L,K = {λ > 0 : ∃u ≻K 0E such that λLu ≽ u} ,

Λ+
L,K = {λ ≥ 0 : ∃u ≻K 0E such that λLu ≼ u} .

It is proved in [2] that if L is compact then λ−L,K and λ+L,K have the following properties:

G) λ−L,K ≤ λ+L,K ,

H) If µ ∈ CVK(L) then λ−L,K ≤ µ ≤ λ+L,K ,

I) if Λ−
L,K ̸= ∅ then λ−L,K is the smallest pcv of L and if λ+L,K < +∞ then λ+L,K is the

largest pcv of L (see Propositions 3.14 and 3.15 in [5]).

For µ ∈ CVK(L) we denote by PNµ
and PRµ

the projections on the Banach subspaces
of E, Nµ and Rµ, respectively.

The following lemmas will be used in the proof of the main results in this paper.

Lemma 1. If r(LF ) > 0 then λ−L,K ≥ 1/r(LF ).

Proof. We distinguish two cases:
i) Λ−

L,K = ∅, in this case we have λ−L,K = +∞ ≥ 1/r(LF ).

ii) Λ−
L,K ̸= ∅, in this case let λ0 > 0, u0 ≻K 0E be such that λ0LFu0 = λ0Lu0 ≽K u0

and let us show that λ0 ≥ 1/r(LF ). By the contrary, suppose that λ0 < 1/r(LF ) and set
h0 = λ0Lu0 − u0 = λ0LFu0 − u0. We obtain then the contradiction

0E ≺K u0 = −R(λ0, LF )h0 = −
∑
n≥0

λn0L
n
Fh0 ≼K 0E .

This ends the proof.
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Lemma 2. Let K be a cone in E and let L be a compact operator in LK (E) . If for
µ ∈ CVK(L), K ∩Rµ = {0E}, then PNµ(K) is a cone in Nµ.

Proof. Since Assertion E guarantees that the linear mapping Π : E → Nµ × Rµ defined
by Π(x) =

(
PNµ

(x), PRµ
(x)
)
is a continuous bijection between Banach spaces, we conclude

by the open mapping theorem that Π is a linear homeomorphism between Banach spaces.
Therefore, Π (K) is a closed set in NL×RL and in particular PNµ

(K) is a closed set in Nµ.
Because of the linearity of the projection PNµ , we have that PNµ(K) is a convex set and(
tPNµ(K)

)
⊂ PNµ(K) for all t ≥ 0.

Let x ∈ PNµ(K) ∩
(
−PNµ(K)

)
, then there exist y, z ∈ K such that x = PNµ(y) and

−x = PNµ
(z) . This implies that PNµ

(y + z) = 0E and y + z ∈ K ∩ Rµ = {0E} , that is
y + z = y = z = 0E proving that x = 0E , ending the proof of PNµ

(K) is a cone.

3.2 A variant of Banach contraction principle

In all this subsection, we let K be a normal and minihedral cone in E.

Theorem 2. Let T : E → E be a continuous operator such that for all u, v ∈ E

|Tu− Tv| ≼K cL (|u− v|)

where L ∈ LK (E) and c ≥ 0. If cr (LF ) < 1, then T admits a unique fixed point.

Proof. The case c = 0 is obvious, so we suppose that c > 0.
Uniqueness. If u1 and u2 are two fixed point of T with u1 ̸= u2, then w = |u1 − u2| ≻K

0E and satisfies

w = |u1 − u2| = |Tu1 − Tu2| ≼K cL (|u1 − u2|) = cLw.

Hence, c ∈ Λ−
L,K ̸= ∅ and r(LF ) > 0. Indeed, we have by induction

Lnw ≽K
1

cn
w,

and then the normality of the cone K leads to

∥Ln
F ∥ ∥w∥ ≥ ∥Ln

Fw∥ = ∥Ln
Fw∥ ≥ 1

nKcn
∥w∥ .

From which we see that

r(LF ) = lim
n→+∞

n

√
∥Ln

F ∥ ≥ 1

c
> 0.

Therefore, this together with Lemma 1 lead to the contradiction

λ−L,K > 1/r (LF ) > c ≥ inf {λ ≥ 0 : ∃u ≻K 0E such that λLu ≽K u} = λ−L,K .

The uniqueness is proved.
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Existence. Let u0 ∈ E and consider the sequence (un) defined by un = Tun−1. We
have then for all n ≥ 1,

|un+1 − un| = |T (un)− T (un−1)| ≼K cL(|un − un−1|),

Since the operator L is increasing, we obtain

|un+1 − un| ≼K cnLn (|u1 − u0|)

Therefore, if m,n are two integers with m > n ≥ 1, then

|um − un| ≼K |um − um−1|+ |um−1 − um−2|+ ...+ |un+1 − un|
≼K cm−1Lm−1v + cm−2Lm−2v + ...+ cnLnv

where v = |u1 − u0|.
Thus, the normality of the cone K leads to

||um − un|| ≤ nK
(
cm−1||Lm−1v||+ cm−2||Lm−2v||+ ...+ cn||Lnv||

)
= nK (Sm−1 − Sn−1) ,

where Sn =
∑k=n

k=0 c
k||Lkv||.

Since v ≻K 0E , we have that

lim
n→+∞

n
√
||cnLnv|| = lim

n→+∞
n

√
||cnLn

F v|| ≤ c lim
n→+∞

n
√

∥v∥ n

√
||Ln

F || = cr(LF ) < 1.

that is (Sn) converges and

lim
n→+∞

||um − un|| ≤ lim
n→+∞

||Sm−1 − Sn−1|| = 0.

Therefore, the sequence (un)n is a Cauchy sequence and the completeness of E leads to
limn→+∞ un = u ∈ E. At the end, passing to the limit in un+1 = Tun, we obtain u = Tu.
Ending the proof.

Remark 4. Obseve that Theorem 2 holds true if T : E → E is replaced by T : Ω → Ω
where Ω is a nonemplty closed convex subset of E.

Remark 5. Clearly if L = I then r(LF ) = 1 and Theorem 2 coincide with the standard
Banach contraction principle. Notice that if L is compact then the condition r(LF ) > 0
in Theorem 2 is equivalent to that L has a positive eigenvalue, i.e. there are λ > 0 and
u ≻K 0E such that Lu = λu.

