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Abstract

In 2012, T. Miyazaki and A. Togbé gave all of the solutions of the Diophantine
equations (2am− 1)x +(2m)y = (2am+1)z and bx +2y = (b+2)z in positive integers
x, y, z, a > 1 and b ≥ 5 odd. In this paper, we propose a similar problem (which
we call the shuffle variant of a Diophantine equation of Miyazaki and Togbé). Here
we first prove that the Diophantine equation (2am + 1)x + (2m)y = (2am − 1)z has
only the solutions (a,m, x, y, z) = (2, 1, 2, 1, 3) and (2, 1, 1, 2, 2) in positive integers
a > 1,m, x, y, z. Then using this result, we show that the Diophantine equation
bx + 2y = (b − 2)z has only the solutions (b, x, y, z) = (5, 2, 1, 3) and (5, 1, 2, 2) in
positive integers x, y, z and b odd.
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1 Introduction

Denote the sets of all integers and positive integers by Z and N, respectively. Suppose that
A,B,C are pairwise coprime positive integers. The exponential Diophantine equation

Ax +By = Cz, x, y, z ∈ N (1.1)

was studied for given A,B,C by many authors. So, this equation has a rich history. In
1933, the first work was recorded by Mahler, [12]. He proved the finiteness of the solutions
of equation (1.1) under the assumption that A,B,C > 1. His method is a p-adic analogue
of that given by Thue-Siegel, so it is ineffective in the sense that it gives no indication on
the number of possible solutions. Seven years later, an effective result for solutions of (1.1)
was given by Gel’fond what will become known as Baker’s method, based on lower bounds
for linear forms in the logarithms of algebraic numbers, [5]. Such an information has been
obtained in particular instances. So, in 1956, Sierpiński proved that (x, y, z) = (2, 2, 2)
is the only positive integral solution of the equation 3x + 4y = 5z, [20]. The same year,
Jeśmanowicz conjectured that if A,B,C are Pythagorean numbers, i.e. positive integers
satisfying A2+B2 = C2, then the Diophantine equation Ax+By = Cz has only the positive
integral solution (x, y, z) = (2, 2, 2), [8]. This conjecture is still open despite the efforts of
many authors. Between the years 1958 and 1976, the complete solutions of equation (1.1)
where A,B,C are distinct primes ≤ 17 were determined by some authors (see [6], [17]
and [27]). Other conjectures related to equation (1.1) were set and discussed. One is
the extension of Jeśmanowicz’ conjecture due to Terai. In fact, Terai conjectured that if
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A,B,C, P,Q,R ∈ N are fixed and AP + BQ = CR where P,Q,R ≥ 2 and gcd(A,B) = 1,
then the Diophantine equation (1.1) has only the solution (x, y, z) = (P,Q,R) except for
a handful of triples (A,B,C), (see [3, 11, 13, 14] and [22, 23, 24, 25, 26]). This conjecture
has been proved to be true in many special cases. However, it is still unsolved in its full
generality. Recently, a survey paper on the conjectures of Jeśmanowicz and Terai has been
written by Soydan, Demirci, Cangül and Togbé, (see [21]).

For the special case where A ≡ −1 (mod B) and C = A + 2, the equation takes the
form

(tB − 1)x +By = (tB + 1)z, (1.2)

where t is a positive integer. Clearly, it suffices to consider the case where B is even. We
see that the equation (1.2) has the following solutions:

(x, y, z) =


(i, 1, 1); i ≥ 1, (j, 3, 2); j ≥ 1 if B = 2 and t = 1,

(2, k+1, 2) if t = Bk/4 with k ≥ 1,

(1, 1, 1) if B = 2,

(1, 13, 2) if B = 2 and t = 45.

These solutions will be referred to as trivial solutions.
In 2012, Miyazaki and Togbé proved that equation (1.2) has no non-trivial solutions

when t is odd, [15]. In 2016, Miyazaki, Togbé and Yuan gave the following result in [16]:

Theorem A1. Equation (1.2) has no non-trivial solutions.

Using Theorem A1, they also proved the following result:

Theorem A2. Suppose that a > 1 is an odd positive integer. Then the Diophantine
equation

ax + 2y = (a+ 2)z

has only the positive solution (x, y, z) = (1, 1, 1), whenever neither

a = 2k−1 − 1

with an integer k ≥ 3 nor a = 89. If a = 2k−1 − 1 or a = 89, then the additional solutions
are given by (2, k + 1, 2), (1, 13, 2), respectively.

