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Abstract

This short article treats a very naive question concerning roots of Möbius trans-

formations in discrete groups. We exhibit, according to the standard classification

of Möbius transformations, formulations depending on the types of given transfor-

mations. Along the way, algebraic natures of relevant subgroups of a discrete group

under consideration are discussed, which allows us to provide intuitive geometrical

interpretations. We indicate how the discreteness plays a substantial role during the

study while exploring folklore or classical results for these subgroups. We conclude by

remarking on the original motivation for the study and point out possible directions

for future research.
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1 Introduction

In order to set up terminology to be adhered to throughout the article, we briefly recall

standard notation and establish our definitions.

First R and C denote the real and complex numbers respectively. For instance, C
is understood to be a topological field which is equipped with the topology induced by

the absolute-value norm | · |. We shall, without further comment, assume such familiar

underlying topological structures. The complex numbers C is from time to time thought of

as the complex plane. In this context, we use Ĉ = C ∪ {∞} for the extended plane (i.e.,

the Riemann sphere), and C∗ = C \ { 0 } for the punctured plane. Z denotes the integers

(positive, zero, and negative), which is to be in this paper viewed as the infinite cyclic group

or the free abelian group of rank 1 through the ordinary addition operation; we denote by

Zq the cyclic group Z/qZ for a (positive) integer q.
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We write the group of all Möbius (or linear-fractional) transformations with complex

coefficients

z 7→ az + b

cz + d
,

(
a b

c d

)
∈ SL2(C) (1.1)

as Möb(C) ∼= Aut(Ĉ), which is identified with the three-dimensional complex Lie group

PSL2(C) = SL2(C)/ ± I. There is no opportunity to make use of the manifold structure

of PSL2(C) in what follows, so it would simply be regarded as a topological group with

the quotient topology from SL2(C), which is endowed with a subspace topology sitting in

a Euclidean space of 2× 2 matrices over C.

Let n be a positive integer. For g ∈ Möb(C), consider a simple algebraic equation

γn = g. (1.2)

A solution of the equation (1.2) always exists in Möb(C). Such a solution is called an

nth root (or, more shortly but less informatively, a root) of g; see (for example) Beardon’s

text [1, p. 74]. The situation is different, however, when we seek a solution in a discrete

group Γ ⊂ Möb(C). This is partly because topology intervenes.

A series of observations indicate how the topology or discreteness plays a role in the

study. Along the way, we occasionally discuss somewhat folklore results for relevant sub-

groups of a discrete group Γ , which have, to the best of the author’s knowledge, not been

formulated in quite the same manner. Such subgroups are naturally connected with cen-

tralizers of g ∈ Γ that are typically abelian and easy to compute, as γ is in the centralizer

of g if g is a power of γ. In the last section we point out the origin of the study and possible

directions for further research in the future.

Remark. A group Γ ⊂ Möb(C) is classically called, by definition, a Kleinian group if the

region of discontinuity of Γ

Ω(Γ ) = { z ∈ Ĉ | Γ acts discontinuously at z } (1.3)

is nonempty. Some of the works refer to a discrete group as a Kleinian group, which is

necessarily discrete by the very definition above. Nevertheless, it is possible for Ω(Γ ) to be

empty even though Γ is discrete. We avoid (except in the last section) the use of the term

“Kleinian,” because for our assertions Γ need only be discrete but is not at all required to

be Kleinian in the sense that its region of discontinuity is nonempty.
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2 Fixed points of Möbius transformations

We further introduce some notation that we follow for the remainder of the present paper.

Fg is the set of the fixed point(s) of a transformation g. As before Γ is a subgroup of

Möb(C), which is usually (but not always) discrete, where being discrete means discrete as

a subset with respect to the Lie-group topology of Möb(C). Furthermore, ZΓ (g) denotes the

centralizer of g of Γ , for which the group Γ is dropped from the symbols when Γ = Möb(C).
Let 1 ̸= g ∈ Möb(C). (1 denotes for us appropriate identity elements.) With the aid of

the quantity tr2 g = (a+ d)2, which is well defined, we classify standardly:

(i) g is parabolic if tr2 g = 4. This happens precisely when g is conjugate to a translation

z 7→ z + 1 in Möb(C).

