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Abstract

The goal of this paper is to establish some results for the polar derivative of a
polynomial in the plane that are inspired by a classical result of Turán that relates the
sup-norm of the derivative on the unit circle to that of the polynomial itself (on the unit
circle) under some conditions. The obtained results sharpen as well as generalize some
known estimates that relate the sup-norm of the polar derivative and the polynomial.
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1 Introduction and statement of results

Let P (z) :=
∑n

j=0 ajz
j be a polynomial of degree n in the complex plane and P ′(z) its

derivative. A classical result due to Bernstein is that: for two polynomials P (z) and Q(z)
with degree of P (z) not exceeding that of Q(z) and Q(z) ̸= 0 for |z| > 1, the inequal-
ity |P (z)| ≤ |Q(z)| on the unit circle |z| = 1 implies the inequality of their derivatives
|P ′

(z)| ≤ |Q′
(z)| on |z| = 1. In particular, for Q(z) = zn max|z|=1 |P (z)|, this classical

result allows one to establish the famous Bernstein-inequality [3] for the sup-norm on the
unit circle: namely, if P (z) is a polynomial of degree n, then

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

Equality holds in (1.1) if and only if P (z) has all its zeros at the origin. On the other
hand, Turán’s classical inequality [14] provides a lower bound estimate to the size of the
derivative of a polynomial on the unit circle in the complex plane, relative to the size of
the polynomial itself when there is a restriction on its zeros. It states that, if P (z) is a
polynomial of degree n having all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1.2)

Inequality (1.2) was refined by Aziz and Dawood [1] in the form

max
|z|=1

|P ′(z)| ≥ n

2

{
max
|z|=1

|P (z)|+ min
|z|=1

|P (z)|
}
. (1.3)
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Equality in (1.2) and (1.3) holds for any polynomial which has all its zeros on |z| = 1. Over
the years, the inequalities (1.2) and (1.3) have been generalized and extended in several
directions. For a polynomial P (z) of degree n having all its zeros in |z| ≤ k, k ≥ 1, Govil
[5] proved that

max
|z|=1

|P ′(z)| ≥ n

1 + kn
max
|z|=1

|P (z)|. (1.4)

As is easy to see that (1.4) becomes equality if P (z) = zn + kn, one would expect that if
we exclude the class of polynomials having all zeros on |z| = k, then it may be possible
to improve the bound in (1.4). In this direction, it was shown by Govil [4] that if P (z) =
n∑

v=0
avz

v is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + kn

{
max
|z|=1

|P (z)|+ min
|z|=k

|P (z)|
}
. (1.5)

Different versions of these Bernstein and Turán-type inequalities have appeared in the
literature in more generalized forms in which the underlying polynomial is replaced by
more general classes of functions. The one such generalization is moving from the domain
of ordinary derivative of polynomials to their polar derivative. Before proceeding to our
main results, let us remind that the polar derivative a polynomial P (z) of degree n with
respect to a point α ∈ C (see [9]), is defined as

DαP (z) := nP (z) + (α− z)P ′(z).

Many of the generalizations of above mentioned inequalities involve the comparison of the
polar derivative DαP (z) with various choices of P (z), α and other parameters. For more
information on the polar derivative of polynomials, one can consult the comprehensive
books of Marden [9], Milovanonić et al. [10] or Rahman and Schmeisser [13]. In 1998, Aziz
and Rather [2] established the polar derivative analogue of (1.4) by proving that if P (z) is
a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for every α ∈ C with
|α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n

(
|α| − k

1 + kn

)
max
|z|=1

|P (z)|. (1.6)

The corresponding polar derivative analogue of (1.5) and a refinement of (1.6) was given

by Govil and McTume [7]. They proved that if P (z) =
n∑

v=0
avz

v is a polynomial of degree

n having all its zeros in |z| ≤ k, k ≥ 1, then for every α ∈ C with |α| ≥ 1 + k + kn,

max
|z|=1

|DαP (z)| ≥ n

(
|α| − k

1 + kn

)
max
|z|=1

|P (z)|+ n

(
|α| − (1 + k + kn)

1 + kn

)
min
|z|=k

|P (z)|. (1.7)

If we divide both sides of the above inequalities (1.6) and (1.7) by |α| and make |α| → ∞,
we obtain the inequalities (1.4) and (1.5), respectively. One can see in the literature (for
example, refer [6], [8], [11], [12], [15], [16]), the latest research and development in this
direction. Recently, Govil and Kumar [6] established the following result from which several
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other results follow as special cases.