Remark 6. An operator satisfying the condition of Theorem 2 is not necessaraly a contrac-
tion. Indeed, let E = C ([0, 1]) equipped with its sup-norm ∥·∥∞, K the cone of nonnegative
functions lying in E and G : [0, 1] × [0, 1] → R the Green’s function associated with the

differential operator d2

dt2 and the Dirichlet boundary conditions, given by

G(t, s) =

{
s(1− t), if 0 ≤ s ≤ t ≤ 1,
t(1− s), if 0 ≤ t ≤ s ≤ 1.
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Let L, T : E → E be the operators defined for u ∈ E by

Lu(t) =
∫ 1

0
G(t, s)u(s)ds,

Tu(t) =
∫ 1

0
G(t, s) (cu(s) + h(s)) ds,

where c > 0 and h ∈ E.

It well known that K is normal genartor and minihedral with

u+(t) = max(u(t), 0), u−(t) = max(−u(t), 0) and |u| (t) = u+(t) + u−(t)

and L ∈ LK(E) with

r(L) =
1

π2
and ∥L∥ = sup

t∈[0,1]

∫ 1

0

G(t, s)ds =
1

8
.

After simple computations we obtain that for all u, v ∈ E

∥Tu− Tv∥∞ = c ∥L (u− v)∥∞ ≤ c ∥L∥ ∥u− v∥∞ =
c

8
∥u− v∥∞ (3.1)

and

|T (u− v)| = |cL (u− v)| ≤ cL (|u− v|) (3.2)

Being the best constant realizing (3.1), i.e. ∥L∥ = inf {k > 0 : ∥Lu∥∞ ≤ k ∥u∥∞ ∀u ∈ E},
we conclude that the mapping T is a contraction if and only if c < 8. Moreover, we deduce
from (3.2) that the condition of Theorem 2 is satisfied if and only if c < π2.

Notice that for c ∈
(
8, π2

)
the operator T satisfies the condition of Theorem 2 and it is

not a contraction.

Corollary 1. Assume that the mapping |·| : E → K is continuous and let T : E → E be
such that for all u, v ∈ E

|Tu− Tv| ≼K cL (|u− v|)

where L ∈ LK (E) and c ≥ 0. If r (LF ) > 0 and cr (LF ) < 1, then T admits a unique fixed
point.

Proof. We have to prove that the mapping T is continuous. For all u, v ∈ E, we have

∥Tu− Tv∥ ≤ nK ∥|Tu− Tv|∥
≤ n2Kc ∥L (|u− v|)∥
≤ n2Kc ∥L∥ ∥|u− v|∥
≤ n2Kηc ∥L∥ ∥u− v∥ ,

where η = sup∥u∥=1 ∥|u|∥ <∞ (see Remark 3).

Hence the mapping T is continous.
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3.3 Krein-Rutman operators

In all this subsection, we let K be a cone in E and L a compact operator in LK (E). The
first result of this subsection concerns constants λ−L,K , γ−L,K , µ−

L,K , µ+
L,K , λ+L,K , γ+L,K .

Proposition 3. We have

λ−L,K = γ−L,K = µ−
L,K ≤ µ+

L,K ≤ λ+L,K = γ+L,K .

Moreover, if λ+L,K < +∞ then λ+L,K = γ+L,K = µ+
L,K .

Proof. We distinguish the following two cases:

i) Λ−
L,K = ∅, in this case we have from Assertion H CVK(L) = ∅ and λ−L,K = µ−

L,K =

µ+
L,K = +∞. Moreover, we have R (µ,LF ) is defined and positive for all µ > 0 and so, for

all h ≻K 0E , u = R (µ,LF )h is the unique positive solution to Equation (Eθ,h0,L), proving
that γ−L,K = λ−L,K = µ−

L,K = µ+
L,K = +∞. Therefore, Assertion G leads to λ+L,K = µ+

L,K =

γ+L,K = +∞.

ii) Λ−
L,K ̸= ∅, we prove that γ−L,K ≤ µ−

L,K ≤ µ+
L,K ≤ γ+L,K . To this aim, let µ be an

arbitrary pcv of L having a positive eigenvector ψ and let (ϵn) be a sequence such that
lim ϵn = 0 and for all n ≥ 1, (µ− ϵn) /∈ CV (L). Such a choice is possible because of
Assertion A. Since for all n ≥ 1, ψ − (µ− ϵn)Lψ = ϵn

µ ψ, we have µ − ϵn ≤ γ+L,K leading

to µ = lim (µ− ϵn) ≤ γ+L,K .

Suppose that µ < γ−L,K and let θ ∈
(
µ, γ−L,K

)
r CVK(L), then the nonhomogeneous

equation (Eθ,h0,L) with h0 =
(

θ−µ
µ

)
ψ, admits a unique positive solution u0. Consequently,

v0 = u0+ψ ≻ 0E solves the equation v0−θLv0 = 0E , contradicting θ /∈ CVK(L) and proves
that µ ≥ γ−L,K . Since µ is arbitrary, all the above proves that γ−L,K ≤ µ−

L,K ≤ µ+
L,K ≤ γ+L,K .

At this stage, we conclude by means of Assertion I, that λ−L,K = 1/r(LF ) = µ−
L,K . We

have to prove now that λ−L,K ≤ γ−L,K . Let θ < λ−L,K = 1/r(LF ) be arbitrary and notice that
u is a positive solution to Equation (Eθ,h,L) if and only if u is a positive solution of Equation
(Eθ,h,LF

). Because uh = R(θ, LF )h is the unique positive solution, Equation (Eθ,h,LF
) has

a unique positive solution. This shows that λ−L,K = µ−
L,K = γ−L,K .

Because of Assertion H, we have µ+
L,K ≤ λ+L,K and if (λn), (un) are two sequences such

that limλn = λ+L,K , un ≻K 0E and un − λnLun ≻K 0E , then for all n ≥ 1 the equation

(Eλn,hn,L) where hn = un −λnLun has a positive solution and λn ≤ γ+L,K . Thus, passing to

the limit, we obtain λ+L,K = limλn ≤ γ+L,K .