(ii) g is elliptic if 0 ≤ tr2 g < 4, which happens if and only if g is conjugate to a Euclidean

rotation z 7→ αz with |α| = 1 in Möb(C).

(iii) g is loxodromic if it is neither parabolic nor elliptic.

It is easy to check that #Fg ≥ 1 and the equality holds if and only if g is parabolic.

(Here, and in the sequel, # denotes the cardinality of a set.) Also #Fg ≤ 2 for every non-

identity transformation, because a Möbius transformation is specified by its action at just

three points. Using chiefly those well-known facts, we proceed to recall some (algebraic)

information for convenience.

As we have already mentioned, we wish to solve the equation (1.2) in a discrete group

Γ . Clearly, the type of a Möbius transformation that has just been introduced, and the

fixed points as well, are preserved by raising to a power, although iterations of an elliptic

transformation can possibly be the identity transformation. This too is useful in the (initial)

analysis below for our discussions of the determination of “appropriate” subgroups of Γ to

work on.

We are now going to examine in detail the fixed-point sets of two commuting transfor-

mations.

One will be able to generally show that, if two transformations commute with each

other, every one of the transformations, when they are bijections, leaves invariant the fixed

points of the other of the transformations; in particular, for two Möbius transformations g

and h, the commutative property gh = hg implies

g(Fh) = Fh, h(Fg) = Fg. (2.1)

Thus, g (resp., h) fixes Fg ∪ Fh setwise while fixing Fg (resp., Fh) pointwise.
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Now suppose that 1 ̸= h ∈ Z(g). We claim that, when g is parabolic, h is also parabolic

such that g and h have the same fixed point. Indeed, if not, at least g2 has to fix a point

of Fh which is not in Fg. This contradicts the assumption that g is parabolic.

We record for frequent use later the next

Assertion. Let g and h be nontrivial Möbius transformations. Assume that gh = hg. Then

#Fg = #Fh. (2.2)

Moreover, we have:

(i) when g and h are parabolic, Fg = Fh;

(ii) when g and h are non-parabolic, either Fg = Fh or Fg ∩ Fh = ∅. In the latter case, g

and h are both elliptic of order two and g (resp., h) interchanges the two points of Fh

(resp., Fg).

In particular, when g is not elliptic of order two, the centralizer Z(g) coincides with the

abelian group comprising the transformations each of which has exactly the same fixed-point

set as g.

In the sequel, the abelian group found in the statement of Assertion will be written as

S(g). For the remainder of the current note it frequently shows up due to the nature in its

own right.

Proof of Assertion. Let us make a comment on the second part of the assertion. When g

and h are non-parabolic, we have

#Fg = #Fh = 2. (2.3)

Assume for contradiction #(Fg ∩ Fh) = 1 (by (2.3) no other possibilities exist). Then,

#(Fg ∪ Fh) = #Fg +#Fh −#(Fg ∩ Fh) = 3 (2.4)

and one can verify that g (and h) have to fix Fg ∪ Fh pointwise. This contradiction shows

that either Fg = Fh or Fg ∩ Fh = ∅.
The last statement is now practically obvious. See also the remarks below.

Remarks. (1) If Fg = Fh, direct calculations yield the commutativity of g and h (see the

subsequent sections).
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(2) When g is elliptic of order two, it involves no loss of generality to assume after a

routine conjugation that g = −z. If h interchanges the two points of Fg = { 0,∞}, then it

has to be of the form z 7→ b/z, with b ̸= 0. Notice that from this setup h is also elliptic of

order two, and g automatically interchanges the two points of Fh = {±
√
b }.