Theorem A. If P (z) = zs
(

n−s∑
v=0

avz
v

)
, 0 ≤ s ≤ n, is a polynomial of degree n having all

zeros in |z| ≤ k, k ≥ 1, then for every α ∈ C with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ (|α| − k)

{
n+ s

1 + kn
+

kn−s|an−s| − |a0|
(1 + kn)(kn−s|an−s|+ |a0|)

}
max
|z|=1

|P (z)|. (1.8)

Dividing both sides of (1.8) by |α| and let |α| → ∞, we have the following refinement and
generalization of (1.4).

Theorem B. If P (z) = zs
(

n−s∑
v=0

avz
v

)
, 0 ≤ s ≤ n, is a polynomial of degree n having all

zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥
{

n+ s

1 + kn
+

kn−s|an−s| − |a0|
(1 + kn)(kn−s|an−s|+ |a0|)

}
max
|z|=1

|P (z)|. (1.9)

If we take s = 0 in (1.8) and (1.9), we get as special cases from Theorems A and B, the
following improvements of (1.6) and (1.4) respectively.

Theorem C. If P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all zeros in |z| ≤

k, k ≥ 1, then for every α ∈ C with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ (|α| − k)

{
n

1 + kn
+

kn|an| − |a0|
(1 + kn)(kn|an|+ |a0|)

}
max
|z|=1

|P (z)|. (1.10)

Theorem D. If P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all zeros in |z| ≤

k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥
{

n

1 + kn
+

kn|an| − |a0|
(1 + kn)(kn|an|+ |a0|)

}
max
|z|=1

|P (z)|. (1.11)

Now, we state the main result of our paper. The obtained result generalizes and sharpens
(1.10) and yields strengthening of (1.7) and (1.11) as well.

Theorem 1. If P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all zeros in |z| ≤

k, k ≥ 1, then for every α ∈ C with |α| ≥ k and 0 ≤ t ≤ 1,

max
|z|=1

|DαP (z)| ≥ n

(
|α| − k

1 + kn

)
max
|z|=1

|P (z)|+ n

(
|α| − (1 + k + kn)

1 + kn

)
tm

+

(
|α| − k

1 + kn

)(
kn|an| − |a0| − tm

kn|an|+ |a0|+ tm

){
max
|z|=1

|P (z)|+ tm

}
, (1.12)

where m = min|z|=k |P (z)|.

Remark 1. While going through the proof of the inequality (1.7) given by Govil and
McTume [7], we see that this inequality still holds for |α| ≥ k. However to get a more
refined bound by making the second term on the right hand side of (1.7) non negative, the
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authors have taken |α| ≥ 1 + k + kn. Since k ≤ 1 + k + kn and hence, Theorem 1 holds
for every α ∈ C with |α| ≥ 1 + k + kn as well. Therefore, if we take |α| ≥ 1 + k + kn in
Theorem 1, we can easily see that the bound obtained in Theorem 1 is much better than
the bound obtained from (1.7).
Dividing both sides of (1.12) by |α| and let |α| → ∞, we get the following result.

Corollary 1. If P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1, then for 0 ≤ t ≤ 1 and m = min|z|=k |P (z)|, we have

max
|z|=1

|P ′(z)| ≥ n

1 + kn

{
max
|z|=1

|P (z)|+ tm

}
+

1

1 + kn

(
kn|an| − |a0| − tm

kn|an|+ |a0|+ tm

){
max
|z|=1

|P (z)|+ tm

}
. (1.13)

Equality in (1.13) holds for P (z) = zn + kn.

Remark 2. Since P (z) =
n∑

v=0
avz

v ̸= 0 in |z| > k, k ≥ 1 and, if z1, z2, ..., zn, are the zeros

of P (z), then | a0

an
| = |z1z2...zn| = |z1||z2|...|zn| ≤ kn. Also, as in the proof of Theorem 1

(given in the next section), we have for every λ with |λ| ≤ 1 the polynomial P (z)+λm has
all its zeros in |z| ≤ k, k ≥ 1, hence ∣∣∣∣a0 + λm

an

∣∣∣∣ ≤ kn. (1.14)

If in (1.14), we choose the argument of λ suitably, we get

|a0|+ |λ|m ≤ kn|an|. (1.15)

If we take |λ| = t in (1.15), so that 0 ≤ t ≤ 1, we get |a0|+ tm ≤ kn|an|.