On the contrary, suppose that λ+L,K < γ+L,K . Since for all θ ∈
(
λ+L,K , γ

+
L,K

)
and all

u ≻K 0E , u− θLu � 0E , Equation (Eθ,h,LF
) has no positive solution for all h ≻K 0E . This

contradicts the definition of the constant γ+L,K . Thus, we have proved that λ−L,K = γ−L,K =

µ−
L,K = 1/r(LF ) ≤ µ+

L,K ≤ λ+L,K = γ+L,K .

At the end, for the particular case where λ+L,K < +∞, we have from Assertion I that

λ+L,K = µ+
L,K = γ+L,K .
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Definition 8. The operator L is said to be a KRO if it has a pcv λL such that Equation
(Eµ,h,L) has a unique positive solution if µ < λL and Equation (Eµ,h,L) has no positive
solution if µ ≥ λL.

We obtain from Proposition 3 and the above definition the following proposition.

Proposition 4. If L is a KRO, then

λL = λ−L,K = γ−L,K = µ−
L,K = λ+L,K = γ+L,K = µ+

L,K

is the unique pcv of L.
Reciprocally, if

λL = λ−L,K = γ−L,K = µ−
L,K = λ+L,K = γ+L,K = µ+

L,K <∞

and for all h ≻K 0E Equation (EλL,h,L) has no positive solution then L is a KRO having a
unique pcv λL.

Definition 9. The operator L is said to have the property (H) if

µ ∈ CVK(L) implies µ has a strictly positive eigenvector.

The first main result of this subsection is:

Theorem 3. Assume that λ−L,K <∞ and L∗
F has the propety (H), then L is a KRO.

Proof. Since K is total in F and L∗
F has the property (H), we have from Theorem 1 that

λ−L,K = 1/r(LF ) is a pcv of LF and L∗
F and λ−L,K has a strictly positive eigenvector φ ∈ K∗.

Let for i = 1, 2, λi > 0, ui ≻ 0E be such λ1Lu1 ≼K u1 and λ2Lu2 ≽K u2, we have then

0 < (φ, u1) ≤ (φ, λ1Lu1) = (φ, λ1LFu1)

= λ1 (L
∗
Fφ, u1) =

λ1

λ−L,K

(φ, u1)

and

0 < (φ, u2) ≥ (φ, λ2Lu2) = (φ, λ2LFu2)

= λ2 (L
∗
Fφ, u2) =

λ1

λ−L,K

(φ, u2) ,

leading to λ2 ≤ λ−L,K ≤ λ1.
Because that λ2, λ1 are arbitrary, we obtain from Assertion G and Proposition 3 that

λL = λ−L,K = γ−L,K = µ−
L,K = λ+L,K = γ+L,K = µ+

L,K

is the unique pcv of L.
It remains to prove that for all h ≻K 0E , equation u − λLLu = h has no positive

solution. On the contrary, if this fails and for some h ≻K 0E there is u ≻K 0E such that
u− λLLu = h, we obtain the contradiction

0 < (φ, h) = (φ, u)− (φ, λLLu)

= (φ, u)− (φ, λLLFu)

= (φ, u)− (λLL
∗
Fφ, u)

= (φ, u)− (φ, v) = 0.
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Thus, Proposition 4 leads to L is a KRO, and this ends the proof.

Theorem 4. Assume that λ−L,K < ∞ and the operator L satisfies the condition (H), then

λ−L,K is the unique pcv of L and L∗
F is a KRO.

Proof. Notice that µ is a pcv of L if and only if µ is a pcv of LF . Since K is total in F and
Λ−
L,K ̸= ∅, by Theorem 1 we conclude that λ−L,K = 1/r(LF ) is a pcv of L and of L∗

F . Let u

be the strictly positive eigenvector associated with λ−L,K as a pcv of L and let φ ∈ K∗ be

the eigenvector associated with λ−L,K as a pcv of L∗
F . Thus, if µ ∈ CVK(L) has a strictly

positive eigenvector v, we obtain

0 < (φ, v) = (φ, µLv) = (µL∗φ, v) =
µ

λ−L,K

(φ, v) ,

leading to µ = λ−L,K .

Now, let h ≻K∗ 0F∗ and suppose that Equation (Eλ−
L,K ,h,L∗

F
) has a positive solution ψ.

We obtain then the contradiction

0 < (h, u) = (ψ, u)−
(
λ−L,KL

∗
Fψ, u

)
= (ψ, u)−

(
ψ, λ−L,KLFu

)
= (ψ, u)− (ψ, u) = 0.

This proves that for all h ≻K∗ 0F∗ , Equation (Eλ−
L,K ,h,L∗

F
) has no positive solution. There-

fore, we conclude from Proposition 4 the operator L∗
F is a KRO, and the proof is finished.

We obtain from Theorem 1 and Theorem 4 the following corollary.

Corollary 2. Assume that the cone K is total and r(L) > 0. If the operators L and L∗

have the property (H), then L and L∗ are KRO.

The following theorem consider the case where E is a Hilbert space.

Theorem 5. Assume that E is a Hilbert space and the operator L has the property (H) .
If λ−L,K <∞ then λ−L,K is a pcv of L∗ and L∗ is a KRO.

Proof. Denote by < ·, · > the inner product in E and let W be the orthogonal subspace
of F . Because that K is a total cone in F and λ−L,K = 1/r(LF ) = 1/r(L∗

F ) > 0, we have

from Theorem 1, that λ−L,K is a pcv of L∗
F having an eigenvector u ≻K∗ 0F∗ , namely, for

all v ∈ F, we have

< u, v >=< λ−L,KL
∗
Fu, v >=< u, λ−L,KLF v > .
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Since L∗ (K∗) ⊂ K∗ and u ∈ K∗, we have L∗ (u) ∈ F ∗ = F and so, L∗u − L∗
Fu ∈ F.

Moreover, we have for all v ∈ F

λ−L,K < L∗u− L∗
Fu, v >=< λ−L,KL

∗u, v > − < λ−L,KL
∗
Fu, v >

=< λ−L,Ku, Lv > − < λ−L,Ku, LF v >

=< λ−L,Ku, LF v > − < λ−L,Ku, LF v >= 0,

proving that L∗u − L∗
Fu ∈ W . Therefore, L∗u − L∗

Fu ∈ W ∩ F = {0E} , leading to
L∗u = L∗

Fu = λ−L,Ku. This ends the proof.