(3) One is thus able to convince himself or herself that the condition (2.1) actually

implies that gh = hg for two Möbius transformations g and h.

In the following section, we will begin to study discreteness (of discrete subgroups Γ of

Möb(C)), which has not played a vital part in the discussion so far.

3 The parabolic cases

Suppose in this section that g is of parabolic type. Thus, for the moment, we assume (by

conjugation for sending the sole fixed point to ∞) that Fg = {∞}; that is, g is of the form

z 7→ z + βg (3.1)

with a nonzero complex number βg. In the light of part (i) of Assertion in Section 2, the

centralizer ZΓ (g) comprises the transformations with the same fixed point as g, which are

inevitably of parabolic type (except for identity transformation, of course). Hence, ZΓ (g)

and the abelian subgroup∗ of Γ

SΓ (g) = { γ ∈ Γ | Fγ = Fg } (3.2)

coincide for a parabolic transformation g—and SΓ (g) is the desired subgroup that we are

seeking.

With the foregoing notation and conventions, we define an injective homomorphism

τ : SΓ (g) → C (3.3)

given by γ 7→ βγ , where C is regarded as an additive group topologized by the absolute-

value norm. Since SΓ (g) is discrete, so is the image of SΓ (g) in C under the homomorphism

τ . Therefore, SΓ (g) being nontrivial is a free abelian group of rank 1 or 2.

We have shown:

∗As (briefly) mentioned, in order not to make exceptions of the identity transformation we will and
hereafter do adopt the convention that 1(= identity element) belongs to any of these kinds of sets in the
present article.
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Proposition 1. Let g be a parabolic transformation of a discrete group Γ ⊂ Möb(C). Then
the centralizer ZΓ (g) coincides with SΓ (g) and either SΓ (g) ∼= Z or SΓ (g) ∼= Z ⊕ Z. The

equation (1.2) admits a solution in Γ if and only if g belongs to the subgroup of SΓ (g)

Sn
Γ (g) = { γn | γ ∈ SΓ (g) } . (3.4)

The equation admits, if any, a unique solution in Γ .

We shall in the rest of the paper assume that g ̸= 1 is non-parabolic, i.e., #Fg = 2,

unless the contrary is stated explicitly.

4 The elliptic cases

The elliptic case could be treated as a “specialized” version of the loxodromic case to be

studied in the next section. However, in order to get a transparent picture of what is going

on, we separately study the elliptic case.

We assume after conjugation that Fg = { 0,∞}; that is, g is of the form

z 7→ αgz. (4.1)

The coefficient αg is known as the multiplier of g.† Because g is elliptic, αg is a nonzero

complex number such that |αg| = 1 (also see the remark at the end of this section).

In view of part (ii) of Assertion in Section 2, the centralizer ZΓ (g) seems to be a larger

subgroup than is required. Even if no elliptic transformations of order two are involved, the

subgroup SΓ (g), which has been introduced by (3.2) for parabolic transformations but can

also be defined for non-parabolic transformations, would be still too large. In this situation,

we shall use a smaller subgroup

ΣΓ (g) = { γ ∈ Γ | Fγ = Fg and γ is of elliptic type } , (4.2)

as the set appearing on the right-hand side is indeed a group.

We immediately have Σ(g) is a normal subgroup of S(g) (dropping the subscript Möb(C)
for brevity).

To digress slightly, we define, again in the light of Assertion, a natural homomorphism

j : Z(g) → S(Fg) (4.3)

†Associated uniquely to a (non-parabolic) transformation g is a quantity αg + 1/αg . It is not hard to
verify that αg + 1/αg = tr2 g − 2.