More recently, Fu, He, Yang and Zhu in [4] considered the Diophantine equation

(n+ 2)x + (n+ 1)y = nz n, x, y, z ∈ N. (1.3)

They obtained the following result (For variations of equation (1.3), we refer the reader to
[1] and [7]):

Theorem A3. Equation (1.3) has only one positive integer solution (n, x, y, z) = (3, 1, 1, 2).

In this work, we propose analogs of Theorem A1 and Theorem A2 which we call the
shuffle variants of Diophantine equations of Miyazaki and Togbé, [15]. So, here we are
interested in the following Diophantine equation

(an+ a+ 1)x + (n+ 1)y = (an+ a− 1)z; n, x, y, z ∈ N,
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where a is a fixed positive integer. According to Theorem A3, since the case a = 1 was
already solved completely by Fu, He, Yang and Zhu, [4], it is clear that the above equation
has a solution only if n is odd. So, we only need to consider the following Diophantine
equation

(2am+ 1)x + (2m)y = (2am− 1)z; m,x, y, z ∈ N.

Consider the above equation. Here, we extend Theorem A3 by proving the following result
which is a shuffle variant of equation (1.2) in Theorem 1.2 of [15].

Theorem 1 (Main theorem). The Diophantine equation

(2am+ 1)x + (2m)y = (2am− 1)z (1.4)

has only the solutions (a,m, x, y, z) = (2, 1, 2, 1, 3) and (2, 1, 1, 2, 2) in positive integers
a > 1, m, x, y, z.

Furthermore, using Theorem 1, we prove the following result which is the shuffle variant
of the equation (1.3) in Theorem 1.2 of [15].

Corollary 1. The Diophantine equation

bx + 2y = (b− 2)z (1.5)

has only the solutions (b, x, y, z) = (5, 2, 1, 3) and (5, 1, 2, 2) in positive integers x, y, z and
b odd.

2 A key lemma

The following lemma and its proof are almost the same as the key lemma in Miyazaki,
Togbé and Yuan, [16]. For the convenience of the reader, we present the proof here.

For a prime number p and a non-zero integer A, we denote by vp(A) the exponent of p
in the prime factorization of A.

Lemma 1. Let (a,m, x, y, z) be a solution of equation (1.4) with m > 1.

(i) If x is odd, then y = v2(a)
v2(m)+1 + 1.

(ii) 2am ≥ (2m)y(x+ z)−y.

Proof. Notice that

(2am− 1)z ≡ (−1)z + (−1)z−12amz (mod 4a2m2),

(2am+ 1)x ≡ 1 + 2amx (mod 4a2m2).

Taking equation (1.4) modulo 4a2m2, one sees that

1 + 2amx+ (2m)y ≡ (−1)z + (−1)z−12amz (mod 4a2m2).

Considering this congruence modulo 2m, one has (−1)z ≡ 1 (mod 2m). Then we see that
z is even as m > 1. Hence, we get

a(x+ z) ≡ −(2m)y−1 (mod 2ma2).
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Using the above congruence, if a prime factor p of 2m satisfies

vp(x+ z) < vp(a) + vp(2m),

then we obtain
vp(a) = (y − 1) vp(2m)− vp(x+ z). (2.1)

(i) Putting p = 2 in (2.1) completes the proof of this case.
(ii) Using (2.1), one obtains

a ≥
∏

p prime, p|2m,
vp(x+z)<vp(a)+vp(2m)

pvp(a)

=
∏

p prime, p|2m,
vp(x+z)<vp(a)+vp(2m)

p (y−1) vp(2m)−vp(x+z)

= (2m)y−1S−(y−1)
∏

p prime, p|2m,
vp(x+z)<vp(a)+vp(2m)

p−vp(x+z),

where
S =

∏
p prime, p|2m,

vp(x+z)≥vp(a)+vp(2m)

pvp(2m).

Moreover, since S ≤ x+ z, one gets

S y−1
∏

p prime, p|2m,
vp(x+z)<vp(a)+vp(2m)

pvp(x+z) ≤ (x+ z)y.

The required inequality follows from all these.