We deduce from Theorem 5 the following corollary.

Corollary 3. Assume that E is a Hilbert space and the operator L is selfadjoint having the
property (H) . If λ−L,K <∞ then L is a KRO.

Theorem 6. Assume that λ−L,K < ∞, m(λ−L,K) = κ(λ−L,K) and for all h ≻K 0E Equation
(Eλ−

L,K ,h,L) has no solution in E. Then L is a KRO.

Proof. We have from Assertion E that E = Nλ−
L,K

⊕ Rλ−
L,K

and notice that K ∩ Rλ−
L,K

=

{0E}. Indeed, if for h ≻K 0E there is v ∈ E and k ≥ 1 such that h =
(
I − λ−L,KL

)k
(v), then

h = w − λ−L,KLw where w =
(
λ−L,KI − L

)k−1

(v), contradicting Hypothesis that Equation

(Eλ−
L,K ,h,L) has no solution in E. Therefore, we conclude by Lemma 2 that C = PN

λ
−
L,K

(K)

is a cone in Nλ−
L,K

.

Since dim(Nλ−
L,K

) < ∞, namely Nλ−
L,K

is separable, we conclude from Assertion c) of

Proposition 19.3 in [7], that there is φ ∈ N∗
λ−
L,K

such that (φ, u) > 0 for all u ≻C 0E .

Consider φ̃ = φ◦PN
λ
−
L,K

, clearly φ̃ ∈ E∗ and observe that for all u ≻K 0E , PN
λ
−
L,K

u ≻C

0E and (φ̃, u) = (φ,PN
λ
−
L,K

u) > 0. Indeed, PN
λ
−
L,K

u = 0E for some u ≻K 0E leads

to the contradiction u = PR
λ
−
L,K

u ∈ K ∩ Rλ−
L,K

= {0E} . Thus, taking in consideration

m(λ−L,K) = κ(λ−L,K) and Assertion F, we obtain for all u ∈ E

(λ−L,KL
∗φ̃, u) = (φ̃, λ−L,KLu) = (φ, λ−L,KPN

λ
−
L,K

Lu) = (φ, λ−L,KLPN
λ
−
L,K

u)

= (φ, λ−L,KLN
λ
−
L,K

PN
λ
−
L,K

u) = (φ,PN
λ
−
L,K

u) = (φ,PN
λ
−
L,K

u)

= (φ̃, u),

proving that φ̃ is a strictly positive eigenvector associated with the pcv λ−L,K of L∗.
Thus, we conclude by Proposition 4 that L is a KRO. This ends the proof.

We deduce from Theorem 6 the following corollary.

Corollary 4. Assume that λ−L,K < ∞, m(λ−L,K) = 1 and for all h ≻K 0E Equation
(Eλ−

L,K ,h,L) has no solution in E. Then L is a KRO.
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4 On the generalized Fisher equation

4.1 Notations and main results

Let c and λ be two positive constants and consider the linear bvp{
−u′′ + cu′ + λu = µqu+ h in R,
u(−∞) = u(+∞) = 0

(4.1)

where µ is a real parameter, and q, h ∈ E+ with

E =
{
u ∈ C (R,R) : lim|t|→∞ u(t) = 0

}
,

E+ = {u ∈ E : u ≥ 0 in R} .

For the physical interest, we refer the reader to [8], where authors were interested by
existence of positive eigenvalues to the bvp (4.1).

The statement of main results of this section and their proofs need to introduce some
notations. In what follows, we let G and G∗ be the functions defined by

G(t, s) =
1

r2 − r1

{
exp(r1(t− s)) if s ≤ t
exp(r2(t− s)) if t ≤ s

G∗(t, s) =
1

ρ2 − ρ1

{
exp(ρ1(t− s)) if s ≤ t
exp(ρ2(t− s)) if t ≤ s

where r1 < 0 < r2 are the solutions of the characteristic equation −X2 + cX + λ = 0 and
ρ1 < 0 < ρ2 are the solutions of the characteristic equation −X2 − cX + λ = 0.

We let Ep be the linear space defined by

Ep =

{
u ∈ C(R,R) : lim

|t|→∞
p(t)u(t) = 0

}
where p(t) = e−r2|t|. Equipped with the norm ∥·∥p, where for u ∈ Ep ∥u∥p = supt∈R p(t) |u(t)|,
Ep becomes a Banach space.

The subsets E+
p and Kp of Ep given by

E+
p = {u ∈ E : u ≥ 0 in R} ,

Kp = {u ∈ E : u(t) ≥ γ (t) ∥u∥ for all t ∈ R}

where

γ (t) = p(t) inf(1, e2r2t, e(r1−r2)t, e(r1+r2)t) =

{
er1t if t ≥ 0,
er2t if t ≤ 0.

are obviously total cones of E.
In the case where q does not vanish identically on any interval, we let

L1
q =

{
u : R → R measurable such that

∫
R
q |u| <∞

}
equipped with natural norm |·|1,q where for u ∈ L1

q, |u|1,q =
∫
R q |u| .
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The subset
K =

{
u ∈ L1

q : u(t) ≥ 0 a.e t ∈ R
}

is a total cone in L1
q.

The dual space and the dual cone associated respectively to respectively of L1
q and K

are then

L∞
q =

{
u : R → R measurable such that sup

t∈R
q |u| <∞

}
and

K∗ =
{
u ∈ L∞

q : u(t) ≥ 0 a.e t ∈ R
}
.

Theorem 7. Assume that q does not vanish identically on any subinterval, then there exists
a unique real number µ1 = µ1 (q, λ, c) > 0 such that:

i) If h = 0, then the bvp (4.1) admits a solution in K r {0} if and only if µ = µ1.

ii) For all h ∈ L1 r {0} the bvp (4.1) admits a unique solution in K if µ < µ1 and no
solution in K if µ ≥ µ1.

Theorem 8. Assume that q does not vanish identically and the ratio p/q belongs to E+,
then there exists a unique real number µ1 = µ1 (q, λ, c) > 0 such that:

i) If h = 0, then the bvp (4.1) admits a solution in Kp r {0} if and only if µ = µ1.

ii) For all h ̸= 0 the bvp (4.1) admits a unique solution in Kp if µ < µ1 and no solution in
Kp if µ ≥ µ1.