M. Ito 223

by viewing γ ∈ Z(g) as an element of the symmetric group S(Fg). We also see that γ is

stationary on Fg if and only if it belongs to the kernel of j, or in other words

ker j = S(g). (4.4)

For an elliptic transformation g of order two, the relevant information is thus summarized

in the following short exact sequence:

1 → S(g) ↪→ Z(g)
j→ S(Fg) → 1. (4.5)

Note that we are to identify the image of Z(g) under the homomorphism j with the cyclic

group Z2
∼= S(Fg), where the nontrivial element of Z2 corresponds to the permutation of

S(Fg) that interchanges the two points of Fg. There exists obviously a cross section (i.e.,

right inverse)

s : S(Fg) → Z(g) (4.6)

of the homomorphism j. Thus, for the sequence splits, we have that Z(g) is a semidirect

product of S(g) and s(S(Fg)), in symbols

Z(g) = S(g)o s(S(Fg)), (4.7)

or that Z(g) is a splitting Z2-extension of S(g).

In passing, we mention that for the purpose of quickly deriving some properties of Z(g),

a straightforward computation could serve as an elementary but helpful tool. For example,

we thereby deduce that if a non-identity transformation of S(g) ⊆ Z(g) commutes with the

transformation of Z(g) which corresponds to the permutation of S(Fg) via the cross section

s as above, then it is in fact g, because its multiplier, say α, must satisfy α − 1/α = 0.

See Remark 2 of Section 2. In addition, the algebraic structure of S(g) and the relation

between S(g) and Σ(g) are explained later (see the argument after the corollary following

Theorem in Section 5).

After this short detour we now return to (4.2) and define a further injective homomor-

phism

θ : ΣΓ (g) → T (4.8)

given by γ 7→ αγ , where T ⊂ C∗ is the compact multiplicative group (a 1-torus) of all

complex numbers with absolute value 1. The image of ΣΓ (g) in T under the homomorphism

θ is discrete. Hence,

ΣΓ (g) ∼= Zq (4.9)
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for some integer q ≥ 2 as ΣΓ (g) is a nontrivial finite cyclic group.

We have almost obtained

Proposition 2. Let g be an elliptic transformation of a discrete group Γ ⊂ Möb(C). Then

there exists an integer q ≥ 2 such that ΣΓ (g) ∼= Zq. The equation (1.2) admits a solution

in Γ if and only if g belongs to the subgroup of ΣΓ (g)

Σn
Γ (g) = { γn | γ ∈ ΣΓ (g) } . (4.10)

The number of solutions, if any, is gcd(n, q).

Proof. The last part is a direct consequence of an exercise in basic group theory. Indeed,

by raising to the nth power, we define a homomorphism

ΣΓ (g) → Σn
Γ (g) (4.11)

between these two cyclic groups. The order of the kernel of the above homomorphism is

gcd(n, q).

Remark. Sometimes the identity transformation is considered to be of elliptic type. When

g = 1, an element γ ∈ Γ is a solution to the equation (1.2) (if any) or a root of unity if and

only if it is an elliptic transformation of order dividing n, which belong to Γ .

5 The loxodromic cases

We turn now to the remaining and hopefully less obvious case: the loxodromic transfor-

mation. We assume that a loxodromic transformation g is normalized, i.e., g is of the

form

z 7→ αgz. (5.1)

Here, since g is loxodromic, αg is a nonzero complex number such that |αg| ̸= 1.

The statement of Theorem below might appear to be a mixture of those of the preceding

two propositions.

Theorem. Let g be a loxodromic transformation of a discrete group Γ ⊂ Möb(C). Then

the centralizer ZΓ (g) coincides with SΓ (g). The equation (1.2) admits a solution in Γ if

and only if g belongs to the subgroup of SΓ (g)

Sn
Γ (g) = { γn | γ ∈ SΓ (g) } . (5.2)
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Moreover, we have:

(i) If SΓ (g) does not contain an elliptic transformation, then SΓ (g) ∼= Z and the equation

admits, if any, a unique solution in Γ .

(ii) If SΓ (g) contains an elliptic transformation, then there exists an integer q ≥ 2 such

that SΓ (g) ∼= Zq ⊕ Z and the number of solutions, if any, is gcd(n, q).