3 Auxiliary results

For an algebraic number α of degree d over Q, we define the absolute logarithmic height of
α by the following formula:

h(α) =
1

d

(
log |a0|+

d∑
i=1

logmax
{
1, |α(i)|

})
,

where a0 is the leading coefficient of the minimal polynomial of α over Z, and α(1), α(2), ... , α(d)

are the conjugates of α in the field of complex numbers.
Let α1 and α2 be real algebraic numbers with |α1| ≥ 1 and |α2| ≥ 1. Consider the linear

form in two logarithms
Λ = β2 logα2 − β1 logα1,

where β1 and β2 are positive integers.
We rely on the following result due to Laurent, [9]:
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Proposition 1. [9, Corollary 2] Suppose that α1 > 1, α2 > 1 are rational numbers which
are multiplicatively independent. Then we have

log |Λ| ≥ −25.2 · h(α1)h(α2) max{log β′ + 0.38, 10}2

where

β′ =
β1

h(α2)
+

β2

h(α1)
.

Proposition 2. [2, Table 1] Let k > 3 be a positive integer. Then the Diophantine equation

x2 + yk = z4; x, y, z ∈ N

has no solutions with gcd(x, y) = 1.

We also need the following result due to Le [10].

Proposition 3 ([10]). The solutions of the equation

U2 + 2k = V l; U, V, k, l ∈ N, gcd(U, V ) = 1, l ≥ 3

are given by (U, V, k, l) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

4 Proof of Theorem 1

In this section, we prove Theorem 1. We separate the cases y = 1 and y > 1. It is easy to
see that z > x.

4.1 The case y = 1

Here, we consider equation (1.4) where m > 1 and m = 1, respectively.

4.1.1 The case m > 1

Reducing equation (1.4) modulo 2m, we get 1 + 0 ≡ (−1)z (mod 2m). Hence, 2 | z.
Considering (1.4) modulo 2am, we obtain 1 + 2m ≡ 1 (mod 2am), a contradiction with
a > 1.

4.1.2 The case m = 1

When m = 1, equation (1.4) becomes

(2a+ 1)x + 2 = (2a− 1)z. (4.1)

If 2 | z, reducing equation (4.1) modulo 2a, we get a = 1, which contradicts the assumption
that a > 1. If 2 - z, considering equation (4.1) modulo 2a, one gets 2a | 4. Since a > 1, we
have a = 2. When a = 2, equation (4.1) becomes 5x + 2 = 3z which has only the solution
(x, z) = (2, 3) by [17, Theorem 3]. Since this is the desired solution of equation (1.4), the
proof of the case y = 1 is completed.
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4.2 The case y > 1

4.2.1 The case 2 | x and 2 | z

Suppose that x = 2X and z = 2Z. From equation (1.4), we introduce two even positive
integers P and Q as follows:

(2m)y = PQ, (4.2)

where
P = (2am− 1)Z + (2am+ 1)X , Q = (2am− 1)Z − (2am+ 1)X . (4.3)

Since Q is congruent to 0 or −2 modulo 2am, one has PQ > (2am− 1)Z · (2am− 2). Since
Z = z/2 > x/2 = X ≥ 1, one obtains (2am − 1)Z · (2am − 2) ≥ (2am − 1)2 · (2am − 2).
Hence (2m)y > (2am−1)2 ·(2am−2) > (2m)3 because a > 1. So, y > 3 and by Proposition
2, we obtain 2 - Z, whence Z ≥ 3.

By equation (4.3), we see that gcd(P,Q) = 2 and P +Q ≡ 2 (mod 4), so P/2 and Q/2
are integers of different parities. Further Q/2 is coprime to m. Since 2y−2my = (P/2)(Q/2)
and Q/2 is coprime to m, it follows that only Q/2 = 1 or Q/2 = 2y−2 are possible.

• The case 2 | am.

Consider equation (1.4) for the case 2 | am. When 2 | am, Q/2 ≡ −1 (mod am), only
the case Q = 2 is possible. Hence, one has

(2am− 1)Z − (2am+ 1)X = 2, (2am− 1)Z + (2am+ 1)X = 2y−1my. (4.4)

Now consider equation
(2am− 1)Z − (2am+ 1)X = 2. (4.5)

Taking (4.5) modulo 2am, one finds that 2am divides 2 or 4, so that a = 2, m = 1. Hence
equation (4.5) becomes

3Z − 5X = 2. (4.6)

By [19, Theorem 6], one sees that equation (4.6) has only the solution (X,Z) = (2, 3),
namely, equation (4.5) has only the solution (a,m,X,Z) = (2, 1, 2, 3). However, this con-
tradicts the second equation in (4.4).

• The case 2 - am.