4.2 Preliminary Lemmas

We begin this section, by two results of compactness that are respectively versions of
Frechet-Kolmogrov theorem ([11] p. 275) and Corduneanu theorem ([6], p. 62).

Lemma 3. Let q ∈ C (R,R) with q > 0 a.e. in R. A nonempty set S in L1
q, is relatively

compact if and only if the following conditions hold:

(a) S is bounded in L1
q,

(b) for all ϵ > 0 there is δ > 0 such that for all u ∈ S and all η ∈ (0, δ) ,∫
R |q(t+ h)u(t+ h)− q(t)u(t)| dt < ϵ, and

(c) for all ϵ > 0 there is ξ > 0 such that for all u ∈ S
∫
Rr[−ξ,ξ]

q(t) |u(t)| dt < ϵ.

Lemma 4. A nonempty set S in Ep is relatively compact if and only if the following
conditions hold:

(a) S is bounded in Ep,

(b) functions in S̃ = {pu : u ∈ S} are equicontinuous in compact intervals, and

(c) for all ϵ > 0 there is there is T > 0 such that for all u ∈ S e−θt |u(t)| < ϵ for all
t, |t| > T.
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Lemma 5. Assume that q ∈ E, then for all ϵ > 0 there is δq,ϵ > 0 such that for all t ∈ R
and all η ∈ (0, δq,ϵ) |q(t+ η)− q(t)| < ϵ.

Proof. Let ϵ > 0, since lim|t|→∞ q(t) = 0 there is T > 0 such that q(t) < ϵ/2 for all t,
|t| > T. Let t ∈ R, if t > T then |q(t+ η)− q(t)| ≤ |q(t+ η)| + |q(t)| < ϵ and if t < −2T
and h ∈ (0, T ) then |q(t+ η)− q(t)| ≤ |q(t+ η)|+ |q(t)| < ϵ. Now, because the function q is
uniformly continuous on the interval [−2T, T ], there is δT,ϵ > 0 such that for all t ∈ [−2T, T ]
and all η ∈ (0, δT,ϵ) |q(t+ η)− q(t)| < ϵ.

We conclude from the above discussion that for all t ∈ R and all η ∈ (0, δq,ϵ) ,
|q(t+ η)− q(t)| < ϵ where δq,ϵ = inf (δT,ϵ, T ) .

Lemma 6. The function G has the following properties:
i) 0 < G(t, s) ≤ 1

r2−r1
for all t, s ∈ R,

ii) For all t, τ, s ∈ R
p(t)G(t, s) ≥ γ̃ (t) p(τ)G(τ, s)

where γ̃ (t) = inf(1, e2r2t, e(r1−r2)t, e(r1+r2)t).
iii) For all u ∈ E, v(t) =

∫
RG(t, s)u(s)ds belongs to E ∩ C2 (R) ∩ Ep and satisfies

−v′′ + cv′ + λv = u. Moreover, if u ∈ L1 then v ∈ L1.

Proof.
i) is obvious.

ii) Set Q(t, τ, s) =
p(t)G(t, s)

p(τ)G(τ, s)
. We distinguish then four cases.

a) τ, t ≥ 0, in this case we have

Q(t, τ, s) =



exp (− (r2 − r1) t+ (r2 − r1) τ) ≥ e−(r2−r1)t if s ≤ τ ≤ t,
exp (− (r2 − r1) t+ (r2 − r1) s) ≥ e−(r2−r1)t if τ ≤ s ≤ t,
1 if τ ≤ t ≤ s,
exp (− (r2 − r1) t+ (r2 − r1) τ) ≥ e−(r2−r1)t if s ≤ t ≤ τ,
exp ((r2 − r1) τ − (r2 − r1) s) ≥ 1 if t ≤ s ≤ τ,
1 if t ≤ τ ≤ s

≥ γ̃(t).

b) τ, t ≤ 0, in this case we have

Q(t, τ, s) =



exp ((r2 + r1) t− (r2 + r1) τ) ≥ e(r2+r1)t if s ≤ τ ≤ t,
exp (− (r2 − r1) t− 2r2τ + (r2 − r1) s) ≥ e−(r2−r1)t if τ ≤ s ≤ t,
exp (2r2t− 2r2τ) ≥ e2r2t if τ ≤ t ≤ s,
exp ((r2 + r1) t− (r2 + r1) τ) ≥ e(r2+r1)t if s ≤ t ≤ τ,
exp (2r2t− (r2 + r1) τ − (r2 − r1) s) ≥ e2r2t if t ≤ s ≤ τ,
exp (2r2t− 2r2τ) ≥ e2r2t if t ≤ τ ≤ s

≥ γ̃(t).

c) τ ≤ 0, t ≥ 0, in this case we have

Q(t, τ, s) =

 exp (− (r2 − r1) t− (r2 + r1) τ) ≥ e−(r2−r1)t if s ≤ τ ≤ t,
exp (− (r2 − r1) t− 2r2τ + (r2 − r1) s) ≥ e−(r2−r1)t if τ ≤ s ≤ t,
exp (−2r2τ) ≥ 1 if τ ≤ t ≤ s,

≥ γ̃(t).



272 Krein-Rutman operators and Banach contraction principle

d) τ ≥ 0, t ≤ 0, in this case we have

Q(t, τ, s) =

 exp ((r2 + r1) t+ (r2 − r1) τ) ≥ e(r2+r1)t if s ≤ t ≤ τ,
exp (2r2t+ (r2 − r1) τ − (r2 − r1) s) ≥ e2r2t if t ≤ s ≤ τ,
exp (2r2t) if t ≤ τ ≤ s

≥ γ̃(t).

iii) We have

v(t) =
1

r2 − r1

(
er1t

∫ t

−∞
e−r1su(s)ds+ er2t

∫ +∞

t

e−r2su(s)ds

)
=

1

r2 − r1

(∫ t

−∞ e−r1su(s)ds

e−r1t
+

∫ +∞
t

e−r2su(s)ds

e−r2t

)
.