Proof. In view of part (ii) of Assertion in Section 2, we see that ZΓ (g) comprises the

transformations with the same fixed points as g, which are of elliptic or loxodromic type;

this time we are to work with the abelian subgroup SΓ (g), with which the centralizer ZΓ (g)

coincides. So we define, by considering the “length spectrum,” a homomorphism

Θ: SΓ (g) → R (5.3)

given by γ 7→ log|αγ |, where R is regarded as an additive group topologized by the absolute-

value norm.

The image of SΓ (g) in R under the homomorphism Θ is discrete, so this implies that

imΘ ∼= Z (5.4)

because imΘ ⊂ R, which cannot be trivial under the assumption that g is a loxodromic

transformation, has to be a free abelian group of rank 1.

If SΓ (g) contains no elliptic transformations,

SΓ (g) ∼= Z (5.5)

from (5.4), for kerΘ must be trivial. Otherwise, we obtain as before (Proposition 2) that

there exists an integer q ≥ 2 such that

kerΘ = ΣΓ (g) ∼= Zq. (5.6)

(A similar construction of the subgroup ΣΓ (g) is also possible for a loxodromic transforma-

tion g and the equality on the last line clearly holds.) The following short exact sequence

encodes the related data:

1 → Zq ↪→ SΓ (g)
Θ→ Z → 1; (5.7)

in a slight abuse of language, we identify the image imΘ with Z, for example. The sequence

of course splits, and hence SΓ (g) is isomorphic to a direct product of Zq and Z as we are
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working in an abelian category. Therefore,

SΓ (g) ∼= Zq ⊕ Z, (5.8)

as is to be expected.

The rest of the proof is straightforward.

Most of the arguments in the proof of Theorem above is true for non-parabolic trans-

formations, whether g be loxodromic or not. We now state the following

Corollary (of the proof). Under the hypothesis of Proposition 2, the centralizer ZΓ (g) is

a splitting Z2-extension of SΓ (g), when ZΓ (g) does not coincide with SΓ (g). Moreover, we

have:

(i) SΓ (g) ∼= Zq if SΓ (g) does not contain a loxodromic transformation.

(ii) SΓ (g) ∼= Zq ⊕ Z if SΓ (g) contains a loxodromic transformation.

The finite cyclic group Zq as above is identified with ΣΓ (g).

Proof. The first statement follows readily from the observation on the homomorphism j as

introduced in (4.3), which relates the symmetric group S(Fg) to ZΓ (g), and so we include

some comments on the rest of the corollary. We for the sake of clarity demonstrate that

this time (5.5) apparently never holds. (Compare with (i) of Theorem.)

The homomorphism Θ is handy hereinafter. There always exists an integer q ≥ 2 such

that (5.6) holds whereas it is not possible for kerΘ to be trivial under the assumption that

g is an elliptic transformation. On the other hand, (5.4) may or may not be true, as follows.

If SΓ (g) does not contain a loxodromic transformation (and hence is a purely elliptic

subgroup), we have, instead of (5.5),

SΓ (g) ∼= Zq (5.9)

from (5.6), because kerΘ coincides with SΓ (g). As such imΘ must be trivial and thus (5.4)

is not true.

If SΓ (g) contains a loxodromic transformation, we see that (5.4) is true, for imΘ has

to be a free abelian group of rank 1. Our situation is then that it is possible to exploit

the splitting exact sequence (5.7) we encountered in the course of the proof of Theorem, so

(5.8) again holds.
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Now we mention that the short exact sequence (5.7) turns out to be

1 → T ↪→ S(g)
Θ→ R → 1 (5.10)

when Γ equals Möb(C), which is not discrete, and that the 1-torus T is identified with

Σ(g). The set of the positive multipliers of transformations of S(g) is (via the exponential

function) in a natural one-to-one correspondence with R, and this yields (by abuse of

notation) a canonical cross section

s : R → S(g). (5.11)

An easy consequence is that

S(g) = Σ(g)⊕ s(R) ∼= T⊕ R ∼= C∗. (5.12)

The direct summand R corresponds to the subgroup s(R) of S(g) comprising the hyperbolic

transformations. (A loxodromic transformation g is called hyperbolic if tr2 g > 4.)