Consider equation (1.4) for the case 2 - am. We first deal with the case 2 - X. By the
former case, we know that equation (4.5) has no solutions. Thus, one gets

(2am− 1)Z + (2am+ 1)X = 2my, 2 - m.

Reducing the above equation modulo 4, we obtain

2am(X + Z) ≡ 2 (mod 4),

which is impossible since 2 - XZ.
Now we consider the case 2 | X. Then we have

Q = (2am− 1)Z − (2am+ 1)X = 2 or 2y−1.

Applying Proposition 3, we see that the above equation has no solutions with 2 | X.
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4.2.2 The case 2 - gcd(x, z)

In this subsection, we consider the case 2 - gcd(x, z). Moreover, we consider the cases m = 1
and m > 1 separately.

• The case m = 1.

Consider the following Diophantine equation

(2a+ 1)x + 2y = (2a− 1)z; y > 1, 2 - gcd(x, z). (4.7)

If 2 | x, then by Proposition 3, we get a = 2, x = 2 and y = 1. Hence we suppose that 2 - x.
If 2 - a, then 2a+ 1 ≡ 3 (mod 4) and 2a− 1 ≡ 1 (mod 4), we get a contradiction reducing
equation (4.7) modulo 4.

If 2 | a, then reducing equation (4.7) modulo 4, we get 2 | z. Reducing modulo a, we
get 2y ≡ 0 (mod a), so a = 2u, u ≥ 1. Further, we have

2a(x+ z) ≡ −2y (mod 2a2).

It follows that u = y − 1. Equation (4.7) becomes

(2y + 1)x + 2y = (2y − 1)z.

By Theorem A3, we get the solution (x, y, z) = (1, 2, 2). Since this is the desired solution
of equation (1.4), the proof of the case m = 1 is completed.

• The case m > 1.

Since m > 1, considering equation (1.4) modulo 2m, one gets 1 ≡ (−1)z (mod 2m), so
z is even. Hence, since we are in the case 2 - gcd(x, z), we conclude that x must be odd.

Now we will observe that this leads to a contradiction. By Lemma 1 (i), we have

y =
v2(a)

v2(2m)
+ 1 ≤ v2(a) + 1 ≤ log a

log 2
+ 1. (4.8)

In what follows, we put

A = 2am+ 1, C = 2am− 1 (= A− 2).

We separately consider the cases Ax ≤ (2m)y and Ax > (2m)y.

(i) The case Ax ≤ (2m)y

Now we suppose that Ax ≤ (2m)y. Since Ax < Cz ≤ 2(2m)y and 2m ≥ 4, by (4.8), we
have

z ≤
log 2+

(
log a
log 2 + 1

)
log 2m

log(2am− 1)
< 1.5 log(2m).

Recall that z > x. If z = 2, then x = 1 and equation (1.4) becomes 2am+ 1+ (2m)y =
4a2m2 − 4am+ 1. Hence, one gets

(2m)y−1 = a(2am− 3). (4.9)



250 The shuffle variant of a Diophantine equation

Note that 2am − 3 > 3 since a > 1 and m > 1. Also, 3 | m as gcd(2m, 2am − 3) > 1.
Dividing the above equation by 3 leads to

2y−13y−2(m/3)y−1 = a(2a ·m/3− 1).

It is easy to see that 2y−1(m/3)y−1 | a, so that

3y−2 =
a

2y−1(m/3)y−1
· (2a ·m/3− 1).

Since gcd(
a

2y−1(m/3)y−1
, 2a ·m/3− 1) = 1, and 2a ·m/3− 1 > 3/3 = 1, one has

a

2y−1(m/3)y−1
= 1, 2a ·m/3− 1 = 3y−2.

This implies that (2m/3)y − 1 = 3y−2. It is easy to see that this equation does not hold.
Thus, one has

4 ≤ z ≤ ⌊1.5 log(2m)⌋ (4.10)

which implies that m ≥ 8. Moreover, equation (1.4) easily yields (2m)y > a(2m)z and then
one gets

y > z ≥ 4. (4.11)

Since Lemma 1 (ii) and the inequality (4.10) imply that(
m

⌊1.5 log(2m)⌋

)y

< C + 1 ≤ (2m)y/z · 21/z + 1 < 1.5(2m)y/z,

we have

z <
log(2m)

log(m)− log
(
1.51/y⌊1.5 log(2m)⌋

) . (4.12)

In view of (4.10), (4.11) and (4.12), we have

m = 8, z = 4, x ∈ {1, 3}.