This shows that v ∈ C2 (R,R) and by means of L’Hopital’s rule we see that lim|t|→∞ v(t) =

0. Thus, we have proved that v ∈
(
E ∩ C2 (R,R)

)
⊂ Ep.

Moreover if u ∈ L1, we obtain by means of Fubbini’s rule∫
R
|v(t)| dt ≤ 1

r2 − r1

∫
R

(
er1t

∫ t

−∞
e−r1s |u(s)| ds+ er2t

∫ +∞

t

e−r2s |u(s)| ds
)
dt

=
1

r2 − r1

∫
R
|u(s)|

(
e−r1s

∫ +∞

s

er1tdt+ e−r2s

∫ s

−∞
er2tdt

)
ds

=
1

−r1r2

∫
R
|u(s)| ds.

The proof is complete.

Set for u ∈ L1
q, Lu(t) =

∫
RG(t, s)q(s)u(s)ds

Lemma 7. Assume that q ∈ E and does not vanish identically on any inerval, then L
define a compact operator in LK

(
L1
q

)
.

Proof. Since Assertion iii in Lemma 6 states that for all u ∈ L1
q, Lu ∈ L1 and q is a

continuous bounded function, we have that qLu ∈ L1, that is Lu ∈ L1
q. The linearity and

the positivity of L are obvious, so let us prove the compactness of L. Let Ω ⊂ B (0, R) , as
in proof of Assertion iii in Lemma 6, we have for all u ∈ Ω∫

R
q(t) |Lu(t)| dt ≤ q∞

∫
R
|Lu(t)| dt = q∞

−r1r2

∫
R
q(s) |u(s)| ds ≤ q∞R

−r1r2
.

We have for all u ∈ Ω and all η > 0∫
R
|q(t+ η)Lu(t+ η)− q(t)Lu(t)| dt ≤ I1(η) + I2(η) + J1(η) + J2(η)
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where

I1(η) =

∫
R

∫ t

−∞
|q(t+ η)er1η − q(t)| er1(t−s)q(s) |u(s)| dsdt,

I2(η) =

∫
R

∫ +∞

t

|q(t+ η)er2η − q(t)| er2(t−s)q(s) |u(s)| dsdt,

J1(η) =

∫
R

∫ t+η

t

q(t+ η)er1ηer1(t−s)q(s) |u(s)| dsdt,

J2(η) =

∫
R

∫ t+η

t

q(t+ η)er2ηer2(t−s)q(s) |u(s)| dsdt.

Straightforward computations lead to

I1(η) ≤
∫
R
|q(t+ η)− q(t)| er1η

∫ t

−∞
er1(t−s)q(s) |u(s)| dsdt

+

∫
R
q(t) |er1η − 1|

∫ t

−∞
er1(t−s)q(s) |u(s)| dsdt,

I2(η) ≤
∫
R
|q(t+ η)− q(t)| er2η

∫ +∞

t

er2(t−s)q(s) |u(s)| dsdt,

+

∫
R
q(t) (er2η − 1)

∫ +∞

t

er2(t−s)q(s) |u(s)| dsdt,

J1(η) ≤ q∞e
r1η

∫
R

∫ t+η

t

er1(t−s)q(s) |u(s)| dsdt

= q∞e
r1η

∫
R
e−r1sq(s) |u(s)|

∫ s

s−η

er1(t−s)dtds

= q∞
1− er1η

r1

∫
R
q(s) |u(s)| ds

≤ q∞
er1η − 1

r1
R

and

J2(η) ≤ q∞
er2η − 1

r2
R

where q∞ = supt∈R q(t).
Let ϵ > 0, we obtain from Lemma 5 there is δq,ϵ > 0 such that for all t ∈ R and all

η ∈ (0, δq,ϵ) , |q(t+ η)− q(t)| < ϵ and there is δϵ > 0 such that for all η ∈ (0, δϵ) ,

sup (er2η − 1, 1− er1η) < ϵ. Thus, for all η ∈
(
0, δ̃ϵ

)
where δ̃ϵ = inf (δq,ϵ, δϵ, 1) we have

I1(η) ≤ (1 + q∞) ϵ

∫
R

∫ t

−∞
er1(t−s)q(s) |u(s)| dsdt

=
(1 + q∞)

−r1
ϵ

∫
R
q(s) |u(s)| ds ≤ (1 + q∞)R

−r1
ϵ,
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I2(η) ≤
(er2 + q∞)R

r2
ϵ

J1(η) ≤ q∞
R

−r1
ϵ

and

J2(η) ≤ q∞
R

r2
ϵ.

All the above estimates show that Condition b in Corollary 3 is satisfied.

Now, let T > 0 such that q(t) < ϵ for all t, |t| > T. We have∫
Rr[−T,T ]

q(t) |Lu(t)| dt ≤ ϵ
∫
Rr[−T,T ]

|Lu(t)| dt ≤ ϵ
∫
R |Lu(t)| dt

≤ ϵ
(∫

R
∫ t

−∞ er1(t−s)q(s) |u(s)| dsdt+
∫
R
∫ +∞
t

er2(t−s)q(s) |u(s)| dsdt
)

= ϵ
(∫

R
∫ +∞
s

er1(t−s)q(s) |u(s)| dtds+
∫
R
∫ s

−∞ er2(t−s)q(s) |u(s)| dtds
)

≤
(

r1−r2
r1r2

)
Rϵ.

This show that Condition c in Lemma 3 is satisfied and achieve the proof of compactness
of the operator L.

Lemma 8. Assume that q ∈ E and does not vanish identically on R (it may vanish on
some intervals), then L define a compact operator in LKp (Ep).

Proof. Since for all u ∈ Ep qu = q
p (pu) ∈ E , Assertion iii in Lemma 6 guarantees that Lu ∈

Ep. The linearity of L is obvious. Now, we prove that L (Kp) ⊂ Kp, that is L ∈ LKp
(Ep).

Let u ∈ E+
p , for all t, τ ∈ R Assertion ii in Lemma 6 gives

p(t)Lu(t) =

∫
R
p(t)G(t, s)q(s)u(s)ds ≥ γ̃ (t)

∫
R
p(τ)G(τ, s)q(s)u(s)ds,

leading to

Lu(t) ≥ γ̃ (t)

p(t)

∫
R
p(τ)G(τ, s)q(s)u(s)ds = γ (t) p(τ)Lu(τ).