6 Conclusion

The results we derived so far show when and how a solution of the equation (1.2) exists

in a discrete group Γ ⊂ Möb(C). In particular, Theorem in Section 5 says that there is a

maximum number n ≥ 1, depending on g and Γ , such that an nth root of g or a solution

to (1.2) exists in Γ . We shall denote the maximum number above by the symbol nΓ (g).

Since in view of the Poincaré–Klein–Koebe uniformization theorem any nonexceptional

Riemann surface is uniformized by a torsion-free Fuchsian group, important discrete groups

are the Fuchsian groups. (By definition, a Kleinian group Γ , which is a discrete group

acting properly discontinuously on a nonempty open subset of Ĉ, is called Fuchsian if,

after a global conjugation, its limit set lies on the extended real line R̂ = R ∪ {∞} and Γ

preserves each of the two disks, i.e., the upper half plane U and the lower half plane L in

C.)

In fact, the interest in the topic originated with an attempt to count the number of

holomorphic mappings between Riemann surfaces. Let f be a nonconstant holomorphic

mapping between two compact Riemann surfaces M and N of genus greater than one,

which are hyperbolic Riemann surfaces. Since such an f of M onto N is contracting in

their respective hyperbolic metrics, for a closed curve C on M , the hyperbolic length of
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f(C) on N does not exceed that of C on M .

A holomorphic mapping between compact Riemann surfaces is determined by the way

it operates on the homology of the surface, and this brings the subject down to counting

homology actions. By virtue of such rigidity of holomorphic mappings, it would be natural

to assign an algebraic invariant, like nΓ (g), to an algebraic object, for example, a homology

or homotopy class. This point of view enables us to interpret nΓ (g) as a more geometric

concept that is easier to visualize and sheds light on deformations of a Fuchsian group

(or any other discrete group). However, using the same notations as before, f(C) may

wrap a primitive curve on N around itself “many times” even if C is primitive. This is

where we were forced to rely on algebra and an algebraic attack is indeed effective, cf.

Ito-Yamamoto [4]; see also Imayoshi-Ito-Yamamoto [3].

To be more specific, we assume that Γ is a Fuchsian group uniformizing smoothly a

compact Riemann surface M , which is to be equipped with a canonical hyperbolic met-

ric. Each element g ∈ Γ is then of hyperbolic type and associated with g is an axis that

projects to a closed geodesic on M = U/Γ . Under the assumptions, Theorem (i) implies

that SΓ (g) ∼= Z and hence that nΓ (g) is equal to the index of a cyclic group ⟨g⟩ in SΓ (g).

Thus, the index measures how many times g wraps a corresponding primitive element of

Γ around itself and g is an nΓ (g)-iterate of the primitive element (e.g., Lemma 9.2.6 of

Buser [2]). Unfortunately no definitive statements can be made at present, but when being

deformed, such indexes, which are not decreased, might be bounded from above in an open

and clear fashion. For (analytic or geometric) information about relevant upper estimates,

see Yamamoto [5, 6]; we note that the estimates are not obtained through the immediate ap-

plication of the distance decreasing principle for holomorphic mappings between hyperbolic

manifolds.

As such the original motivation only requires Fuchsian groups (in the absence of elliptic

transformations), for which the problem studied here has a simpler formulation, being

compared with the way the statements are now written. At the same time, it could be

said that our procedures for solving the proposed problem are related, for instance, to an

important step in the generic or typical problem of describing conjugacy classes in a discrete

group. Although the current article consists of a series of rather elementary observations,

we therefore hope that those allow us to provide factual frameworks for further research.
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