If z = 4, x = 1 and m = 8, then equation (1.4) becomes

a(4096a3 − 1024a2 + 96a− 5) = 24y−4. (4.13)

Hence one obtains a = 24y−4 and 4096a3−1024a2+96a−5 = 1. Taking the second inequality
modulo 4 yields a contradiction.

If z = 4, x = 3 and m = 8, then equation (1.4) becomes

a(4096a3 − 1280a2 + 48a− 7) = 24y−4. (4.14)

Similarly to the former case, we get that 4096a3−1280a2+48a−7 = 1. Taking this equality
modulo 16 yields a contradiction.

(ii) The case Ax > (2m)y
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Here, we suppose that Ax > (2m)y. Then one gets (2am+ 1)x > 1
2 (2am− 1)z or

2 >

(
2am− 1

2am+ 1

)x

· (2am− 1)z−x.

Since z − x ≥ 1, we have

e < (2am− 1)z−x/2 <

(
2am+ 1

2am− 1

)x

< e
2x

2am−1 ,

which implies that x > 2am−1
2 . Thus,

x ≥ am.

Recall that x is odd. By (4.8), we have y ≤ v2(a) + 1. Thus,

y log(2m) ≤ (v2(a) + 1) log(2m) ≤ a log(2m) <
am

2
log(2m) ≤ x

2
logA,

and we have (2m)y < Ax/2. Thus, Cz = Ax + (2m)y < Ax +Ax/2, i.e.,

Cz−x <

(
2am+ 1

2am− 1

)x (
1 +A−x/2

)
.

All solutions with z ∈ {2, 4} have been found in the case Ax < (2m)y.
Since C = 2am− 1 ≥ 2 · 2 · 2− 1 = 7 and x ≥ 5, we have

(z − x) logC < x log

(
1 +

2

C

)
+ log

(
1 +A−x/2

)
< x

(
2

C
− 4

3C2

)
+A−x/2 <

2x

C
.

Therefore, we get

x >
C log(C)

2
(z − x). (4.15)

Put
Λ = z logC − x logA (> 0).

Since Λ < exp(Λ)− 1 = (2m)y/Ax < A−x/2, one has

logΛ < −(x/2) logA.

On the other hand, to find a lower estimate of logΛ, we apply Proposition 1 with (α1, α2) =
(C,A) and (β1, β2) = (z, x). Hence, we obtain

logΛ > −25.2 (logA)(logC)
(
max{log β′ + 0.38, 10}

)2
,

where β′ = x
logC + z

logA . Since 2Ax > Cz, the inequality β′ < 2x
logC + 1 gives

s < 50.4
(
max{log(2s+ 1) + 0.38, 10}

)2
,

where s = x/ logC. This implies that s < 5040. Therefore, by (4.15), one gets A < 10082.
From here, using (4.8) and m ≥ 2, one gets y ≤ 6 when m is even, and y ≤ 11 when m is
odd.
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We claim that

A < 5044. (4.16)

Assume for a contradiction that (4.16) does not hold, so A ≥ 5044. Then, (4.15) gives
x ≥ 21493. Since y ≤ 11, we see that Ax > (2m)1953y clearly holds. Since Λ < exp(Λ)−1 =
(2m)y/Ax < A−1952x/1953, one has

logΛ < −(1952x/1953) logA.

Using Proposition 1 as above, we get

s < 25.2× 1953

1952

(
max{log(2s+ 1) + 0.38, 10}

)2
where s = x/ logC. This implies that s < 2522 and A < 5044 which is the desired
contradiction. Hence, (4.16) holds. Note that y ≤ 10 by (4.8) and the same argument as
before.

Finally, we show that

x < 2522 log(A− 2) or x ≤ 1300y. (4.17)

If x > 1300y, then Ax > (2m)1300y, which implies that s < 2522, that is, (4.17) holds.
We can check that equation (1.4) does not hold for any (a,m, x, y, z) satisfying all (4.8),

(4.15), (4.16), (4.17) and y ≤ 10. For this, a program was written in PARI/GP, [18], and it
took about 1 hour to run the program for each value of y with the restriction a | (2m)y−1.
This completes the proof of Theorem 1.
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entiers par une puissance d’un idéal premier (French), Math. Sbornik N. S., 7, 7–25
(1940).

[6] T. Hadano, On the Diophantine equation ax = by + cz, Math. J. Okayama Univ.,
19, 25–29 (1976/77).
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