Since τ is arbitrary in R, we obtain that for all t ∈ R, Lu(t) ≥ ∥Lu∥p . Proving that

L(E+
p ) ⊂ Kp.

Now, let Ω be a subset in Ep bounded by R > 0 and set Ω̃ = {pLu : u ∈ Ω} . We have
for any u ∈ Ω and t ≥ 0

|p(t)Lu (t)| ≤
∫
R

p(t)
p(s)G(t, s)q(s) |p(s)u(s))| ds

≤ ∥u∥p p(t)
∫
R

q(s)
p(s)G(t, s)ds

≤ R supt∈R

(
p(t)

∫
R

q(s)
p(s)G(t, s)ds

)
.

This proves that L (Ω) is bounded in EP .
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Let t1, t2 ∈ [η, ζ] ⊂ R, for all u ∈ Ω we have

|p(t2)Lu (t2)− p(t1)Lu (t1)| ≤ |p1(t2)− p1(t1)|
∫ ζ

−∞ e−r1s q(s)
p(s)ds

+ |p2(t2)− p2(t1)|
∫ +∞
η

e−r2s q(s)
p(s)ds

+
(
supt∈[η,ζ] Γ(t)

)
|t2 − t1|

where for i = 1, 2, pi(t) = e−r2|t|+rit and Γ(t) =
(
e2(r2−r1)|t| + e4r2|t|

)
q(t).

Because p1, p2 are uniformly continuous on compact intervals, the above estimates prove
that Ω̃ is equicontinuous on compact intervals.

We have for all u ∈ Ω and t ≥ 0 :

|p(t)Lu(t)| ≤ Rp(t)

∫
R

q(t)

p(s)
G(t, s)ds := RĤ(t).

Since lim|t|→+∞ Ĥ(t) = 0, we have that Ω̃ is equiconvergent at ±∞. This ends the proof.

4.3 Proof of Theorem 7

Notice that u is a positive solution to the bvp (4.1) if and only if u − µLu = h̃ where

h̃(t) =
∫ +∞
−∞ G(t, s)h(s)ds. Since Lemma 6 guarantees that h̃ belongs to K and Lemma 7

states that L is a compact operator in LK(L1
q), we have to prove that L is a KRO.

Let [a, b] be any interval in R and consider the function

u0(s) =

{
(s− a) (b− s) if s ∈ [a, b]
0 if s /∈ [a, b] .

We have then, Lu0 ≥ λ0u0 where λ0 = mint∈[a,b] (Lu0(t)/u0 (t)) > 0, proving that Λ−
L,K ̸= ∅

and µ1 = µ1 (q, λ, c) = λ−L,Kθ
= 1/r(L) is a pcv of L. It is easy to see that that adjoint

operator L∗ of L where L∗ ∈ L
(
L∞
q

)
is defined for u ∈ L∞

q by L∗u(s) =
∫
RG(t, s)q(t)u(t)dt.

Moreover, Theorem 1 states that µ1 is a pcv of L∗ having a positive eigenfunction ϕ.
Now, we have just to prove that L∗ has the property (H). First, notice that a function

u in K is strictly positivity if and only if u > 0 a.e. in R. Consequently, we have to prove
that if µ is a pcv of L∗,having a positive eigenfunction ϕ, then ϕ > 0 in R. Since µ > 0 and
q > 0 a.e. in R, we have

ϕ (t) = µ

∫
R
G∗(t, s)q(s)ϕ(s)ds > 0 for all t ∈ R.

Thus, Theorem 7 follows from a direct application of Theorem 3.

4.4 Proof of Theorem 8

Let [a, b] be an interval such that q(s) > 0 for all s ∈ [a, b] and consider the function

u0(s) =

{
(s− a) (b− s) if s ∈ [a, b]
0 if s /∈ [a, b] .
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We have then, Lu0 ≥ λ0u0 where λ0 = mint∈[a,b] (Lu0(t)/u0 (t)) > 0. This proves that

Λ−
L,Kθ

̸= ∅ and µ1 = µ1 (q, λ, c) = λ−L,Kθ
= 1/r(L) is a pcv of L having a positive eigenfunc-

tion ψ.
At this stage let us prove that µ1 is geometrically simple. Suppose that ψ1 is an

eigenfunction associated with µ1 and W be the Wronksian of ψ and ψ1. We have then
W ′ − cW = 0, leading to W = αect. Since

ψ′(t) =
µ1r1

∫ t

−∞ e−r1sq(s)ψ(s)ds

(r2 − r1) e−r1t
+
µ1r2

∫ +∞
t

e−r2sq(s)ψ(s)ds

(r2 − r1) e−r2t
,

ψ′
1(t) =

µ1r1
∫ t

−∞ e−r1sq(s)ψ1(s)ds

(r2 − r1) e−r1t
+
µ1r2

∫ +∞
t

e−r2sq(s)ψ1(s)ds

(r2 − r1) e−r2t
,

we have limt→+∞ ψ′(t) = limt→+∞ ψ′
1(t) = 0 and

lim
t→+∞

αect = lim
t→+∞

W (t) = lim
t→+∞

ψ(t)ψ′
1(t)− ψ′(t)ψ1(t) = 0.

Leading to α = 0 and so, to W = 0. Thus, we have proved that µ1 is geometrically simple.
Consider now the eigenvalue problem{

−u′′ − cu′ + λu = µqu in R,
u(−∞) = u(+∞) = 0.

(4.2a)

We claim that taking µ1 = µ1 (q, λ, c) = λ−L,Kθ
is a positive of the bvp (4.2a). Indeed, we

have that µ is a positive eigenvalue of the bvp (4.2a) if and only if µ is a pcv of the linear
compact operator L∗ ∈ L(E) where

L∗u(t) =

∫
R
G∗(t, s)q(s)u(s)ds,

As for L, r(L∗) > 0 and λ−L∗,Kθ
is a pcv of L∗ having a positive eigenvector ψ. Moreover,

we have ∫
R
(−ϕ′′ + cϕ′ + λϕ)ψ = µ1

∫
R
qϕψ.