Remark 3. In fact, excepting the case when the polynomial P (z) has a zero on |z| = k
or t = 0, the bounds obtained in Theorem 1 and Corollary 1 are always sharp than the
bounds obtained in Theorem C and Theorem D respectively. One can also observe that the
inequality (1.12) also improves the inequality (1.7) considerably when kn|an|−|a0|−tm ̸= 0.
If we take k = 1 in Corollary 1, we get the following refinement of a result due to Govil and
Kumar ([6], Corollary 1.6).

Corollary 2. If P (z) =
n∑

v=0
avz

v, is a polynomial of degree n having all its zeros in |z| ≤ 1,

then for 0 ≤ t ≤ 1 and m = min|z|=1 |P (z)|, we have

max
|z|=1

|P ′(z)| ≥n

2

{
max
|z|=1

|P (z)|+ tm

}
+

1

2

(
|an| − |a0| − tm

|an|+ |a0|+ tm

){
max
|z|=1

|P (z)|+ tm

}
. (1.16)

Equality in (1.16) holds for P (z) = zn + 1.

Clearly, Corollary 2 sharpens inequality (1.3) due to Aziz and Dawood [1] in all cases ex-
cepting when P (z) has all its zeros on |z| = 1.
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2 Proof of the Theorem

Proof of Theorem 1. If P (z) =
n∑

v=0
avz

v has some zeros on |z| = k, then m =

min|z|=k |P (z)| = 0 and the result follows from Theorem C in this case. So, hence-
forth, we suppose that P (z) has all its zeros in |z| < k, k ≥ 1. Let H(z) = P (kz) and

G(z) = znH( 1z ) = znP (kz ). Then all the zeros of G(z) lie in |z| > 1 and |H(z)| = |G(z)| for
|z| = 1. This gives ∣∣∣∣∣znP

(
k

z

)∣∣∣∣∣ = |P (kz)| ≥ m for |z| = 1.

It follows by the Minimum Modulus Principle, that∣∣∣∣∣znP
(
k

z

)∣∣∣∣∣ ≥ m for |z| ≤ 1.

Replacing z by
1

z
, it implies that

|P (kz)| ≥ m|z|n for |z| ≥ 1,

or

|P (z)| ≥ m
∣∣∣ z
k

∣∣∣n for |z| ≥ k. (2.1)

Now, consider the polynomial F (z) = P (z) + λm, where λ ∈ C with |λ| ≤ 1, then all the
zeros of F (z) lie in |z| ≤ k. Because, if for some z = z0 with |z0| > k, we have

F (z0) = P (z0) + λm = 0,

then

|P (z0)| = |λm| ≤ m < m
∣∣∣z0
k

∣∣∣n ,
which contradicts (2.1). Hence for every complex number λ with |λ| ≤ 1, the polynomial

F (z) = P (z) + λm = (a0 + λm) +
n∑

v=1
avz

v, has all its zeros in |z| ≤ k, where k ≥ 1.

Applying Theorem C to the polynomial F (z), we get for every α ∈ C with |α| ≥ k and
|z| = 1,

max
|z|=1

∣∣Dα

(
P (z) + λm

)∣∣ ≥ (
|α| − k

1 + kn

)(
n+

kn|an| − |a0 + λm|
kn|an|+ |a0 + λm|

)
|P (z) + λm|. (2.2)

For every λ ∈ C, we have
|a0 + λm| ≤ |a0|+ |λ|m,

and since the function

x 7→ kn|an| − x

kn|an|+ x
, (x ≥ 0)
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is non-increasing on {
x : x > −kn|an|

}
∪
{
x : x < −kn|an|

}
,

for every k, it follows from (2.2) that for every λ with |λ| ≤ 1 and |z| = 1,

max
|z|=1

|DαP (z) + λmn| ≥
(
|α| − k

1 + kn

)(
n+

kn|an| − |a0| − |λ|m
kn|an|+ |a0|+ |λ|m

)
|P (z) + λm|. (2.3)

Choosing the argument of λ on the right hand side of (2.3) such that

|P (z) + λm| = |P (z)|+ |λ|m,

we obtain from (2.3) that

max
|z|=1

|DαP (z)|+ |λ|mn ≥
(
|α| − k

1 + kn

)(
n+

kn|an| − |a0| − |λ|m
kn|an|+ |a0|+ |λ|m

)(
|P (z)|+ |λ|m

)
,

which on taking |λ| = t, so that 0 ≤ t ≤ 1, gives in particular (1.12) and this completes the
proof of Theorem 1.
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