Integrating by parts, we obtain

µ1

∫
R
qϕψ =

∫
R
(−ϕ′′ + cϕ′ + λϕ)ψ

=

∫
R
(−ψ′′ − cψ′ + λψ)ϕ

= λ−L∗,Kθ

∫
R
qϕψ

leading to λ−L∗,K = µ1.
Let h ∈ Kp r {0} and suppose that the equation u− µ1Lu = h has a solution v and let

ω = v − h. Thus ω satisfies{
−ω′′ + cω′ + λω = µ1qω + µ1qh in R,
ω(−∞) = ω(+∞) = 0
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Therefore, we have∫
R
(−ω′′ + cω′ + λω)ϕ = µ1

∫
R
qωϕ+ µ1

∫
R
qhϕ

and two integrations by parts lead to

µ1

∫
R
qhϕ = 0.

But this is impossible since µ1 > 0, h ∈ Kp r {0} and

ϕ (t) = µ1

∫
R
G(t, s)q(s)ϕ(s)ds > 0 for all t ∈ R.

Indeed, if ϕ (t0) = 0 for some t0 ∈ R then q(s)ϕ(s) = 0 for all s ∈ R, and there is an
interval [α, β] such that ϕ(s) = 0 for all s ∈ [α, β]. In particular there is t∗ such that
ϕ (t∗) = ϕ′ (t∗) = 0 and since ϕ satisfies a linear second order ordinary differential equation,
ϕ vanishes identically. This contradicts the fact that ϕ is an eigenfunction associated with
µ1. Thus, Theorem 7 follows from a direct application of Corollary 4.

5 Existence and uniqueness for a third order bvp

We are concerned in this section by existence and uniqueness of solution to the third-order
bvp {

−u′′′ + au′′ + bu′ = f(t, u) in (0,+∞) ,
u(0) = α, u′(0) = β, u′(+∞) = 0

(5.1)

where a, b, α, β are real numbers with a, b > 0 and f : R+×R → R is a continuous function.
In what follows, we let

P =

{
m ∈ C(R+,R+) : m(t0) > 0 for some t0 ≥ 0
and limt→+∞(1 + t)m(t) = 0

}
,

E =

{
u ∈ C(R+,R) : sup

t≥0

|u(t)|
1 + t

<∞
}
.

Equipped with the norm ∥u∥ = supt≥0
|u(t)|
1+t , E becomes a Banach space. We denote then

by E+ the cone of nonnegative function in E.
The Green’s function G associated with the bvp (5.1) is given by

G(t, s) =
1

W (s)

{
−ϕ′1(s)ϕ2(t) + ϕ′1(s)ϕ2(s)− ϕ1(s)ϕ

′
2(s) if s ≤ t

−ϕ′2(s)ϕ1(t) if t ≤ s

where
W (s) = r21r2 (r2 − r1) exp((r2 + r1) s),
ϕ1(s) = (r2 − r1)− r2 exp(r1s) + r1 exp(r2s),
ϕ2(s) = 1− exp(r1s),
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and r1, r2 are the solutions of the equation −X2+aX+b = 0 and are such that r1 < 0 < r2.
We have

∂G

∂t
(t, s) =

1

W (s)

{
−ϕ′1(s)ϕ′2(t) if s ≤ t
−ϕ′2(s)ϕ′1(t) if t ≤ s

=
1

r2 − r1

{
(e−r1s − e−r2s)e−r1t if s ≤ t
(er2t − er1t)e−r2s if t ≤ s.

Arguing as in the proof of Assertion iii in Lemma 6, we see that for h ∈ C (R+,R) with
limt→+∞ h(t) = 0, the function v(t) =

∫ +∞
0

G(t, s)u(s)ds belongs to E and satisfies{
−v′′′ + av′′ + bv′ = h in (0,+∞) ,
v(0) = v′(0) = v′(+∞) = 0.

Consequently, for q ∈ P the operator Lq : E → E where for u ∈ E,

Lqu(t) =
∫ +∞
0

G(t, s)q(s)u(s)ds, is well defined and is linear bounded and positive, that is
Lq(E

+) ⊂ E+. Moreover, arguing as in the proof of Theorem 8 we see that Lqu0 ≥ µ0u0
for some µ0 > 0 and u0 ∈ E+ r {0} and so, r(Lq) > 0.

Let ϕ(t) = α− β

r1
(1− exp(r1t)). It is easy to see that ϕ is the unique solution to

{
−u′′′ + au′′ + bu′ = 0, in (0,+∞)
u(0) = α, u′(0) = β, u′(+∞) = 0.

The main result in this section is:

Theorem 9. Assume that limt→+∞ f(t, ϕ (t)) = 0, there exists q ∈ P and c > 0 such that
for all u, v ∈ R and all t ∈ R+,

|f(t, u)− f(t, v)| ≤ cq(t) |u− v| .

If cr(Lq) < 1 then the bvp (5.1) admits a unique solution.

Proof. Notice that u ∈ E is a solution to the bvp (5.1) if and only if v = u− ϕ satisfies{
−v′′′ + av′′ + bv′ = f(t, v + ϕ) in (0,+∞)
v(0) = v′(0) = v′(+∞) = 0,

(5.2a)

Set for v ∈ E, Tv(t) =
∫ +∞
0

G(t, s)f(s, v(s) + ϕ(s))ds. We have from the hypotheses in
Theorem 9,

|Tv(t)| ≤ c

∫ +∞

0

G(t, s)q(s) |v(s)| ds+
∫ +∞

0

G(t, s)f(s, ϕ(s))ds

and ∣∣(Tv)′ (t)∣∣ ≤ c

∫ +∞

0

∂G

∂t
(t, s)q(s) |v(s)| ds+

∫ +∞

0

∂G

∂t
(t, s)f(s, ϕ(s))ds.

The above two estimates prove that Tv ∈ E and T define a self-mapping on E. Moreover,
v ∈ E is a solution to the bvp (5.2a) if and only if v is a fixed point of T.
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At the end, since E+ is a normal and minihedral cone in E and for all v1, v2 ∈ E

|Tv1 − Tv2| ≤ cLq |u− v| with c < 1/r(Lq),

we conclude from Theorem 2 that the mapping admits a unique fixed point v, then u = v+ϕ
is the unique solution to the bvp (5.1).
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